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1. Setting the stage

Q1: How can we describe the behavior of a VERY large
number of interacting particles?

Q2: Emergence of large scale behavior from microscopic in-
teractions?

1.1 Interacting particle systems [Spitzer, 1970], ...

• Many particles hopping randomly on a lattice (Markovian)

− Lattice gases: Particle numbers of all species conserved

− Reaction-diffusion systems: some particle numbers not conserved

• Approach: Statistical Physics and Probability Theory 2/56



Three types of problems:

• Microsopic properties: Description on lattice scale

− Invariant measures

− Correlations

− Large deviations

− . . .

• Macrosopic properties: Large-scale behavior

− Hydrodynamic limit

− Fluctuations

− Large deviations

− . . .

• Universality: Are there specific macroscopic properties that do not
depend on microscopic details of the interaction? 3/56



Paradigmatic example: 1-dim (A)symmetric simple exclusion process

• (A)symmetric nearest neighbor jumps on integer lattice

• Exclusion principle: at most one particle per site

β

l r l rα
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− Finite or (semi-)infinite integer lattice Λ

− Local state space Sloc = {0, 1}
− Local occupation variables ηk ∈ Sloc for k ∈ Λ

− (Global) state space S = SΛloc
− Configuration η = {η(1), . . . , η(L)} ∈ S
. 4/56



1.2 Continuous time Markov chains
[Liggett, Continuous Time Markov Processes: An Introduction, 2010]

• Conventions:

N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }, R+ = (0,∞), R+
0 = [0,∞)

• Ingredients in definition of CTMC:

− Countable state space S, time t ∈ R+
0

− Path space Ω: Set of right continuous functions ω : R+
0 → S with

finitely many jumps in any finite time interval

− Time shift θs : Ω → Ω, s ∈ R+
0 defined by (θsω)(t) = ω(t+ s)

− Stochastic process X(t) where X(t, ω) = ω(t)

− F : Smallest σ-algebra s.t. the mapping ω → ω(t) is measurable for
each t ≥ 0 5/56



Definition 1.1 Markov chain on S:

(i) Collection of probability measures {Px, x ∈ S} on Ω

(ii) Right continuous filtration Ft, t ≥ 0 s.t. X(t) is Ft measurable for
each t ≥ 0 and Px(X(0) = x) = 1

(iii) Markov property Ex(Y ◦ θs|Fs) = EX(s)Y for all x ∈ Ω and all
bounded measurable Y on Π

• Specific chain defined by generator L: Linear operator on C(S) s.t. for
all x, y ∈ S

(Lf)(x) =
∑

y∈S\x
w(x→ y)[f(y)− f(x)]

with transition rates w(x→ y) from configuration x to configuration y

• Equivalent definition by intensity matrix Q:

(Lf)(x) =
∑
y∈S

Qxyf(y)

with Qxy = w(x → y) for x ̸= y and Qxx = −
∑

y∈S\x w(x → y)

(conservation of probability) 6/56



Definition 1.2 Probability semigroup:

Family of continuous linear operators St, t ∈ R+
0 on C(S) satisfying

(i) S0f = lim
t↘0

Stf = f for all f ∈ C(S)

(ii) Ss+tf = SsStf for all f ∈ C(S)
(iii) Stf ≥ 0 for all nonnegative f ∈ C(S)
(iv) Compact S: St1 = 1 for all t ≥ 0, noncompact S: . . .

• Semigroup and generator: St = eLt := lim
n→∞

(I −
t

n
L)−n

• Semigroup and intensity matrix for finite state space: St = eQt

• Notation for action of semigroup: ft := Stf for measurable functions
f : S → R, and µt := µSt for probability measure µ on state space S
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• Transition probability pt(x, y) := Px(X(t) = y) satisfying

− d
dt
pt(x, y)|t=0 = Qxy

− Chapman-Kolmogorov equation ps+t(x, y) =
∑

z∈S ps(x, z)pt(z, y)

− Kolmogorov forward equation d
dt
pt(x, y) =

∑
z∈SQxzpt(z, y)

− Kolmogorov backward equation d
dt
pt(x, y) =

∑
z∈S pt(x, z)Qzy

− pt(x, y) = (eQt)xy (finite S, mild conditions for countable S)

• Notation for expectations:

− Ex(A) for A ∈ F w.r.t. probability measure Px on path space Ω

− ⟨ f ⟩µ =
∑
x∈S

f(x)µ(x) w.r.t. probability measure µ on state space S

− ⟨ ft ⟩µ = ⟨ f ⟩µt
=

∑
x∈S

f(x)µt(x) =
∑
x∈S

µ(x)Exf(X(t)) 8/56



Definition 1.3 Stationary and reversible measure: A measure π on the
state space S is said to be stationary if for all x, y ