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Abstract

In this paper, we establish large-deviation results on the number of extreme points of
a homogeneous Poisson point process in the unit ball of Rd. In particular, we deduce an
almost-sure law of large numbers in any dimension. As an auxiliary result we prove strong
localization of the extreme points in an annulus near the boundary of the ball.

Introduction and main results

Let us denote by U1, · · · , Un, n ∈ N∗, n independent and uniformly distributed variables in the
unit ball Bd of the Euclidean space Rd, d ≥ 2, and let Xt, t > 0, be a homogeneous Poisson
point process in Bd of intensity measure (t/ωd)1Bd(x)dx where ωd is the Lebesgue measure of
the unit ball. We consider the convex hull Cn (resp. Ct) of the set {U1, · · · , Un} (resp. of Xt)
and Nn (resp. Ñt) its number of vertices. The asymptotic behaviour of Nn when n → +∞
has been widely investigated in the literature. For d = 2 Rényi and Sulanke [10] obtained in
1963 the convergence of means of Nn. Their work has been followed by Efron [5], Buchta &
Müller [2], Groeneboom [6] who obtained a central limit theorem and Massé [8] who proved
a law of large numbers in probability. More recently, estimating precisely the variance of Nn

for all dimensions d ≥ 2, Reitzner [9] deduced an almost-sure convergence for the number of
vertices of random polyhedra in any convex set of Rd, d ≥ 4, with a C2 boundary and positive
Gaussian curvature. For all d ≥ 2 the asymptotic behaviour of ENn is known to be

ENn ∼ cdn
(d−1)/(d+1). (1)

where the dimension-dependent constant cd is known explicitly, see Wieacker [13] (for d = 3),
Bárány [1], Schütt [12] as well as (7) in Reitzner [9] and the references therein. Note that
αs ∼ βs stands for lims→∞ αs/βs = 1. Throughout the paper we make use of ’O,Ω,Θ’ notation.
Recall that O(X) stands for quantities bounded above by X multiplied by a constant, Ω(X)
for quantities bounded below by X multiplied by a constant, while Θ(X) = O(X) ∩ Ω(X).

Let us remark that (1) implies the same type of asymptotics for Ñt when t → +∞, i.e.

EÑt ∼ cdt
(d−1)/(d+1). (2)
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12/18, 87-100 Toruń, Poland. E-mail : tomeks@mat.uni.torun.pl, Research partially supported by the Foundation
for Polish Science (FNP)

1



Indeed, using that a homogeneous Poisson process in Bd of intensity t coincides in distribution
with {U1, · · · , US} where S is a Poisson variable with mean t, we obtain

|EÑt −
∑

|k−t|≤t2/3

ENkP{S = k}| ≤
∑

|k−t|≤t2/3

kP{S = k} = tP{S 6∈ [t− 1− t2/3, t− 1 + t2/3]}.

It remains to use standard moderate-deviation results on the Poisson distribution to prove that
the RHS goes to zero when t → +∞ and that the sum in the LHS tends to cdt

(d−1)/(d+1).
The purpose of this paper is to establish the following large-deviation results for Nn (resp.

Ñt):

Theorem 1 For each ε > 0,

lim inf
n→∞

1
log n

log
(
− log P

{∣∣∣∣ Nn

ENn
− 1
∣∣∣∣ > ε

})
≥ d− 1

3d + 5
. (3)

Theorem 2 For each ε > 0,

lim inf
t→∞

1
log t

log

(
− log P

{∣∣∣∣ Ñt

EÑt

− 1
∣∣∣∣ > ε

})
≥ d− 1

3d + 5
. (4)

Let us remark that these results are of the same type as the concentration results for volumes of
unions of random closed sets obtained in [11]. We believe that the concentration rate 1− 2d+6

3d+5
on the RHS of (1) and (2) is not optimal and we conjecture that the optimal value should
be d−1

d+1 , coinciding with the exponent determining the asymptotics of the expected number of
vertices. However, we were not able to verify this conjecture with our current methods.

In particular, we deduce the almost sure law of large numbers for Nn (resp. Ñt) in any
dimension d ≥ 2.

