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Abstract

Denote by p(t) = Zn21 et ¢ > 0, the spectral function related to the Dirichlet Laplacian

for the typical cell C of a standard Poisson-Voronoi tessellation in R%, d > 2. We show that the
expectation Ep(t), t > 0, is a functional of the convex hull of a standard d-dimensional Brownian
bridge. This enables us to study the asymptotic behaviour of Eg(t), when t — 07, +o00. In
particular, we prove that the law of the first eigenvalue A\; of C satisfies the asymptotic relation
InP{)\ <t} ~ —2dwdjgd_2)/2 -t~%2 when t — 0%, where wq and J(d—2)/2 are respectively the

Lebesgue measure of the unit ball in R? and the first zero of the Bessel function J(d—2)/2-

Introduction and statement of the main results.

Consider ® = {z,,;n > 1} a homogeneous Poisson point process in R?, d > 2, with the d-dimensional
Lebesgue measure V; for intensity measure. The set of cells

C)={y eRY%|ly—zl| <lly—2||,2' € @}, z €@,

(which are almost surely bounded polyhedra) is the well-known Poisson- Voronoi tessellation of R?.
Introduced by J. L. Meijering [18] and E. N. Gilbert [9] as a model of crystal aggregates, it provides
now models for many natural phenomena as thermal conductivity [17], telecommunications [2],
astrophysics [29] and ecology [23]. An extensive list of the areas in which the tessellation has been
used can be found in Stoyan et al. [26] and Okabe et al. [22].

In order to describe the statistical properties of the tessellation, the notion of typical cell C
in the Palm sense is commonly used [20]. Consider the space K of convex compact sets of R?
endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set B C R? such that
0 < V4(B) < 4o00. The typical cell C is defined by means of the identity [20]:

EA(C) = ﬁE x;;@ WC(x) — z),

where h : K — R runs throughout the space of bounded measurable functions.
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Consider now the cell
C(0) = {y e R4 |yl < lly — x|,z € &}

obtained when the origin is added to the point process ®. It is well known [20] that C'(0) and C
are equal in law. On the other hand, the typical cell can also be characterized by means of the
empirical distributions. Indeed, let V4 r be the set of all cells C'(z), € ®, included in the ball
B(R) centered at the origin and of radius R > 0. Let us define Ngp = #V;p and fix h : L — R
an arbitrary bounded measurable function. Then (see [12]):

EA(C) = lim_ NLR S WC@) -w), as.
C(z)eVa,r

Explicit formulas for the distributions of the main geometric characteristics of the typical cell of
the Poisson-Voronoi tessellation have been recently obtained [3], [4]. Nevertheless their expressions
are intricate and in general, we do not have any precise idea about the asymptotic behaviour of
these distributions.

In this paper, we are interested in the properties of the fundamental frequencies of the typical
cell C. More precisely let us consider 0 < A\; < Ao < ... < A\, < ... the (random) eigenvalues of the
Laplacian under Dirichlet boundary conditions on C and denote by

p(t)=> e t>0,
n>1
the associated spectral function. Let us remark that the spectral function of deterministic sets has
been largely studied in connection with their geometrical structure [8], [15], [30], [31].
Besides, let
W(t) e RY  tel0,1),W(0) =W (1) =0,
be a d-dimensional Brownian bridge on the interval [0, 1] independent of the point process ®. Let

us denote by
W ={W(t);0<t<1} cR? (1)

the associated path and by W its closed convex hull.
For a set D C R?, we define

B(D;x) = UyepB(y, |ly — z|)), B(D;z) = UyepB(y, |ly — z|)),

where B(y,r) (resp. B(y, R) = {x € R% ||z —y|| < R}) is the closed (resp. open) ball centered at y
and of radius R > 0. Vg(D,x) will denote the d-dimensional Lebesgue measure of the set B(D;z),
ie.
Va(D, ) = Va(B(D; ).

The notation P (resp. P) is used for the probability associated to the point process ® (resp. to
the Brownian bridge W). Likewise the expectations E and E refer respectively to ® and W.

We show that the expectation Ep(t), t > 0, is a functional of the Lebesgue measure of the sets
B(W;x), r € RY.

Theorem 1 Ford > 2,

1 (= 4
Balt) = o [ Bexp(-()4Vi(W.2))da (2)
= (47r1t)% /Eexp(—Vd(\/ﬂw,i))daz, t>0.



Formula (2) is the key point for the proof of our main result providing the logarithmic asymptotic
behaviour of the distribution function (and of the Laplace transform) of the square of the funda-
mental frequency (e.g. the first eigenvalue \; of the Dirichlet laplacian) of the Poisson-Voronoi
typical cell.

Theorem 2 Denote by u1 the first eigenvalue of the largest random ball centered at the origin and
included in C(0). We have

. __d_ A . __d_
lim ¢t @2 InEe " = thm t" a2 InEp(t)
e

t—00

__d_ _
= lim t @2 nEe ™
t——+o00

2 a2
2 J(d—
- ot (12) ( <d d2>/2> , )

and
o d)2 < — T 492 <
tl_l,%it InP{\ <t} tl_lglth InP{p; <t}
= _2dwdjgd72)/2> (4)

where wyg = o4/d and J(a—2)/2 are respectively the Lebesque measure of the unit-ball of R? and the
first positive zero of the Bessel function Jig_g)/2-

This non-trivial result is strongly connected with the Donsker-Varadhan theorem about the volume
of the Wiener sausage [6] providing the logarithmic equivalent, when ¢ — 400, of the survival
probability P {\/Q_tw C [Uzea B(z, 5)]0} of a Brownian path until time ¢ > 0 in a random medium
of Poissonian obstacles which are the balls centered at x € ® and of fixed radius € > 0. More
precisely, we will show as an intermediary result of our proof that this last logarithmic equivalent
is precisely the same as the logarithmic equivalent of the probability P{y/2tW C 2-C(0)} that the
Brownian bridge stays until time ¢ > 0 in the homothetic 2 - C'(0) of the Poisson-Voronoi typical
cell.

