GTEDPCS20221213

An abstract existence for generalised Hughes' model

Tuesday 13 December 2022, 11:30

Salle de séminaire du LMRS

Théo Girard

The Hughes' model is a model for the dynamics of pedestrian flows. In the one dimensional case, it represents the evacuation of agents in a corridor through either one of the exits. This model couples two PDEs : a discontinuous-flux conservation law and an eikonal equation. After a brief review about what's known on the subject, we propose an abstract existence result for solution to generalized Hughes' model. We also present three applications of this existence result and an extension with constrained evacuation at exits.