Atelier des doctorants du Mardi 03/03/2018 1ere Partie
Les solutions Weyl-presque périodiques pour les équations différentielles semi-linéaires.
Les solutions Weyl-presque périodiques pour les équations différentielles semi-linéaires.
In this presentation we discuss various measures of divergence including a general class of power divergence measures and explore some of their properties.
Nonlinear stochastic Fokker-Planck equations
Existence and uniqueness of strong solutions to nonlinear Fokker-Planck equations driven by linear multiplicative noise is studied.
This is a joint work with Michael Rockner.
Improved adaptive Multilevel Monte Carlo and applications to finance
This paper focuses on the study of an original combination of the Euler Multilevel Monte Carlo introduced by Giles and the popular importance sampling technique. To compute the optimal choice of the parameter involved in the importance sampling method, we rely on Robbins-Monro type stochastic algorithms. On the one hand, we extend our previous work to the Multilevel Monte Carlo setting. On the other hand, we improve by providing a new adaptive algorithm avoiding the discretization of any additional process.
Écoulement non-newtonien d'un fluide près d'une surface.
Quantitative multiple recurrence for two and three transformations
In this talk I will provide some counter-examples for quantitative multiple recurrence problems for systems with more than one transformation. For instance, I will show that there exists an ergodic system $(X,\mathcal{X},\mu,T_1,T_2)$ with two commuting transformations such that for every $\ell < 4$ there exists $A\in\mathcal{X}$ such that \[ \mu(A\cap T_1^n A\cap T_2^n A) <\mu(A)^{\ell} \] for every $n \in \mathbb{N}$. The construction of such a system is based on the study of “big” subsets of $\mathbb{N}^2$ and $\mathbb{N}^
Homogénéisation de quelques problèmes elliptiques dans un domaine périodiquement perforé.
Coïncidence des mesures invariantes et mélangeantes pour le shift avec la mesure de Haar sur un sous groupe.
Restrictions sur le groupe d'automorphismes préservant un sous-shift fixé
Un sous-shift est un ensemble fermé de suites sur un alphabet fini, invariant par décalage (le shift). Un automorphisme (également appelé automate cellulaire) est un homéomorphisme de cet espace qui commute avec le shift. L'ensemble des automorphismes préservant ce sous-shift est un groupe dénombrable en général compliqué à décrire. Nous présenterons dans cet exposé un survol des différentes restrictions sur ces groupes pour les sous-shifts d'entropie nulle.
Le LMRS est l'une des composantes
de la Fédération Normandie-Mathématiques.
© 2026, Laboratoire de Mathématiques Raphaël Salem