Besides, Theorem 2 shows that the asymptotic behaviour of the first eigenvalue of the typical
cell C'(0) is the same as the first eigenvalue of the largest ball included in C'(0). This result is
substantially close to the work of A. S. Sznitman who proved that the large deviations of the first
eigenvalue of the complementary of a Poisson cloud of obstacles (e.g. balls) in a fixed box are
controlled by the largest ball free of obstacles (see [28], p.182).

We can also exploit Theorem 1 by investigating the asymptotic estimation of E¢(t) when
t — 0%. Let us recall that H. Weyl proved in 1911 [31] that for a bounded domain U C R with a
piecewise-smooth boundary, the spectral function ¢ satisfies the asymptotic relation

Va(U
o) Moo sl

For a bounded polygonal convex domain in R? it was shown (see [15], [24], [30]) that when ¢ — 0,

- Vigg) - Z\l/(% + i(wa‘l(U) — No(U) +2) + O(e=/"), (5)

ou (t)

where



(1) Vi(U) is the perimeter of U;

(ii) No(U) is the number of vertices of U;

(iii) o 1(U) = ZNO]EU) 1/ is the harmonic mean of the inside-facing angles vy, - -+ , ) at the

1=
vertices of U;

(iv) ¢ > 0is a positive constant independent of ¢ > 0.

For a bounded convex non-degenerate polyhedron U C R¢, d > 3, B. U. Fedosov [8] proved that
we have when t — 07,

Na_2(U)

_VaU)  Vaa (U 1 liwi = | 1
ol = e 2 5 (2 0 o (). ©

where

(i) Vg—1(U) is the (d — 1)-dimensional measure of the boundary of U;

(ii’) Fi,i=1,--- ,Ng_o(U) are the (d — 2)-dimensional faces of U;

(iii’) w; is the magnitude of the dihedral angle at the face F;, 1 <i < Ng_o(U).

Returning now to the spectral function of the typical cell C, we prove that for all £ > 1 we have
the asymptotic relation (when ¢t — 0%)

_ 1 - Li/2 k)2 }
EgD(t) - (47rt)% {; d,zt +O(t ) ) (7)

where the coefficients cq; are expressed in terms of the covariances
= d—1 S
c(ub'"7uj):E(Mu1"'Muj)7 Ul,"',UjGS 71§]§Z>

and M, = supg<s<;(u-W(s)), u € S¥1, is the projection of the d-dimensional Brownian path W
on the half-line R, u (see Remark 3).

The calculation of the coefficients ¢o;, @ > 0, (resp. cq;, ¢ = 0,1) shows that they have the same
geometrical meaning (up to the expectation) as in deterministic formulas (5) and (6).

This paper is structured as follows. The first section is devoted to some useful preliminaries on
the convex hull of the Brownian bridge. We then prove in the second section Theorem 1 and we
provide some easy consequences of it. The following two sections are focused respectively on the
proof of Theorem 2 about the asymptotic behaviour of E¢(t), t — 400, and on the asymptotic
estimation of Ep(t), t — 0. We finally enunciate some concluding remarks.

The principal results of this paper were announced in [13].

1 Preliminaries on the convex hull of the d-dimensional Brownian
bridge.

We begin with the following elementary facts:



Proposition 1 Consider a bounded closed set C C R? and denote by C its closed convez hull.
Furthermore let D C C' be a countable, dense subset of C'. We have

B(C;z) = B(Cix) (8)
Vy(D,z) = Vy(C,z) =V, (B(D;a:)), z € R, 9)

Proof of (8). Let u € S¥~! be a unit vector such that
(z +Ryu) N B(C;z) # 0.

It can be easily seen that there exist a point z € (z + Ryu) and a support hyperplane H, of C
perpendicular to u such that:

(i) (z + Rou) N B(C;z) = 77,
where 7z = {Az + (1 — A\)2z,0 < A < 1} is the closed segment with bounding points z, z;

(ii) ly—2ll = lly—all, VyeH,naC.

Moreover it is known ([25], corollary 18.3.1) that the intersection H, N dC must contain at least
one point y € C. Therefore

(z +Ryu) N B(C;z) C B(Cyz) YueS™,

which implies (8).
Proof of (9). Fix y € B(D;z). An elementary geometrical argument shows (the set D being
bounded) that

{A+(1-Ny;0< A <1} C B(D;x).

Integrating then in spherical coordinates (with x as center) we obtain the equality
Va(D,z) = Va(B(D; x)).
Combining this with the obvious inclusions
B(D;z) C B(C;xz) C B(C;z) c B(D;z), =€R?

we obtain the result.

