Exposé

GdTProbaSDThEr20181126

Temps de mélange de marches aléatoires sur des graphes aléatoires à communautés

Lundi, 26 novembre 2018 - 11:00 - 12:00

Le temps de mélange d’une marche aléatoire sur un graphe connexe fini est intimement lié à la présence de goulots d’étranglement (« bottlenecks ») dans le graphe: intuitivement, plus il est difficile pour la marche de s’échapper de certaines régions du graphe, plus le mélange est lent. De plus, la présence de goulots d’étranglement étroits empêche souvent le cutoff, qui décrit une convergence abrupte à l’équilibre.

GdTProbaSDThEr20181112

Surfaces aléatoires et tableaux de Young

Lundi, 7 janvier 2019 - 11:00 - 12:00

On fixe la forme d'un diagramme de Young et on tire au hasard un remplissage de ce diagramme : on numérote les cases de manière à être croissant suivant les lignes et les colonnes. On obtient un objet qu'on peut voir comme une surface aléatoire. On étudie certaines propriétés de ces surfaces dans le cas d'un diagramme rectangulaire et triangulaire. On montre en particulier qu'on peut obtenir comme loi limite, en divers endroits du diagramme, la loi gaussienne, Tracy Widom ou des lois apparentées aux lois de Mittag-Leffler.

Segmentation of time-series with dependence

Jeudi, 31 janvier 2019 - 10:15

The objective of segmentation methods is to detect abrupt changes, called breakpoints, in the distribution of a signal. Such segmentation problems arise in many areas, as in biology, in climatology, in geodesy, .... The inference of segmentation models requires to search over the space of all possible segmentations, which is prohibitive in terms of computational time, when performed in a naive way.

Numerical performance of Penalised Comparison to Overfitting for bandwith selection in kernel density estimation

Numerical performance of Penalised Comparison to Overfitting for bandwith selection in kernel density estimation

Jeudi, 29 novembre 2018 - 10:15

In multivariate kernel density estimation, the bandwidth selection remains a challenge in terms of algorithmic performance and quality of the resulting estimation. A recently developped method, the Penalized Comparison to Overfitting (PCO), is compared to other usual bandwidth selection methods for multivariate and univariate kernel density estimation. In particular, the cross-validation and plug-in estimators are numerically investigated and compared to PCO.

On parameter estimation for hidden Markov processes

Jeudi, 22 novembre 2018 - 10:15 - 11:15

We consider two models of Markov processes observed (continuous time) in white Gaussian noise. One is telegraph signal with two states (ergodic case) and the second is partially observed linear system with small noise in observation equation. For both models we construct the MLE and One-step MLEs of the unknown parameters and show the consistency, asymptotic normality, convergence of moments and the asymptotic minimax efficiency of these estimators.

Statistical Methodology and Reliability Theory for Censored Semi-Markov processes

Jeudi, 18 octobre 2018 - 10:30 - 11:30

This work deals with multi state systems that we model by means of semi-Markov processes. The sojourn times are seen to be independent not identically distributed random variables and assumed to belong to a general class of distributions that is closed under maxima. We obtain maximum likelihood estimators of the parameters of interest and investigate their asymptotic properties. Plug-in type estimators are furnished for various reliability quantities related to the system under study.

Non singular Bernoulli shifts

Lundi, 8 octobre 2018 - 11:15

I will talk about recent progress related to nonsingular Bernouli shifts. Properties of conservativeness, ergodicity, Krieger's type, K-property will be under discussion. "General shifts", i.e. those which are not the natural extensions of nonsingular endomorphisms, will be also considered

Atelier des doctorants du 10/10/2018

Construction d'une extension naturelle pour la transformation $\beta$

Mercredi, 10 octobre 2018 - 14:00 - 15:00
Pour un réel strictement compris entre 1 et 2, on considère l'application $T(x) = \beta x$ mod 1. Cette transformation permet d'obtenir un développement dit "glouton" (ou "greedy") en base $\beta$ d'un réel $x$. Il existe aussi le développement "fainéant" (ou "lazy") d'un réel $x$ en base $\beta$. On présente la construction d'une extension naturelle du système dynamique $([0; \frac{1}{\beta-1} ]; T)$.

Improved estimation of a regression function with the Levy noise from discrete data

Jeudi, 27 septembre 2018 - 10:15 - 11:15

We consider the problem of estimating function in a periodic regression in continuous time with the Levy noise by discrete time observations. We use the model selection approach and develop a new adaptive procedure, which involves special modifications of the well-known James-Stein estimates, to improve the accuracy of the basic weighted least square estimates.

Estimation du noyau de division d’une population structurée par la taille

Jeudi, 13 septembre 2018 - 10:15 - 11:15

Nous considérons un modèle stochastique décrivant une population structurée par la taille. L’approche étudiée est motivée par la modélisation des divisions cellulaires et par la détection du vieillissement cellulaire en biologie. La population est représentée par une mesure ponctuelle évoluant suivant un processus aléatoire déterministe par morceaux. Nous étudions ici l’estimation non-paramétrique du noyau régissant les divisions, dans le cas où l’arbre de division n’est pas complètement observé.

Pages