On some Possibilities and Limitations of Statistical Learning Theory in the Stationary Ergodic Framework
Abstract: In this talk I will introduce some nonparametric statistical learning techniques for sequential data in the presence of long-range dependencies. The relevant literature on this topic typically involves such parametric structural assumptions as autoregressive, moving average or Markovian models. However, the theoretical guarantees obtained under such standard modelling assumptions do not hold in the presence of statistical dependencies.