Our next task is to give a useful estimate of the difference
Va(C,x) — wallz|| = Va(B(C;2) \ B(||z[]))

for sets C C R? containing the origin. It follows from (8) that we may suppose that the set C' is
convex. Let us introduce a few notations. Fix x € R?\ {0} and define:

(i) H= {y ceRY(y—x) 2= O} the polar hyperplane of the point z;
(ii) HT = {y R (y—z) 2 < O} the half-space associated with H and containing the origin;

(iii) ST =S"'n(HT —2), S~ =S91\St



(iv) Hy, the hyperplane perpendicular to the vector u € S9! and containing the origin;

(v) H, the support hyperplane of C perpendicular to u and included in the half-space
Hf, = {y e R%y-u >0}

(vi) A(C,z) ={u €S ;H,N(z+Ryu)} #0} (notice that H, N (x + Ryu) # 0 for all u € ST);

(vii) m(z,u) = d(x, H,) the distance between x and H,,
p(z,u) = |z.u| = d(z, Hy,,) the distance between x and Ho,,
h(u) = d(0, H,,) the distance between H,, and H,,.

Remark 1 For all x € R%\ {0}, we have

m(z,u) = h(u)+ p(z,u) if ue ST,
m(z,u) = |h(u) — p(x,u) ifuesST, (10)
A(C,z) = {ueS7;h(u) — p(z,u) = 0}

Proposition 2 For z € R%, we have:

d_d d
Vil o) sallal = 2 57 @) [ htwyoleu)dvatw)+ % [ () =pla )0 data), (11
j=1

and in particular,
2d
Vi(C.0) = = / h(u)dvy (). (12)
d Jga-1

Proof. For u € S ! and 2 € R%\ {0}, three possibilities occur:

Case 1 u ¢ ST UA(C, ) and consequently
(¢ +Ryw) 0 B(C;2) = (z + Ryu) 1 B(lal]) = {a}.
Case 2 u € ST which implies that
(r+Ryu) N B(C;x) =7z, (v+Ryu)N B(||z]]) =7,

with
Hx_ZH :2m(az,u), |‘$_Z,H :2/)(13,%)

Case 3 u € A(C,x) which implies that
(¢ +Ryu) N BCi) =77, (2 +Ryu)n B(Jz]) = (),

with
o= 2l| = 2m(a, u).

Then integration in spherical coordinates (with x as center) gives that

2m(z,u) 2m(z,u)
Va(C,z) — wqllz]|? = / / rd=Ldr dl/d(u)—l—/ / rdLdr | dvg(u)
S+ 2p(z,u) A(Cz) [J0

~ (@'/d) [ | i = pla o yivateo + [

m(x, u)ddl/d(u)] (13)
A(C,z)



From (10) we get that

d

m(z,u)? — p(z,u) = Z (‘Ji) h(u)p(z,u)?7, wuweSt,
j=1

and
T Rl

Substituting these expressions in (13) we find the final result (11).
To prove (12), it suffices to notice that for all u € S¥~!, we have

with
[|2]] = 2R (w),
so integrating in spherical coordinates we obtain the result.

a

Suppose now that C' is a random convex set containing the origin and invariant (in law) by rotations
with the origin as center. Thus the random variables h(u), v € S*!, are equal in law and we obtain:

Proposition 3 Suppose that C satisfies the above conditions and that E{h(u)?} < oo, u € ST
Fizing ug € S*1, we have then

d

d
E (Va(C,x) = wllz||”) = ;Id,jl\xl\djE (h(wo) + / E ([(h(uo) = pla,u)) v 0] ) dvg(u)

where i
=1 (d+1—j
21 Lo iy b T3 F(T)
I =044 (% i1 - T dt == (¢ 1<j<d.
dj q7d 1(])/0 ( ) 2 d(J) I‘(d—i) ) =)=

2

Proof. Taking the expectation in (11) the result follows from the direct evaluation of the integrals

/s+ p(z,u) ™ dvg(u) = ||z 1,0

Remark 2 Under the conditions stated in Proposition 3 we obtain that
E (Vd(fcyl‘) - wdHﬂ?Hd) ~e—o Lapel||" " Eh(uo).

In particular, in dimension d = 2, it follows from the Cauchy formula giving the perimeter of a
convex set that

4||z
B (Va(eC,a) —llal) ~e—o e VB (0),

where V1 (C) denotes the perimeter of the convex set C.



Choose now for C' the closed convex hullj?\:f C R4, of the sample path of the d-dimensional Brownian
bridge on the interval [0, 1]. Recall that W is invariant by rotations with the origin as center. Hence
the random variables h(u), u € S%~!, defined above coincide in law with the maximum Mj of the
1-dimensional Brownian bridge. The law of Mj is explicitely known, namely [27]

2

P{My > u} =e 2. (14)
Hence all the moments of M are finite, and we have
— 1\* — 2k +1)! V7T
EMy?** = (2 ) k!, EM?* = k€N.
0 <2> ) 0 8kk" 2\/7 S

In particular,

N

E(sz,x—w xd)wﬁlsxdfl .
AW ) = ulla) e pelle ! S

Now, denote by

M = sup ||y|| = sup. W ()]l
erV 0<s<

the maximum of the radial part of the Brownian bridge
W(s) = (Wi(s),---,Wa(s)), 0<s<1.

The components W;(s),0 < s <1,i=1,---,d, are independent one-dimensional Brownian bridges.
Hence

P{M >s} < dP{sup |Wi(s)|>s/Vd}
0<s<1
< 2dP{My > s/Vd}
2de=2°/1 5 >0, (15)

and
EM" < 400, Vk>0. (16)

As a consequence we deduce the following result:

Proposition 4 For all k € N* there exists a constant 0 < ¢ < +00 such that

kd

EVi(eW, z) — wallzl|)]F < ep Y |||[F4,
1=k
e>0, zeRL
Proof. From Proposition 2 we have
d— 1 '
Va(eTW, ) — wal 2| < (2%/d) / plar, ) dvg(u) + wa(eM)? |
S+
]:1

which by (16) implies the result.