Corollary 1 We have
lim

n→∞
Nn/ENn = 1 a.s.

and
lim
t→∞

Ñt/EÑt = 1 a.s..

Corollary 1 is a direct consequence of Theorems 1 and 2 and the Borel-Cantelli lemma.
Our technique of proof strongly relies on the localization of extreme points in a small an-

nulus near the boundary of the unit ball, which allows us to use a standard concentration of
measure result due to Ledoux [7]. The following proposition shows that with an overwhelming
probability, going exponentially fast to one, the vertices of the convex hull of the points inside
the ball are located in an annulus centered at the origin of thickness of order n−2/(d+1) (resp.
t−2/(d+1)).

Here B(r), r > 0, denotes the ball centered at the origin and of radius r. In the sequel we
agree to use c to denote a positive constant, possibly varying between different occurrences of
c.

Proposition 1 (i) There exist constants c > 0, K > 0 such that for every 0 < α < 2/(d + 1),
we have

P{B(1−Kn−α) 6⊆ Cn} = O(exp(−cn1−α(d+1)/2)). (5)

(ii) In the same way, we have

P{B(1−Kt−α) 6⊆ C̃t} = O(exp(−ct1−α(d+1)/2)). (6)
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Our main motivation is the extension to higher dimensions d ≥ 2 of our previous results in
the Euclidean plane on the number of sides [4] and the radius of the circumscribed ball [3] of
the typical Poisson-Voronoi cell. Indeed, we established a connection between the sides of the
typical cell and the extreme points of an inhomogeneous Poisson point process in the unit ball
via an action of the classical inversion. In dimension d ≥ 3, the same argument provides a
relation between the number of hyperfaces (resp. the radius of the circumscribed ball) of the
typical cell and the number of vertices (resp. the inradius) of the convex hull of the Poisson
process inside the ball. We will deduce from Theorem 2, Corollary 1 and Proposition 1 some
new results on the geometry of the typical Poisson-Voronoi cell that will be developed in a
future work.

The paper is structured as follows. We first obtain an auxiliary proposition stating the
localization of the extreme points near the boundary of the ball. Using concentration of measure
arguments due to Ledoux, we then prove the main large deviation result for the number Nn

(Theorem 1). We deduce Theorem 2 from Theorem 1 and a large-deviation property of the
Poisson distribution. Finally, concluding remarks are listed about the extensions of these results.

1 Proof of Proposition 1.

(i). For a fixed u0 ∈ Sd−1 (Sd−1 being the unit sphere of Rd), let Sn = sup
1≤i≤n

Ui · u0, where ·

denotes the usual scalar product in the Euclidean space Rd. There exists c > 0 such that for
every α ∈ (0, 2/(d + 1)), we have

P{Sn ≤ 1− n−α} = O(exp(−cn1−(d+1)α/2)). (7)

Indeed, for a fixed α ∈ (0, 2/(d + 1)), we have that

P{Sn ≤ 1− n−α} =
(

1− Vd({x ∈ Bd;x · u0 > 1− n−α})
ωd

)n

, (8)

where Vd and ωd are respectively the Lebesgue measure in Rd and the volume of the unit ball
Bd. By an elementary computation, we obtain

Vd({x ∈ Bd;x · u0 > 1− n−α}) = ωd−1

∫ arccos(1−n−α)

0
sind(θ)dθ

∼
n→+∞

ωd−1

d + 1
2(d+1)/2n−α(d+1)/2. (9)

Combining (8) with (9), we deduce the result (7).
We consider then for a fixed α ∈ (0, 2/(d + 1)) a deterministic covering of the sphere Sd−1

by spherical caps of height n−α (i.e. of angular radius equal to arccos(1− n−α)) such that the
total number of caps is of order Θ(n

α
2
(d−1)). In addition, we suppose that every cap intersects

at most a fixed number ς of other caps. Let us remark that the existence of such a covering can
be proved by induction over the dimension d.

