Distances sur les cartes 3/2-stables et CLE(4)
Résumé : Considérons des cartes planaires aléatoires avec des grands degrés, obtenues en associant à chaque sommet de degré $k$ un poids d'ordre $1/k^2$. Quand leur taille tend vers l'infini, ces cartes aléatoires ne satisfont pas de limite d'échelle au sens habituel de Gromov-Hausdorff car elles ressemblent à une étoile à l'échelle macroscopique. Cependant, si l'on se concentre sur les sommets de grand degré, je montrerai que les distances entre ces sommets et la racine satisfont une limite d'échelle.