2 Proof of Theorem 1 and consequences.

Proof of Theorem 1. Consider the spectral function
p(t) =Y e t>0,
n>1

1
(4mt)

Let us recall first (see [10], [27]) that the spectral function ¢ (¢), t > 0, of any bounded domain
(17)

of the typical cell C.
U C R? can be expressed in term of the Brownian bridge under the form:
. / P{z+ V2tW C Ul}da.
2 JU

wu(t)

Applying the formula above to the domain
law
C(0) = {y e R [yl < [ly — «]|,z € @} = C,

1

and taking the expectation we obtain (by Fubini theorem)
_ WE/P{Q: + VW C C(0)}da

Ep(t)
—z 4+ VW C C(0) — & N {—2 + B(V2tW;z)} = 0.

Observe that
Therefore applying the property of the Poisson point process ® we obtain

P{—z + V2tW C C(0)} = exp{—Vy(V2tW, )},

and consequently
1

/Eexp {—Vd(\/ﬂw, l‘)} dzx.

The obvious identity
Vi(V2AW, 2) = (20)72Vy(W,2/V2t), t>0,2 € R,
O

and an elementary change of variable provide the result.

In particular, Theorem 1 provides an infinite expansion of Ep(t) for d = 2, which is valid for every
(18)

I
P

n>

t>0.
Theorem 3 For d = 2 there exists tg > 0 such that:
/ E(Va(V2AW, z) — l|a|[*) eI da,

Ep(t)

for all 0 <t < ty, the series being absolutely convergent.



Proof. Regarding (2) it suffices to prove that there exists ¢y > 0 such that

/Eexp(VQ(\/_%oW,x) — orf|z|2)da < +o0.

Using the obvious inclusion .
B(V2tW;z) € B(2V2tM + ||z||),

we obtain the inequality
= 3
Va(V2tW, 2) < (||| + 2V2EM)? < guxw + 24w M. (19)
Hence,

[ Bep((VEW, 2) - 2mlalP)de < [ Besp(a(VEW,2) - 3|Jal*do

< Eexp(24tnM?)

+oo
/ eSP{24nM? > s/t}ds + 1
0
“+o0o
< 1+ 4/ e/ (24 g,
0

by using (15). Thus it suffices to take g < z=.0

In the two-dimensional case d = 2, the formula (2) provides straightforwardly an identification,
in term of Brownian bridge, of the expectation of the distribution function of the eigenvalues

N(t) = Z 1{)\n§t}7t > 0,

n>1

Indeed on one hand we have

+o0
Eg(t) = t/ e PEY 1, <sds, t>0.
0

n>1

On the other hand an elementary computation yields

1 W t [T — .
—/e_QtVQ(W””)dx = —/ e 'S /P{ZVQ(W,JJ) < s}dx | ds.
2 2w 0

So by injectivity of the Laplace transform and Theorem 1 we obtain

Theorem 4 In dimension d = 2, the expectation of the distribution function N(s),s > 0, is of the
form

2

EN(t) = — / BL2Va(W, 2) < t}da.

10



3 Proof of Theorem 2.

The main object in this paragraph is to obtain the logarithmic equivalent of the Laplace transform
of the distribution of the square of the fundamental frequency (that means the first eigenvalue
A1 of the Dirichlet-Laplacian) of the Poisson-Voronoi typical cell. Using a Tauberian argument,
this result leads us to the asymptotic evaluation when ¢ — 07 of the logarithm of the distribution
function P{\; < t}.

Proof of (3). Let us first notice that
e M < e < p(t), >0,

Consequently, it suffices to prove that

d
2 a2z
2 Jia—
Jim ¢ I Bet = 9,7 (d‘; ) ( (a d2>/2> (20)
and )
2 at2
d+2 Jd—
limsupt_ﬁlnEgp(t) < _Q%Wdﬁ ( + > (d—2)/2 (21)
t——+o00 2 d

In order to obtain the asymptotic result (20), let us remark that the random radius R,, of the
largest disc centered at the origin and included in C(0) has the distribution

P{R,, >r}=e 2w’ >0 (22)

Thus using the fact that the first eigenvalue of a disc of radius r > 0 is equal to j(2d72) /2 /r?, we
deduce that

o0 2,
Ee th1  — / exp {—ti(d 22)/2 — 2dwdrd} d2dwdrd_1d7‘
0 T
ey [T d/d+2 j(2d72)/2 d . d d  d-1
t/(+)/ exp —¢d/d+ —— — 2%wqr d2%wgr® ™ dr.
0 T

We then get from Laplace method that

d

-2 -2 a+2
lim ¢~ %@ InEe~* = —min {L_;)/ 2+ dedrd} = —2diEy (d . 2) (](H)/ 2) :

t——+o00 r>0 r 2 d

which proves the result (20).
The proof of (21) is far more delicate. Using Theorem 1, we first have

_ 4 —
Ep(t) = (21) / Ee (202 Va(W.2) gy
T

_ 1 i [/ Ee(Zt)%Vd(W,x)+/ Ee(Zt)%Vd(W,x)dl,]
(2m)2 [ H{ll=lI<t} {l=l[>]}

[N][SH

11



The obvious following inequality
Va(W,z) > wallz||4, = eR%,

then implies that

/ Ee-C0VaWa) g, < / o= (20 Bwgllzll? g,
{llall >t} {llall>t}

3d
= () 2 2wat® 45,

Therefore 4
lim ¢4/ 1 / Ee- 0 VaWa) gy — oo,
{llz||>t}

t——+4o00

Consequently in order to obtain (21), it suffices to prove that

d
_ 2 Eas
lim sup td/(d”)/ Ee-C0#VaW.a) < —gutagar A2 (Ja)p - (23)
t—-+00 {Jl2lI<t} B 2 d

The key estimation which enables us to derive the above asymptotic behaviour is contained in the
following lemma.

