GTEDPCS20230214
Robust a posteriori estimates of energy differences for nonlinear elliptic problems
In this talk, we present a posteriori estimates for finite element approximations of nonlinear elliptic problems satisfying strong-monotonicity and Lipschitz-continuity properties. These estimates include, and build on, any iterative linearization method that satisfies a few clearly identified assumptions; this includes the Picard, Newton, and Zarantonello linearizations. The estimates give a guaranteed upper bound on an augmented energy difference reliability with constant one, as well as a lower bound efficiency up to a generic constant.