Indeed, let us suppose that for every ε > 0, a covering of Sd−1 by N
cap
d (ε) spherical caps

of angular radius ε > 0 exists. Then we can construct a covering of the cylinder C = Sd−1 ×
[−π/2, π/2] ⊆ Rd+1 as follows : for every integer k with |k| ≤ bπ

ε c we use the induction
hypothesis to choose N

cap
d (ε/2) caps of radius ε/2 on the (d − 1)-dimensional sphere Sd−1 ×

{kε/2}, fully covering this sphere and centered at ak
1, · · · , ak

N
cap
d (ε/2)

. A covering by (2bπ/εc+

1)Ncap
d (ε/2) balls of the set C is then obtained by considering the balls of radius ε and centered

3



at the points aj
i , 1 ≤ i ≤ N

cap
d (ε/2), −bπ

ε c ≤ j ≤ dπ
ε e. To proceed, note that the mapping

(u, θ) −→ (u sin θ + ed+1 cos θ), where ed+1 = (0, · · · , 0, 1) ∈ Rd+1, is a surjection from C onto
the unit sphere Sd ⊆ Rd+1 satisfying the Lipschitz condition with constant 1. This observation
allows us to transform the above covering of C into a covering of Sd with (2bπ/εc+1)Ncap

d (ε/2)
caps of radius ε. By induction, it means that Sd−1 can be covered with Θ(εd−1) spherical caps
of radius ε. Moreover, the proof above also shows that the covering thus constructed satisfies
the requirement that every cap intersects at most a fixed number ς of other caps.

Let Dn be the event that the set {U1, · · · , Un} intersects the interiors of all the caps of the
covering. Since the number of caps is polynomial in nα/2 and the probability that {U1, · · · , Un}
does not intersect one cap is bounded subexponentially by the estimate (7), we obtain that

P(Dc
n) = O(exp(−cn1−(d+1)α/2)),

where c is a positive constant. In order to get (5), it remains to notice that there exists a
positive constant K such that the hyperplanes spanned by the facets of a polyhedron with a
vertex in each cap are at least at distance (1−Kn−α) from the origin, which means that

Dn ⊂ {Cn ⊃ B(1−Kn−α)}.

Let us remark that the constant K can be taken equal to 4. Indeed, the interior of any circular
cap of height 4n−α contains at least one cap of height n−α of the initial covering (since the
angular radius of the larger cap, arccos(1− 4n−α), is greater than the angular diameter of the
smaller cap, i.e. 2 arccos(1−n−α)). Being in Dn implies then that any cap of height 4n−α con-
tains a point of {U1, · · · , Un} in its interior and, consequently, that any facet of the convex hull
of {U1, · · · , Un} is at least at a distance (1−4n−α) from the origin. This completes the argument.

(ii). Replacing (1) by the equality

P{S̃t ≤ 1− t−α} = exp(−t · Vd({x ∈ Bd;x · u0 > 1− t−α})),

where S̃t = sup
x∈Xt

x · u0, the proof of Proposition 1 for the Poisson point process is very similar

to what we did for the binomial point process.

2

2 Proof of Theorem 1

An important obstacle in the study of the number of vertices of convex hulls of large samples
is that adding a new vertex may discard an arbitrarily large number of other vertices. The
idea underlying this proof is to circumvent this difficulty by providing an appropriate artificial
modification of the number of vertices functional Nn which, while being very close to Nn, is bet-
ter behaved as satisfying a Lipschitz-type condition so that appropriate measure concentration
tools can be applied.

To proceed with this construction, we choose 0 < α < 2/(d + 1) and β ∈ (1− α(d + 1)/2, 1)
and we construct the functional Nα,β

n in the following way. Using the same type of covering
as in the proof of Proposition 1, we can cover the shell Bd \ B(1 − Kn−α) (with K given by
Proposition 1) with a number of order Θ(nα((d+1)/2−1)) of equal-sized spherical caps of volume
Θ(n−α(d+1)/2) each and such that from each point of Bd \B(1−Kn−α) only a fixed number ς
of caps are seen within Bd \ B(1−Kn−α). For a sample X in Bd, within each of the spherical
caps Ξ constructed above we observe the subsample Ξ ∩ X and, in case #(Ξ ∩ X ) > nβ (we
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say that Ξ is overfull in such case), we order the points of Ξ∩X in a certain deterministic way
(e.g. by decreasing distance to the origin) and we reject those with their numbers exceeding
nβ. We shall refer to this procedure as to the overfull-rejection. We also reject all the sample
points falling outside Bd \B(1−Kn−α). Let us notice that a sample point of X can be rejected
more than once, if belonging to several different caps. Writing X̂ for the so reduced sample we
define the functional Φα,β