Lemma 1 For everyt > 0, and x € R?,

T (208 Va(W.a) < Eef(Qt)%Vd(VV,O)’ (24)
or equivalently B . B .
EP{z +V2tW c C(0)} < EP{V2tW C C(0)}. (25)

This last result will be proved at the end of the section. Let us notice that Lemma 1 implies the
inequality

_ 4.~ _ 4= — —
/ Ee~ (02 VaWo2) g0 < o t?Ee~ (02 VaW.0) — , t9EP{/2tW c C(0)}, t > 0.
{ll=f1<t}

Therefore in order to prove (23), it suffices to have

_ _ 3d 2 (d+2 j(2d72)/2 7
lim sup ¢~ % (@2 In EP{V2tW C C(0)} < —2+3 @ a+2 ( 5 ) g : (26)
t——+o00

This last result is a consequence of the Donsker-Varadhan theorem about the volume of the Wiener
sausage [7].

More precisely, let us denote by L the distance from the origin to its nearest neighbor. The
distribution of L is given by the equality

P{L >t} =P{R, >t/2} =e ¥ >0 (27)
Consequently,
_ too
EP{VIW C C(0)} = / EP{VIAW C C(0)|L = s}duwgs® e 4" ds. (28)
0

12



Moreover, it is obvious from the definition of the Voronoi cell C(0) that for every ¢ € [1,2),

C(0) [UI@B (% -, (% _ %) Lﬂ (29)

This leads us to compare for the Brownian bridge the probability to stay in the cell C'(0) with the
probability to avoid Poissonian obstacles. For every fixed € > 0 and ¢ € [1,2), we obtain

+oo -
/ EP{V2tW c C(0)|L = s}dwdsd_le_wdsdds
2

e ()]
< EP{V2tW C [U(C-x)ech (33, (% - %) Eﬂ C}

=Eexp {_CdVd (Uye\/2_t\/7\73(y’ (¢t — 0.5)6)) } .

_ _ d
L= 5} dwgs? e w45 ds

It is well known that the estimation of the Wiener sausage provided by Donsker and Varadhan [7]
is still relevant for the path of a Brownian bridge. Consequently, we obtain that

+oo P
limsup ¢+ In / EP{V2tW C C(0)|L = s}dwys™ e " ds
t——4o0 2

d

.2 m
< oz () Tre (d;2> (‘7<dd2>/2> . (30)

Taking the limit in (30) when ¢ — 27, we get

+oo g
limsup ¢~ a¥2 ln/ EP{V2tW C C(0)|L = s}dwgs™ e 5" ds
2

t——+o0 c
d
2 d+2
< —Qd%gzwddiz <d—;2> (j(d;)/2> . (31)

Besides, let us notice that we have the following inequality for every s < s’ € R,:

EP{V2tW C C(0)|L = s} < EP{V2tW c C(0)|L = s'}. (32)
Indeed, considering a uniformly distributed point Xy on the sphere S*1, the equality in law
(B|L = s) "2 (N B(0,s)°) U {s- Xo},

is clearly satisfied. We then deduce from (32) that

2e
/ EP{V2tW c C(0)|L = s}dwdsd_le_wdsdds
0
< EP{V2tW c C(0)|L = 2¢}

+oo
< / EP{V2tW c C(0)|L = s}dwdsd_le_wdsdds.
2

£
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Using (31), we then obtain that

2e
lim sup tfﬁg ln/ EF{\/2_7§W c C(0)|L = S}dwdsdfle*“’dsddg
0

t——+o0
d
72 d+2
< 2d3f2wdd+2 <d—;2> (j(d_d2)/2> . (33)

Combining the equality (28) with (30) and (33), we get the estimation (26), which completes the
proof of the convergence (3).

Let us now focus on the proof of Lemma 1.
Proof of Lemma 1. Let us fix 2 € R?. Using the identity

_ do = oo __ —
Ee (202 Va(W.z) (215)% / P (Vd(W,x) < u) e D2ugy, >0,
0
we obtain that it suffices to show the following inequality.
F{Vd(v/\?,x) < u} < F{Vd(v/\?,O) < u} . u>0. (34)

Let us notice that (34) is not a direct consequence of the inclusion of a set into an other one.
The following lemma provides a useful deterministic result of set theory.

Lemma 2 For every fixed N > 1 and u > 0, the set

N
Au = {Z = (Zla"' ’ZN) € (Rd)N;Vd (U B(Zza HZZH)) < u} ; d > 2>
=1

18 conver and symmetric.

