GDT "EDP et Calcul Scientifique" du jeudi 27 septembre 2018
Decomposition of the pressure of a fluid in a thin domain and applications: Asymptotic behavior of fluids and elasticity problems.
Decomposition of the pressure of a fluid in a thin domain and applications: Asymptotic behavior of fluids and elasticity problems.
Investissement et consommation optimale pour les marchés financiers de type Spread
Sahar Albosaily est la doctorante de Serge Pergamenchtchikov.
Le « combat des nombres », un jeu pour les savants... et les collégiens
Cet exposé rentre dans le cadre du séminaire de vulgarisation de la Fédération Normandie-Mathématiques.
Pour en savoir plus, consulter la page du séminaire
Zero entropic relaxation time for a ferromagnetic fluid system
In the physical sciences, relaxation usually means the return of a perturbed system to equilibrium. Each relaxation process can be categorized by a relaxation time $\tau$, for a generic commercial grade ferrofluid (a mixture of nanoscale ferromagnetic particles of a compound containing iron suspended in a fluid) the relaxation time is very small, of the order $\tau \sim 10^{-9}$; it makes hence sense to provide an asymptotic approximation when $\tau \to 0$.
This work extends the link between stochastic approximation (SA) theory and randomized urn models, and their applications to clinical trials. We no longer assume that the drawing rule is uniform among the balls of the urn (which contains d colors), but can be reinforced by a function f which models risk aversion. Firstly, by considering that f is concave or convex and by reformulating the dynamics of the urn composition as an SA algorithm with emainder, we derive the a.s.
Randomisation dans les automates cellulaires abéliens
Étant donné un espace de décalage $G^\mathbb{Z}$, où $G$ est un groupe abélien fini, un automate cellulaire abélien (ACA) est un endomorphisme de $G^\mathbb{Z}$ défini «par blocs». Nous étudions l’action de ces ACA sur les mesures de probabilités sur $G^\mathbb{Z}$.
Stepanov-Orliz almost periodic functions and their applications to differential equations.
Les solutions Weyl-presque périodiques pour les équations différentielles semi-linéaires.
In this presentation we discuss various measures of divergence including a general class of power divergence measures and explore some of their properties.
Le LMRS est l'une des composantes
de la Fédération Normandie-Mathématiques.
© 2024, Laboratoire de Mathématiques Raphaël Salem