Non-asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models
In this talk we study high dimensional ergodic diffusion models in nonparametric setting on the basis of discrete data, when the diffusion coefficients are unknown. For this problem, by using efficient sequential point-wise estimators we construct a model selection procedure and then we show sharp oracle inequalities, i.e. the inequalities in which the main term coefficient is closed to one. This means that the proposed sequential model selection procedure is optimal in this sense.