Proof. First, A, is clearly symmetric. In order to prove that A, is convex, let us fix Z =
(Zl>"' 7ZN)> Y= (yla"' 7yN) € Au7 0< v < 1’ and define

U= (/Ula"' 7UN) = (1 _’Y)Z‘i"}/y
We will also use the notation zg = yg = vg = 0.
From the equality (12), we obtain

N
7 (U B, va))
=1

d

2d

-2 up (vi'u>] dva(u)
d Jsi-1 |i=0,.. N

d

2d

= sup  (yzi-u+ (1 =)y - U)] dvg(u)
Sd-1 |i=0,--,N

d d ¢
g% Y / (ﬂ}{pﬂ(zr@) dva(u) + (1 =) / (HS)}}'I')’N(%-U)) dva(u)

- <GB Zz,HzZH) ([VJ yz,nyzu)

i=1

<u

which proves Lemma 2.
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Returning now to the proof of the inequality (34), let us fix N > 2 ansselect 0 <7 <--- <ty < 1.
The law of the random vector

W= W(t), -, W(tn)) € R)Y

is a centered Gaussian measure. Let us observe that

N
F{Vd (U B(W (t;),||W (t;) — x|\)> < u} =P{Wec A, +7} (35)
=1

with 7 = (x,--- ,2) € (R)V,
since the set A,, u > 0, is convex and symmetric, we may apply Anderson’s lemma [1] which
gives

PWecA, +7)<P{WeA,}. (36)

Let us now take a countable set (¢;);>1 dense in [0,1]. By the continuity of the Brownian bridge
sample paths, the set D = (W (t;));>1 is a dense subset of W. Then by (9), we have

Va(D,w) = Va(W, ) = Va (Dyen By, Tly —@l)) , @ € R

Thus the increasing sequence Vy (UX, B(y;, |ly; — z[)), N > 1, converges to Vy(W, z) for all z € R?,
which implies

N—+o0

?{Vd(w,x)gu} —  lim ?{Vd (GB(W{ti),HW(ti)—ﬂ\))<u}, u>0.
=1

Combining this with (36), we obtain the inequality (34) and the proof of Lemma 1 is completed.

a

Proof of (4). Let us first notice that the distribution of the first eigenvalue p; = j(2d_2) /2 JR2, of
the ball B(0, R,,) may be explicited by using the equality (22).
We then deduce from the inequality A\; < p; that

d d
IiminftzInP{X\; <t} > lim t2InP <t
minf P <4 > lim ¢f Pl <)

It now remains to prove that

limsupt2 InP{A < £} < —20wgjdy s . (37)
t—0+

-2

3d 2 a+2
Let us note ¢ = 2d+2 d+2 (%) <J(d%> and fix 0 <e < 1.
The asymptotic result (3) implies that we have for u large enough

Ee "M < 67(175)ctd/(d+2)

)
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and using Tchebychev inequality, we get
P{\ <t} < e (e hut -y s g (38)

Taking

a+2

B #{2(1—5)0 4
= | = '

in the inequality (38), we obtain for ¢ small enough

a2 g d,—4
P{\ <t} < e~ (178) 72 2%waj(g—2) /2%t 2

which clearly provides the required result (37) and completes the proof of (4).

4 The asymptotic behaviour of Ep(t), t — 0%.

In order to study the asymptotics of E¢(t) when t — 0T, we derive from (2) the following suitable
relation.

Theorem 5 For k > 1, the following asymptotic, when t — 0%, holds:

k—1 ;
1 —1) [ — e
Bolt) = —— 4 > b [BU0GVEW 0) el e i+ O ¢
(4nt)2 iz ©
Proof. Let us start with the formula
1 — —~
Ep(t) = y /Eexp{—(Vd(\/ﬂw,x)}daz

(4mt)2

1 _

_ i /Eexp{—(vd(\@w,x)—wduxud)}edex. (39)

(4mt)2

Fix k > 1. Since .
Va(V2W, ) —wlle]|* 2 0, xR,

we have

Jexp { — (Va(V2W ) — wallal|) | -

k—

,_\

L (VW) — ) |

1=0
1 k
< = (VaV2W @) —wille|l?) . (40)
By Proposition 4 we have

/E{ [Vd(@\/ﬁ,x) - quHl’HdT} ewdl7l’dy < 400, VieN,

and

— —~ k
/E { [Vd(\/2_tW,:L‘) - wdHl‘Hd:| } e~wallzll! gy < G20 <t <1/2, (41)

where 0 < ¢}, < 400 is a constant. The result follows then from (39), (40) and (41).
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Let us recall that the values of the expectations of the principal geometrical characteristics of the

typical cell C are known [20]. In particular,
EV,(C) =1,

and denoting by V;_1(C) the (d — 1)-dimensional area of the boundary dC, we have
_ J/mdID(2 - 1/d)T(d/2 + 1)~ Y1 (d/2)

I'((d+1)/2)I'(d —1/2)

EVi1(C) =
The following theorem provides now the explicit calculation of the three first coefficients of the
preceding development for any dimension.
Theorem 6 In dimension d > 2, we have when t — 0T,
E(V4(C)) EVi1(C) Cd,2 1
Ep(t) = = T T 4,1"’_0 = |
(47t)2 4(4mt) 2 (4m)d/2¢2 t 2
where
CE)) re-32)
cap = | 4%kqoq —4= — Iy204 275
dw, ¢ dw, ¢
with
4 / /W)’ sin? 0 [9(277 —0) 1 ]
d = *0d-10d—2 /
giﬁ%ﬁ 0=p'—p 2 6(r—0) tané
d—4
[sin2 @sin? ¢ — (cos @ — cos @ cos @’)2] 2 (cos @ cos ') L sin @ sin @' dfdpdy’.
(42)

3 t

C22 =
3

In particular, for d = 2,
2 2 1—
w(/ COStdt—l).
0

Remark 3 By a very similar method, we can prove that Theorem 5 implies the general asymptotic

development provided by (7).
Proof. Theorem 5 provides us the following expansion:

[1 B / E(Va(V2IW, ) — wqllz]|%)e 11 gz

1
+5 /E{(Vd(@\?v,x) — wyl|z|| D2 el g + O(VE) | . (43)

(4mt)

d
2

Ep(t)

E[(V2tM, — p(x,u)) Vv 0)%dry(u).

