Exposé

Atelier des doctorants du Jeudi 22/02/2018

Jeudi, 22 février 2018 - 14:00 - 15:00
Attracteurs exponentiels pour des réseaux couplés de systèmes de réaction-diffusion
Dans cet exposé, nous nous intéressons à une classe de problèmes
d’évolution donnés par des réseaux de systèmes de réaction-diffusion, définis
dans un domaine borné, avec condition au bord de Neumann. Nous envisageons
le cas d’une superposition de couplages linéaires et quadratiques, et présentons
le cadre fonctionnel de la recherche des solutions. Après avoir donné des conditions
d’existence de régions positivement invariantes pour le problème réseau,

Colloquium20180802

Jeudi, 8 février 2018 - 11:30

Improved adaptive Multilevel Monte Carlo and applications to finance

This paper focuses on the study of an original combination of the Euler Multilevel Monte Carlo introduced by Giles  and the popular importance sampling technique. To compute the optimal choice of the parameter involved in the importance sampling method, we rely on Robbins-Monro type stochastic algorithms. On the one hand, we extend our previous work to the Multilevel Monte Carlo setting. On the other hand, we improve  by providing a new adaptive algorithm avoiding the discretization of any additional process.

Atelier des doctorants 09/01/2018

Mardi, 9 janvier 2018 - 14:00 - 15:00

Écoulement non-newtonien d'un fluide près d'une surface.

Je vais traiter dans cet exposé la dérivation de l’équation de Prandtl, à
partir des équations de Navier-Stokes, qui décrit l’écoulement d’un fluide près
d’une surface. Mais avant d’aborder la théorie de Prandtl, je vais présenter les
équations de Navier-Stokes (NS) dans le cas d’un fluide incompressible ainsi que
l’adimensionnement de ces équations. Par suite, je vais étudier la question de la
convergence des solutions de NS vers la solution d’Euler et ce dans les deux cas

GdTProbaTE20180115

Lundi, 15 janvier 2018 - 11:00 - 12:00

Quantitative multiple recurrence for two and three transformations

In this talk I will provide some counter-examples for quantitative multiple recurrence problems for systems with more than one transformation.  For instance, I will show that there exists an ergodic system $(X,\mathcal{X},\mu,T_1,T_2)$ with two commuting transformations such that for every $\ell < 4$ there exists $A\in\mathcal{X}$ such that  \[ \mu(A\cap T_1^n A\cap T_2^n A) <\mu(A)^{\ell} \]  for every $n \in \mathbb{N}$.  The construction of such a system is based on the study of “big” subsets of $\mathbb{N}^2$ and $\mathbb{N}^

Atelier des doctorants du Vendredi 15/12/2017 1ere Partie

Vendredi, 15 décembre 2017 - 14:00 - 15:00

Coïncidence des mesures invariantes et mélangeantes pour le shift avec la mesure de Haar sur un sous groupe.

On considère l'espace $X= (\mathbb{Z}  /2\mathbb{Z})^{\mathbb{Z}}$  muni de sa structure de groupe additif, c'est à dire l'addition coordonnées par coordonnées. On travaille ici avec l'alphabet $A=\{0 ,1\}$.  
Parmi les transformations sur ces suites, on en étudie deux en particulier : $\mathbf{\sigma}$ et $\mathbf{\tau}$. Ces transformations sont définies par $(\mathbf{\sigma} x)_i:=x_{i+1}$ que l'on appelle le ``shift'' 
et $(\tau x)_i := ([\sigma + Id]x)_i:=x_i+x_{i+1} \mod2$.

GdTProbaTE20171211

Lundi, 11 décembre 2017 - 11:00 - 12:00

Restrictions sur le groupe d'automorphismes préservant un sous-shift fixé

Un sous-shift est un ensemble fermé de suites sur un alphabet fini, invariant par décalage (le shift). Un automorphisme (également appelé automate cellulaire) est un homéomorphisme de cet espace qui commute avec le shift. L'ensemble des automorphismes préservant ce sous-shift est un groupe dénombrable  en général compliqué à décrire. Nous présenterons dans cet exposé  un survol des différentes restrictions sur ces groupes pour les sous-shifts d'entropie nulle.

GdTProbaTE20180108

Lundi, 8 janvier 2018 - 11:00 - 12:00

Ensembles de niveaux des particules extrémales du mouvement brownien branchant

Il a été démontré que la distribution des valeurs extrêmes du mouvement brownien branchant est caractérisée dans sa limite en tant qu'un processus ponctuel de Poisson (PPP) décoré. Les points de ce PPP capturent les maxima locaux (par rapport à la distance généalogique) des extrêmes, tandis que les décorations décrivent la configuration des particules autour d'eux. Dans cette présentation, nous étudierons plus en détail la structure de ces valeurs extrêmes.

GdTProbaTE20171218

Lundi, 18 décembre 2017 - 11:00 - 12:00

Suites de type Chowla généralisé

Les suites de type Chowla et les suites de type Sarnak dans $\{-1,0,1\}^{\mathbb{N}}$ ont été introduites par El Houcein el Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk et Thierry de la Rue pour envisager les conjectures de Chowla et de Sarnak d'un point de vue théorie ergodique. Un de leurs résultats est que les suites de type Chowla sont toujours de type Sarnak, c'est-à-dire qu'elles sont orthogonales à tous les systèmes dynamiques topologiques d'entropie nulle.

Pages