Exposé

Atelier des doctorants 07/12

Extensions confinées et filtrations dynamiques non-standard

Mardi, 3 mai 2022 - 14:30 - 15:30

Résumé : "On introduira la notion d'extension confinée à partir d'un exemple d'extension compacte sur le tore. On montrera l'intérêt de ces extension au travers de certains résultats de relèvement associés, et enfin on présentera le rôle des extensions confinées dans l'étude des filtrations dynamiques."

GTEDPCS20220502

Justification des modèles de trafic routier et piétonnier comportant des interfaces internes

Mardi, 3 mai 2022 - 11:30 - 12:30

Dans ce travail en commun avec M. Rosini (Ferrara), G. Stivaletta (L'Aquila) et T. Girard (Tours), on s'intéresse à la justification des modèles pour le trafic routier et piétonnier.

Estimation de la fonction de Gerber–Shiu dans le modèle de Cramér–Lundberg

Jeudi, 19 mai 2022 - 10:15 - 11:15
En théorie de la ruine, le modèle de Cramér–Lundberg décrit l'évolution des réserves financières d'une compagnie d'assurance au cours du temps. Dans ce modèle, le taux de cotisation est supposé constant et déterministe tandis que les pertes dues aux sinistres suivent un processus de Poisson composé : les sinistres arrivent suivant un processus de Poisson homogène et donnent lieu à des pertes i.i.d.

GTEDPCS20220111

Fokker-Planck equations with terminal condition and related McKean probabilistic representation

Mardi, 11 janvier 2022 - 11:30 - 12:30

Stochastic differential equations (SDEs) in the sense of McKean are stochastic differential equations, whose coefficients do not only depend on time and on the position of the solution process, but also on its marginal laws. Often they constitute probabilistic representation of conservative PDEs, called Fokker-Planck equations.

On the density of polynomial orbits in minimal systems

Jeudi, 12 mai 2022 - 11:30 - 12:30

A general question in ergodic theory or topological dynamical systems is for which subset S of Z there is a point whose orbit along S is dense in the whole space, or the time averages of a function along S converge to its integral. In this talk, I will explain how one can show that for a totally minimal system and S being the values of a given integer polynomial on Z, such x exists. This result was developed gradually in the works by Huang-Shao-Ye, Glasner-Huang-Shao-Weiss-Ye, and Qiu.

GT commun EDP CS 08/03/2022

Méthodes HDG pour la propagation d'ondes acoustiques dans un écoulement. Applications en héliosismologie.

Mardi, 8 mars 2022 - 11:30 - 12:30

Dans cet exposé, nous présentons trois variantes de la méthode de Galerkine Discontinue Hybride (HDG) pour résoudre l'équation de Helmholtz convectée. Les méthodes HDG sont des méthodes DG mixtes qui sont construites autour d'une iconnue auxiliaire définie uniquement sur le squelette du maillage. Un procédé de condensation statique permet d'éliminer les degrés de libertés volumiques pour obtenir un problème global qui ne fait intervenir que cette inconnue auxiliaire.

GT-PTESD20220321

Processus classique et quantique associé à l'opérateur q-Bessel

Lundi, 21 mars 2022 - 11:00 - 12:00

Les semi-groupes de Markov quantiques (SMQ) sont une généralisation naturelle des semi-groupes de Markov classiques sur un espace des fonctions, qui est remplacé dans la théorie quantique par une algèbre d'opérateurs (généralement non commutative). De plus, ils proviennent des limites des systèmes quantiques en interaction avec des environnements externes.

GT-PTESD20220314

Norme de Poisson-Orlicz et théorie ergodique en mesure infinie

Lundi, 14 mars 2022 - 11:00 - 12:00

Il est bien connu que pour une transformation ergodique en mesure infinie, les sommes de Birkhoff associées à une fonction intégrable tendent vers 0 presque partout. Pour autant, la convergence n’a pas lieu dans $L^1$. A contrario, la convergence a bien lieu dans  $L^p$, $1<p<+\infty$. Ce « défaut » de la norme $L^1$ en mesure infinie affecte un certain nombre de résultats classiques et nous proposons une norme alternative permettant de les « corriger ».

GdTPTESD20220307

Ensembles aléatoires fractals générés par des pavages itérés du plan

Lundi, 7 mars 2022 - 11:00 - 12:00

Depuis l'exemple historique publié par Helge von Koch en 1904, de nombreuses constructions d'ensembles fractals ont été proposées, à la fois dans un cadre théorique et à des fins de modélisation, allant des plus élémentaires aux plus sophistiquées, déterministes ou aléatoires. L'objet de cet exposé est de présenter une nouvelle famille de compacts du plan, obtenus comme limites croissantes de suites d'ensembles simples construits par superpositions successives de pavages du plan.

Pages