Applying Proposition 3 to C = \/2_ﬂ/7\\7 we obtain

B(Va(V2AW, 2) —wallall) = S Lol (26 "By + = /

j=1

17



Suppose d > 3. Since
/ E[(V2tM, — p(z,u)) V 0)%dvg(u) < (20)2cEM?,

_ — 1
EM, = VT and EM,? = 5

2v2
then there exist ty > 0 and a constant K, > 0 such that the expression above is of the form
_ ~ vt
E (Vd(\/2_tW,fU) - wdeHd) = THdeiljd,l + t]|2] |92 g0 + tVEAa(z, 1), (44)
with
0< Agla,t) < Ky (1+|\x|\d—3), zeRe, 0<t<t (45)
For d = 2 let us note /3
2t M,
K(t,[|lz]]) = HTHO t >0,z € R\ {0}.

We have

[ BV, — plava)) v 0t
— 2 {4tMy® arcsin (K (t, ||z||) A 1) + ||z]|? [arcsin (K (¢, ||z]]) A 1)
—K (¢, |2l|)v/(T = K (&, [[al[)2) A 0] — 4l[al|v2EMo [1 = T = K (2, [lal)?) A0 }
< 2E {4t M arcsin (K (¢, [|z||) A 1)
|z [axesin (K (¢, Jo)) A 1) = K (& ||2ll) /(T = K& [21)?) A0] } -

Considering the two cases K (¢, ||z||) > (1/2)||z|| and K(¢, ||z|]) < (1/2)||z||, some elementary and
somewhat lengthy calculations (using in particular the existence of a constant a > 0 verifying

1
arcsin(z) < z + az®, Va €0, 5]

and the inequality v/1 — 22 > (1 — 22), 0 < 2 < 1) provide the following estimation

/ E((VEM, — pla,w) V 0 dvs(u) < vt (46)

IEdin

where C' > 0 is a constant.
The inequality (46) shows that the formulas (44) and (45) are valid alike for d = 2.
Now we may write (11) on the form

ValVEW 2) — wallal[ = 20V | Mup(o,w)' dvafu) + R(e 1)
S+

with

2d d . w
0 < Ra(w,t) < Zoa () (V2M) ||| " 1.
j=2

18



Hence there exists tg > 0 and a constant K (’i > 0 such that
E {(Vd(\/2_t\/7\\7,m) — wdeHd)Z} = 4dkd|\m|\2d’22t + t\/ZGd(l‘,t), zeRY >0, (47)

Wlth
= 71 E(M,M,, pP\T,u)p\T Ul d 1(11/ u)av, U/ 48
kd H H2d 2 //(; 2 ( uVtu )( ( ) ) ( ’ )) d( ) d( )7 ( )

and
0 < Gyla,t) < K, (1 + |\x|\2d—3) . zeRYL 0<t<t

The covariances E(M,, M, ) were calculated in ([10], IV.). Precisely, if § € (0, 7] is the angle spanned
by the two vectors u,u’ € S% 1, then

= sin 0 [9(27r —0) 1 (49)

E(M, M) = H(6) = 2 | 6(r—0) T and]

Inserting (49) in the integral (48) some calculation yields:

pte’ d—4
kg =404_104—2 %K oy / H(#)sin6 [sin2 @sin? ¢’ — (cos # — cos p cos @’)2] 2 db
om0
(cos pcos ') L sin psin 'dedy’,  d >3, (50)

2 1 (21— cosu
== (1+= [ —qu). 1
ko 12( —1—2/0 " du) (51)

In order to obtain Theorem 6 it suffices now to insert formulas (44) and (47) in (43), and to proceed
to some elementary calculations thanks to (50) and (51).

a

Remark 4 The asymptotic result of Theorem 6 and the equation (5) suggest that we may have

4
@gzigwEaJw)_ENd@+a)

Using the well-known equality ENy(C) = 6 (see e.g. [20]) and (51), this is equivalent to the equality

2r 4
Ea%@:é/ Locosty (52)
0

m t

We did not find this result in the literature so for the sake of completeness we give its proof in the
Appendix.
5 Concluding remarks.

(1) A part of the above arguments works in a more general setting of Johnson-Mehl tessellation [5],
[14], [19]. In that model the crystals start growing radially (in all direction at fixed speed v > 0)
at time ¢; from the nuclei x; in such a way that

® = {(zi,t;) € RY x [0, +00)}

19



is a spatially-homogeneous Poisson point process. At the end of growth the whole space is cov-
ered and the construction of the Johnson-Mehl tessellation is completed. The Poisson-Voronoi
tessellation corresponds to the particular case when all nuclei are born at the same time. The
Johnson-Mehl crystals are star-shaped but not necessarily convex, the common boundary between
two crystals, which is a part of a hyperboloid, may even be disconnected.

It can be shown that for a process ® satisfying the canonical conditions of J. Mgller [19] the
expectation of the spectral function of the typical Johnson-Mehl cell can also be expressed in terms
of Brownian bridge from which a two-terms expansion near the origin can be obtained (see [12]).