n (X ) to be the number of vertices of the convex hull of X̂ . A crucial
observation is that adding or removing (consequently, also moving) a single point in the sample
X may change the value of Φα,β

n (X ) by at most Θ(nβ). To see it note first that when adding a
new point x we encounter the following four possibilities:

• x ∈ conv(X̂ ) and x does not fall into an overfull region; in this case the value of Φα,β
n

remains unchanged,

• x ∈ conv(X̂ ) but x falls into an overfull region. If x is rejected, Φα,β
n does not change,

otherwise x causes overfull-rejection of another point and may possibly become itself a
new vertex of the convex hull of the reduced sample, possibly discarding some vertices of
conv(X̂ ). Both these changes result in Φα,β

n changing by at most Θ(nβ) because at most
Θ(nβ) points of the reduced sample can be seen from any given point of Bd\B(1−Kn−α),

• x 6∈ conv(X̂ ) and x does not fall into an overfull region; in this case x becomes a new
vertex, discarding at most Θ(nβ) vertices of X̂ ,

• x 6∈ conv(X̂ ) and x does fall into an overfull region. If x is itself rejected, nothing changes,
otherwise x becomes a new vertex, possibly causing overfull-rejection of another vertex of
conv(X̂ ) and possibly discarding some vertices of conv(X̂ ). As above, both these changes
result in Φα,β

n changing by at most Θ(nβ) since at most Θ(nβ) points of the reduced sample
can be seen from any given point of Bd \B(1−Kn−α).

A similar argument shows that also removing a sample point results in overall change of Φα,β
n

by at most Θ(nβ).
From now on, let us consider

Nα,β
n := Φα,β

n ({U1, · · · , Un}).

The proof of Theorem 1 is divided into three steps. Using Proposition 1, we show in Lemma
1 that Nα,β

n is a good approximation of Nn. Then we give in Lemma 2 some concentration
properties on the number of points of the sample {U1, · · · , Un} falling into the annulus Bd \
B(1−Kn−α). In Lemma 3, which is the key result of our proof, we deduce from Lemma 2 and
a classical measure concentration result a large-deviation property for Nα,β

n . Theorem 1 is then
easily concluded from Lemmas 1 and 3.

Lemma 1 There exists a positive constant c such that

P(Nn 6= Nα,β
n ) ≤ O

(
e−cn1−α d+1

2

)
.

In particular, |E(Nα,β
n )− E(Nn)| ≤ nP(Nn 6= Nα,β

n ) = O

(
e−cn1−α d+1

2

)
.

Proof. Let An and Bn be the events such that, respectively, there is at least one extreme point
of {U1, · · · , Un} in B(1 −Kn−α) and there is at least one spherical cap containing more than
nβ points.
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Using Proposition 1, we have

P(An) = O(e−cn1−α(d+1)/2
). (10)

Moreover, denoting by Bin(n, p) a binomial variable with parameters n and p, we obtain that

P(Bn) ≤ ΨnP{Bin(n, vn) ≥ nβ}, (11)

where Ψn is the number of spherical caps and vn is the Lebesgue measure of a single cap divided
by ωd.

Using the Legendre transform, we have

P{Bin(n, vn) ≥ nβ} ≤ inf
t≥0

{
e−tnβ

E(etBin(n,vn))
}

= inf
t≥0

{
exp{−tnβ + n log(etvn + 1− vn)}

}
= exp

{
n log

(
(1− vn)

nβ

n− nβ
+ 1− vn

)
− nβ log

(
(v−1

n − 1)
nβ

n− nβ

)}
,

where the last equality is obtained by taking t = log((v−1
n − 1)nβ/(n− nβ)).

Since vn = Θ(n−α(d+1)/2), it follows that

P(Bin(n, vn) ≥ nβ) = O(e−cnβ
).

