Exposé

Limites d'arbres aléatoires à catastrophes locales

Lundi, 15 décembre 2025 - 11:00 - 12:00

Résumé : Dans cet exposé, je présenterai un nouveau modèle d'arbres aléatoires qui généralise les arbres de Bienaymé-Galton-Watson (BGW), en autorisant des corrélations spatiales entre les morts des individus, à travers des "catastrophes locales". En particulier, contrairement aux arbres de BGW, ce modèle ne satisfait plus la propriété de branchement.

A promenade in microscopic locomotion and controllability of affine systems

Mardi, 16 décembre 2025 - 11:30 - 12:30

« Micro-swimming », the study of locomotion at microscopic scale, is a broad topic with applications ranging from biology to medical robotics. The locomotion problem may be modelled as a nonlinear control-affine system, with or without a drift depending on modeling assumptions, such as environment model and the way deformation is controlled. This raises the question of controllability, i.e. the ability of the locomotor to reach any desired state.

An Asymptotically Efficient Stochastic Newton Method with First Order Cost for Online Convex Optimization

Mardi, 14 octobre 2025 - 14:00

Stochastic Newton methods capable of achieving asymptotic efficiency have historically required a per-iteration cost of O(d3) for problems of dimension d. This presentation will first review the concept of asymptotic efficiency, the statistical benchmark for an optimal estimator. We then introduce an online algorithm that achieves this same statistical optimality with a reduced per-iteration cost of O(ℓd2), where the mask size ℓ can be chosen

Excursions sur les murs de briques

Lundi, 1 décembre 2025 - 11:00 - 12:00

Résumé : Considérons une marche aléatoire sur $\mathbf{R}^d$ qui commence à l’origine et se compose de m pas indépendants de longueur 1, où la direction d’un pas est choisie uniformément au hasard. Prenons la distance à l’origine (après $m$ de ces pas) et calculons ses moments pairs. Dans les dimensions $d = 2$ et $d = 4$, comme Borwein, Straub et Vignat l’ont montré en 2015, nous obtenons une suite entière. Il a été démontré que pour $d = 2$, le $n$-ième moment est égal au nombre de carrés abéliens de longueur $2n$ sur un alphabet de $m$ lettres.

Functional limit theorems in (truly) deterministic dynamical systems

Lundi, 24 novembre 2025 - 11:00 - 12:00

Abstract: This talk will be concerned with the following simulation question: Given a specific dynamical system, say an irrational rotation, and a self similar process can one find a function whose associated time series process converges in distribution to the process? I will discuss a joint work with Dalibor Volny (Rouen) in which we show that one can simulate alpha stable Levy motions in any aperiodic dynamical systems and some natural questions which follow. 

Aligning time origins in observational survival studies with time-dependent covariates

Jeudi, 11 décembre 2025 - 10:15 - 11:15

In many clinical studies, defining a clear time origin is essential: eligibility, treatment assignment, and the beginning of follow-up are ideally synchronized. In analyses based on observational data, however, these time points are often misaligned. This misalignment can create periods during which events cannot occur by design, effectively introducing a form of left-truncation or guaranteed survival that biases effect estimates.

Pages