(2) It would be interesting to obtain the geometric significance of the coefficients cq 2 appearing in
the asymptotic of Theorem 6. In view of (6) it is likely that cg2 is connected with

Ng—2(C) ‘ -
E 2; %(“’f)—wi(c))vd_2<ﬂ<6)) ,

where
(i) Fi(C),i=1,--- ,N4_o(C) are the (d — 2)-dimensional faces of C;
(ii) w;(C) is the magnitude of the dihedral angle at the face F;(C), 1 <i < Ny o(C).

(3) To obtain the values of coefficients cq;, ¢ > 3, in (7) it is necessary to calculate explicitely
the covariances EM,, co My, e up € sS4t j > 3, associated to the d-dimensional Brownian
bridge. At our knowledge this problem is open. Note also that for a bounded convex polyhedron
of R? the explicit expressions of the coefficients at order k& > 4 appearing in the asymptotic (near
the origin) of the spectral function are unknown (see [8]).

(4) for d = 2, Theorem 2 can be proved without the Donsker-Varadhan theorem. Indeed, we
can use the estimation provided in [11] for the distribution of the perimeter of the convex hull of
the Brownian bridge W.

(5) It is interesting to note the significance of Lemma 1. The inequality (46) can be rewritten
under the form o
EP*{T > u} <EPY{T >u}, u>0,

where T denotes the first exit time of the Brownian bridge from the cell C(0), the notation P*
expressing the fact that the Brownian path is starting at the point z € R%. If we replace the
Brownian bridge by the standard Brownian motion in R? in the proof of Theorem 1 we obtain the
corresponding inequality

EPX{r > u} < EP%r >u}, u>0,

for the first Brownian exit time 7 of C'(0).
(6) It is well known that “the larger regions have smaller eigenvalues” and therefore the equalities
(3) and (4) express that in some sense the large Voronoi cells are nearly circular. An analogous phe-

nomenon (known under the name of D. G. Kendall conjecture) occurs for the polygons determined
by a standard Poisson line process in the plane (see [11], [16]).
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Appendix. Proof of (52).

Let us recall that by associating to each vertex s of the planar Poisson-Voronoi tessellation the
triangle T'(s) whose vertices are the nuclei of the three cells containing s (and whose center of cir-
cumdisc coincides precisely with s), we obtain the dual tessellation, called the Delaunay tessellation
(see [20]). The typical Delaunay cell D is defined (in Palm sense) by the following formula [20]:

BA(D) = {42 7B D MT 53
(D) = )\on ESE;B (53)

for all measurable function h : K — Ry, and where:
(i) B C R? is an arbitrary fixed Borel set such that 0 < Va(B) < +oc;

(ii) S is the set of vertices of the Poisson-Voronoi tessellation.

Note that the mean number of vertices per unit area is equal to 2 (see [20]).

The distribution of the typical cell D, which is a triangle noted zjz023, is known explicitely
by means of the distributions of the radius p(D) of the circumdisc of D and of the three angles
B1(D) = z1pz2, B2(D) = z3pz3, B3(D) = z1pza, where p is the center of the circumdisc of D (see
[20], p. 104, for an expression of these distributions valid in any dimension and [21], p. 249, for a
rewriting in dimension 2). In particular, these angles are identical in law and independent of p(D).
This implies that the angles a;(D), as(D), a3(D) spanned in p by any two edges of the Voronoi
tessellation, are independent of p(D) and of common distribution (see for example [21]):

o (D)(P)(dt) = % sint(sint — ¢ cos £)1pgn ()dt. (54)

Thus from (54) we get the following result:

1 2 /2” 1—cost
= — - dt.
oq(D) 3 t

Let us consider now the set A of angles of the Poisson-Voronoi tessellation and for each o € A, let
s(a) be the associated vertex. Then noticing that the mean number of angles per unit area is equal
to six we can define a typical angle @ on the following lines:

Lemma 3 We have:

_ 1
E]-[O,t] (O[) = W(_B)E Z 1[0’t](a), 0 S t S ™, (55)
s(otgze)éB

where B is a fixed Borel set of R? such that 0 < Va(B) < oo.

The typical angle @ can be connected, on one hand to the angles of the Voronoi typical cell
C, and on the other hand to the angles a1 (D), as(D), a3(D) of the Delaunay typical cell D. More
precisely, we have:

Lemma 4 (i) The angles @ et aq(D) are identical in law.

(i) for any measurable function f:[0,7] — R4, we have

No(C)

:_EZfaCz

where ac i, 1 <1 < No(C), denote the inside-facing angles of the typical cell C.
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Proof. (i) Consider 0 <t < 7 and B € B(R?), V5(B) = 1.
Then by definition (53) of D, we have

3
%EZ Lo, (ci(D)) = éE > (Z 1[07t}(0‘i(5))>
=1

seSNB \i1=1

where aq(s), aa(s), as(s) are the three angles associated with the vertex s in the tessellation.
Moreover, by definition of the typical angle (see (55)),

éE > (Lglea(s) + Lg(ez(s)) + Loy (as(s)) = Bl (@).
seSNB

We conclude then by using the identity in law of the three angles (D), aa(D) and as(D).
(ii) The proof is similar to that of Prop. 3.2.2. of J. Mgller [20] which connects, for 1 < k < d,, the
k-dimensional typical face of the Voronoi tessellation to the k-dimensional faces of the typical cell.

a
From Lemmas 3 and 4, we deduce that
1 1 4 [*"1—cost
Ea '(C)=6E (= | = 6E - —/ S,
a a1(D) T Jo t
which completes the proof of (52).
a

Acknowledgment. We thank the referee for his useful remarks, in particular for his idea to use
the Donsker-Varadhan theorem in order to extend to any dimension Theorem 2.
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