Combining (11) with the estimate Ψn = O(nα(d−1)/2), we deduce that

P(Bn) = O(e−cnβ
). (12)

Besides, it comes from the definition of Nα,β
n that

P{Nn 6= Nα,β
n } ≤ P(An) + P(Bn). (13)

Inserting the estimations (10) and (12) in (13), the proof of Lemma 1 is completed.

2

Let Mn be the number of Ui, 1 ≤ i ≤ n, contained in Bd\B(1−Kn−α). Mn has then a binomial
distribution with parameters n and wn, where wn = Vd(Bd \B(1−Kn−α))/ωd.

The following lemma collects some technical estimates for Mn needed for the proof of Lemma
3 below.

Lemma 2 (i) With k−n = bnwn − n1− 2
d+1 c and k+

n = dnwn + n1− 2
d+1 e, we have

lim inf
n→+∞

1
log(n)

log(− log P{Mn 6∈ [k−n , k+
n ]}) ≥ 1 + α− 4/(d + 1). (14)

(ii) Besides,

lim
n→+∞

sup
k∈[k−n ,k+

n ]

∣∣∣∣E(Nα,β
n |Mn = k)

E(Nα,β
n )

− 1
∣∣∣∣ = 0. (15)

6



Proof. (i) Using Tchebychev’s inequality, we get

P{Mn 6∈ [k−n , k+
n ]} ≤ inf

u≥1
u−k+

n (wnu + 1− wn)n + inf
0<v<1

v−k−n (wnv + 1− wn)n

≤

(
1 +

n−
2

d+1

wn

)−k+
n (

1 + n−
2

d+1

)n
+

(
1− n−

2
d+1

wn

)−k−n (
1− n−

2
d+1

)n
,

where we set u := (1 + n−
2

d+1 /wn) and v := (1 − n−
2

d+1 /wn). Taking logarithms of both sides
we come to

− log P{Mn 6∈ [k−n , k+
n ]} ≥ − log 2

−max

(
n log

(
1 + n−

2
d+1

)
− k+

n log

(
1 +

n−
2

d+1

wn

)
, n log

(
1− n−

2
d+1

)
− k−n log

(
1− n−

2
d+1

wn

))
.

Thus, applying the second-order Taylor expansion log(1 + x) = x− x2/2 + o(x2) yields

− log P{Mn 6∈ [k−n , k+
n ]} ≥ − log 2

−max

{
n ·
(
n−

2
d+1 + O(n−

4
d+1 )

)
− [nwn + n1− 2

d+1 ]

(
n

−2
d+1

wn
− n

−4
d+1

2w2
n

+ o

(
n

−4
d+1

w2
n

))
,

n ·
(
−n−

2
d+1 + O(n−

4
d+1 )

)
− [nwn − n1− 2

d+1 ]

(
−n

−2
d+1

wn
− n

−4
d+1

2w2
n

+ o

(
n

−4
d+1

w2
n

))}

=
n1− 4

d+1

2wn
[1 + o(1)] + O(n1− 4

d+1 ).

Using the estimate wn ∼ dKn−α when n → +∞, we obtain the required asymptotic result (14).

(ii) For k ∈ N denote by Ĉn
k (resp. Nn,k) the convex hull (resp. the number of extreme points) of

k i.i.d. points uniformly distributed in Bd \B(1−Kn−α). Conditionally on {Mn = k}, when the
convex hull Ĉn

k is strictly smaller than Cn, it implies that Cn does not contain Bd\B(1−Kn−α).
Consequently, we have

0 ≤ E{Nn|Mn = k} − E{Nn,k} ≤ E{Nn1An |Mn = k}
≤ nP(An|Mn = k), (16)

where An = {Cn 6⊃ B(1−Kn−α)} is the event already defined at the beginning of the proof of
Lemma 1.

As in the proof of Proposition 1 (i) (i.e. limn→+∞ P{An} = 0), the covering with Ψn

spherical caps of Bd \B(1−Kn−α) can be exploited to deduce that

P(An|Mn = k) ≤ Ψn

(
1− Vd(x ∈ Bd \B(1−Kn−α);x · u0 > 1− n−α})

Vd(Bd \B(1−Kn−α))

)k−n

, u0 ∈ Sd−1.

