Exposé

Volumes finis et solutions renormalisées

Mardi, 7 juin 2022 - 14:00

On s'intéresse dans cet exposé au problème elliptique à donnée L1 avec conditions de Neumann. Dans la première partie, on introduira la notion de solutions renormalisées pour le problème, en suite on présentera le schéma V-F ainsi que les outils d'analyse discrète utilisés. On montrera que la solution approchée par un schéma de type volumes finis converge vers l'unique solution renormalisée à médiane nulle.

GT-PTESD20220627

Norm convergence of powers of a Markov operator

Lundi, 27 juin 2022 - 11:00 - 12:00

Let $P(x,A)$ be a transition probability on $(X,\Sigma)$ and let $m$ be a probability on $\Sigma$ invariant for $P$, i.e. $m(A) =\int P(x,A)dm(x)$ for every $A \in \Sigma$. The Markov operator $Pf(x):= \int f(y)P(x,dy)$ is well-defined for $f$ bounded measurable; invariance of $m$ yields that $f=g$ a.e. (m) implies $Pf=Pg$ a.e. and $P$ is an operator on $L_\infty(m)$ and extends to an operator on $L_1(m)$. It is then a contraction in all $L_p(m)$, $1\le p \le \infty$. We assume that $P$ is ergodic modulo $m$, i.e. $Pf=f \in L_2(m)$ implies $f$ is a constant a.e.

GT-PTESD20220523

Principe d'invariance faible pour les ortho-maringales dans l'espace de Banach, application pour les champs aléatoires

Lundi, 23 mai 2022 - 11:00 - 12:00

Dans cet exposé, nous nous intéressons à des théorèmes centraux limites pour des champs aléatoires stationnaires à valeurs dans un espace de Banach. On montre d'abord un principe d'invariance faible pour les ortho-martigales à valeurs dans un espace de Banach réel séparable qui est 2-smooth ou de cotype 2. Puis à l'aide d'une approximation martingale, nous montrons le Théorème central limite pour des champs stationnaires à valeurs dans un espace $L^1(\mathbb{R},\mathcal{B}(\mathbb{R}))$.

Atelier des doctorants 07/12

The field-road diffusion model: fundamental solution and asymptotic behavior

Lundi, 9 mai 2022 - 14:30 - 15:30

We consider the linear field-road system, a model for fast diffusion channels in population dynamics and ecology. Despite the complex geometry of the problem and the exchange condition, we provide the first explicit expression of its fundamental solution and of the solution to the associated Cauchy problem. The main tool is a Fourier (on the road variable)/Laplace (on time) transform. Furthermore, we estimate the rate of decay of the L norm of the solution.

GTEDPCS20220607

Influence du taux de mutation sur des populations structurées en phénotype dans un environnement périodique en temps.

Mardi, 7 juin 2022 - 11:30 - 12:30

Les tumeurs solides présentent généralement de grandes hétérogénéités : plusieurs phénotypes cohabitent dans le meme groupe. Afin de comprendre ce phénomène, nous proposons avec G.Nadin un modèle de population structurée en trait phénotypique, soumise à des perturbations périodiques de l'environnement. Dans le contexte du cancer, ces variations peuvent etre dues en particulier à des traitement chimiques, donnés au patient de façon régulière.

Atelier des doctorants 07/12

Extensions confinées et filtrations dynamiques non-standard

Mardi, 3 mai 2022 - 14:30 - 15:30

Résumé : "On introduira la notion d'extension confinée à partir d'un exemple d'extension compacte sur le tore. On montrera l'intérêt de ces extension au travers de certains résultats de relèvement associés, et enfin on présentera le rôle des extensions confinées dans l'étude des filtrations dynamiques."

Pages