- Français
- English
Atelier des doctorants du Vendredi 15/12/2017 1ere Partie
Coïncidence des mesures invariantes et mélangeantes pour le shift avec la mesure de Haar sur un sous groupe.
Vendredi 15 décembre 2017, 14:00 à 15:00
Salle des séminaires.
Paul Lanthier
Paul Lanthier est un doctorant à l'université de Rouen. Son directeur de thèse est : Thierry de la Rue.
On considère l'espace $X= (\mathbb{Z} /2\mathbb{Z})^{\mathbb{Z}}$ muni de sa structure de groupe additif, c'est à dire l'addition coordonnées par coordonnées. On travaille ici avec l'alphabet $A=\{0 ,1\}$.
Parmi les transformations sur ces suites, on en étudie deux en particulier : $\mathbf{\sigma}$ et $\mathbf{\tau}$. Ces transformations sont définies par $(\mathbf{\sigma} x)_i:=x_{i+1}$ que l'on appelle le ``shift''
et $(\tau x)_i := ([\sigma + Id]x)_i:=x_i+x_{i+1} \mod2$.
Soit $\mu$ une mesure sur $(\mathbb{Z} /2\mathbb{Z})^{\mathbb{Z}}$, on la suppose invariante à la fois pour $\tau$ et $\sigma$ et on fait l'hypothèse que $\mu$ soit mélangeante pour $\sigma$.
alors la mesure $ \mathbb{P}_k $ (la mesure $\mu$ sur les cylindres de taille finie) est la mesure uniforme sur un certain groupe et la mesure de Haar et la mesure $ \mu $ coïncident sur un sous groupe $ G \subseteq{X} $ qui est $\sigma$ et $ \tau$ invariant.