Still following the proof of Proposition 1 (i), we combine this last inequality with (16) to obtain

lim
n→+∞

sup
k∈[k−n ,k+

n ]

(E{Nn|Mn = k} − E{Nn,k}) = lim
n→+∞

n sup
k∈[k−n ,k+

n ]

P(An|Mn = k) = 0. (17)
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Besides, using Efron’s equality (3.7) in [5] for Cn−1 and Ĉn
k−1, we get

E(Nn)
E(Nn,k)

=
n(1− E(Vd(Cn−1))/ωd)

k

(
1− E(Vd( bCn

k−1\B(1−Kn−α)))

Vd(Bd\B(1−Kn−α))

) . (18)

Combining (18) with (17), it follows that, uniformly in k ∈ [k−n , k+
n ],

E(Nn)
E(Nn|Mn = k)

=
n(1− E(Vd(Cn−1))/ωd)

k

(
1− E(Vd( bCn

k−1\B(1−Kn−α)))

Vd(Bd\B(1−Kn−α))

) + o(1). (19)

We claim that
EVd(Bd \ [Ĉn

k−1 ∪B(1−Kn−α)]) ∼ EVd(Bd \ Cn−1), (20)

uniformly for k ∈ [k−n , k+
n ]. Indeed, using Proposition 1 and the relation (14) we see that

EVd(Bd \ Cn−1) = E
[
E(Vd(Bd \ [Ĉn

Mn−1 ∪B(1−Kn−α)])|Mn)1{Mn∈[k−n ,k+
n ]}
]
(1 + o(1)).

Taking into account that EVd(Bd \ [Ĉn
k−1 ∪B(1−Kn−α)]) decreases with k, we conclude that

EVd

(
Bd \ [Ĉn

k+
n−1

∪B(1−Kn−α)]
)

(1 + o(1)) ≤ EVd(Bd \ Cn−1) ≤

EVd

(
Bd \ [Ĉn

k−n −1
∪B(1−Kn−α)]

)
(1 + o(1)). (21)

On the other hand, EVd(Bd\[Ĉn
k−1∪B(1−Kn−α)]) decreases with n. For n′ > n this can be seen

by coupling the k− 1 i.i.d. points U1, . . . , Uk−1 uniform in Bd \B(1−Kn−α) with U ′
1, . . . , U

′
k−1

given by U ′
i := ϑ(|Ui|) Ui

|Ui| , where ϑ(·) = ϑn,n′;α(·) is a function of the form ϑ(r) = c1
d
√

rd + c2

with c1 and c2 chosen so that ϑ(1) = 1 and ϑ(1−Kn−α) = 1−Kn′−α. Random points U ′
i are

readily verified to be i.i.d. uniformly on Bd \B(1−Kn′−α) and to enjoy the property that U ′
i is

a.s. closer to the boundary ∂Bd than Ui. Combining these observations with (21) and choosing
m+

n > m−
n so that k+

n = k−
m+

n
and k−n = k+

m−
n
, we see that

EVd(Bd \ Cm+
n−1)(1 + o(1)) ≤ EVd(Bd \ [Ĉn

k−1 ∪B(1−Kn−α)]) ≤ EVd(Bd \ Cm−
n−1)(1 + o(1)),

uniformly for k ∈ [k−n , k+
n ]. Since m+

n ∼ m−
n , this yields (20) as an immediate consequence.

Rewrite (20) as

Vd(Bd \B(1−Kn−α))− E(Vd(Ĉn
k−1 \B(1−Kn−α))) ∼ ωd − E(Vd(Cn−1)),

uniformly in k ∈ [k−n , k+
n ]. Combining this relation with (19) leads to

lim
n→+∞

sup
k∈[k−n ,k+

n ]

∣∣∣∣E(Nn|Mn = k)
E(Nn)

− 1
∣∣∣∣ = 0.

