Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is a widely used sampler, known for its efficiency on high dimensional distributions. Yet HMC remains quite sensitive to the choice of integration time. Randomizing the length of Hamiltonian trajectories (RHMC) has been suggested to smooth the Auto-Correlation Functions (ACF), ensuring robustness of tuning. We present the Langevin diffusion as an alternative to control these ACFs by inducing randomness in Hamiltonian trajectories through a continuous refreshment of the velocities.