In order to deduce (15), it remains to apply the same method as in Lemma 1 to get

sup
k−n ≤k≤k+

n

|E(Nα,β
n |Mn = k)−E(Nn|Mn = k)| ≤ 2n sup

k−n ≤k≤k+
n

P(An∪Bn|Mn = k) = O(e−cn1−α(d+1)/2
).

2
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The next lemma, which is an essential step to obtain Theorem 1, shows how the Lipschitz
property of the function Φα,β

n can be used to estimate large-deviation probabilities for Nα,β
n .

Lemma 3 For each ε > 0,

lim inf
n→+∞

1
log(n)

log

(
− log P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

})
≥ 1 + α− 4

d + 1
− 2β.

Proof. Conditionally on {Mn = k}, 0 ≤ k ≤ n, the variable Nα,β
n is distributed as Φα,β

n (Y1, · · · , Yk),
where Y1, · · · , Yk are independent and uniformly distributed variables in Bd \B(1−Kn−α).

Taking into account our discussion of the properties of Φα,β
n in the beginning of this section,

Φα,β
n : (Bd \B(1−Kn−α))k −→ N

is a Lipschitz function with a Lipschitz constant equal to cnβ for some c > 0, for (Bd \ B(1 −
Kn−α))k endowed with the metric ρk((x1, ..., xk), (x′1, ..., x

′
k)) := 1{x1 6=x′1} + ...+1{xk 6=x′k}. Con-

sequently, we are in a position to apply the following standard measure concentration result
(see Corollary 1.17 in [7]).

Theorem 3 (Ledoux) Let Y1, Y2, ..., Yk be independent random elements taking values in a
metric space (Y, ρ) of finite diameter D. Assume that Φ : Yk → R is Lipschitz with respect to
the L1-metric ρk((y1, ..., yk), (y′1, ..., y

′
k)) := ρ(y1, y

′
1)+...+ρ(yk, y

′
k) with some Lipschitz constant

L. Then, for every λ ≥ 0

P(|Φ(Y1, ..., Yk)− EΦ(Y1, ..., Yk)| > λ) ≤ 2 exp
(
− λ2

2kL2D2

)
.

Applying Theorem 3 to λ = εE(Nα,β
n |Mn = k), we obtain for every 0 ≤ k ≤ n,

P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

∣∣∣∣Mn = k

}

≤ P
{
|Nα,β

n − E(Nα,β
n |Mn = k)| > εE(Nα,β

n )− |E(Nα,β
n |Mn = k)− E(Nα,β

n )|
∣∣∣∣Mn = k

}
≤ 2 exp

{
−(εE(Nα,β

n )− |E(Nα,β
n |Mn = k)− E(Nα,β

n )|)2

2c2kn2β

}
. (22)

Applying the relation (15), we deduce from (22) that there exists a positive constant c such
that

sup
k−n ≤k≤k+

n

P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

∣∣∣∣Mn = k

}
≤ 2 exp

{
−c[ENα,β

n ]2

n1+2βwn

}
. (23)

Combining now (23) with Lemma 1, the estimate wn ∼ cn−α and the classical result (see [10])
ENn ∼ cn1− 2

d+1 , we obtain

lim inf
n→+∞

1
log(n)

log

(
− log

(
sup

k−n ≤k≤k+
n

P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

∣∣∣∣Mn = k

}))

≥ lim inf
n→+∞

1
log(n)

log
(
− log

(
exp

{
−c

[E(Nn)]2

n1+2β−α

}))
= 1 + α− 4

d + 1
− 2β. (24)
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Besides, let us notice that

P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

}
≤

∑
k−n ≤k≤k+

n

P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

∣∣∣∣Mn = k

}
P{Mn = k}+P{Mn 6∈ [k−n , k+

n ]}.

(25)
Inserting then the results (14) and (24) in (25), we obtain Lemma 3.

2

Completing the proof of Theorem 1. We have that

P
{∣∣∣∣ Nn

ENn
− 1
∣∣∣∣ > ε

}
≤ P

{∣∣∣∣ Nα,β
n

ENα,β
n

− 1
∣∣∣∣ > ε

ENn

ENα,β
n

−
∣∣∣∣ ENn

ENα,β
n

− 1
∣∣∣∣
}

+ P
{

Nn 6= Nα,β
n

}
.

Using Lemmas 1 and 3, we obtain that for every α ∈ (0, 2
d+1) and β ∈ (1− αd+1

2 , 1),

lim inf
n→+∞

1
log(n)

log

(
− log

(
sup

k−n ≤k≤k+
n

P
{∣∣∣∣ Nn

ENn
− 1
∣∣∣∣ > ε

}))
≥ min(1−α

d + 1
2

, 1+α− 4
d + 1

−2β).

It remains to verify that

sup
α∈(0, 2

d+1
),β∈(1−α d+1

2
,1)

min(1− α
d + 1

2
, 1 + α− 4

d + 1
− 2β) = 1− 2d + 6

3d + 5
.

2

3 Proof of Theorem 2

The method is similar to the binomial case. For some α ∈ (0, 2
d+1) and β ∈ (1− α(d+1)

2 , 1), we
consider a covering of the annulus Bd \B(1−Kn−α) by spherical caps (provided by the point
(ii) of Proposition 1). In full analogy with the definition of Nα,β

n we define a modification Ñα,β
t

of Ñt by putting Ñα,β
t := Φα,β

t (Xt) so that Ñα,β
t is the number of vertices of the convex hull of

an appropriate subset of the intersection of the Poisson point process Xt with Bd \B(1−Kt−α)
enjoying the property that each cap contains at most tβ points. Much along the same lines as
in the proof of Lemma 1, we get

P{Ñα,β
t 6= Ñt} = O(e−ct1−α(d+1)/2

) (26)

and
|EÑα,β

t − EÑt| = O(e−ct1−α(d+1)/2
). (27)

Moreover, let M̃t be the number of points of Xt∩ [B(1−Kt−α)]c. M̃t is then Poisson distributed
with mean

EM̃t = tVd(Bd \B(1−Kt−α)) ∼
t→+∞

dKωdt
1−α.

As in the proof of Lemma 3, M̃t satisfies a large-deviation inequality. Actually, denoting k−t =
bEM̃t − t1−

2
d+1 c, k+

t = dEM̃t + t1−
2

d+1 e, we get as in (14)

lim inf
t→+∞

1
log(t)

log(− log P{M̃t 6∈ [k−t , k+
t ]}) ≥ 1 + α− 4

d + 1
. (28)
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Further, we have

P

{∣∣∣∣ Ñα,β
t

EÑα,β
t

− 1
∣∣∣∣ > ε

}
≤

∑
k−t ≤k≤k+

t

P

{∣∣∣∣ Ñα,β
t

EÑα,β
t

− 1
∣∣∣∣ > ε

∣∣∣∣M̃t = k

}
P{M̃t = k}+P{M̃t 6∈ [k−t , k+

t ]}.

(29)
The first term can be bounded in the same way as the corresponding one in (25), whereas the
second term is estimated thanks to (28). Consequently, the large-deviation result is proved for
Ñα,β

t and it suffices to use (26) and (27) to deduce the same for Ñt.

2

4 Concluding remarks

Remark 1 The results remain valid if we add to the random sample in the ball a fixed number
of deterministic points. Indeed, the whole argument above can be repeated for such a case with
only minor changes.

Remark 2 Since the asymptotic behaviour of the convex hull only depends on the geometry of
the sample very close to the boundary of Bd, the results of Proposition 1 and Theorem 2 can be
extended to the class of inhomogeneous Poisson point processes Yt with their intensity measures
of the form tdµ, where µ is the measure (in spherical coordinates) f(r)1[0,1](r)drdσd(u), where
dσd is the area measure on the sphere Sd−1. Here f is a continuous function satisfying f(1) = 1.
Indeed, in a vicinity of Sd−1, the intensity measure is close to a multiple of the Lebesgue measure
and once again our argument can be repeated for this case.

Remark 3 The question of the extension of these results to a general convex set is still open.
The method does not apply when the ball is replaced by a polyhedron since the mean number
of extreme points becomes of order log(n) which is too small for the rates obtained by mea-
sure concentration techniques to absorb the polynomial prefactors due to deterministic surface
partitions as considered in our proofs.
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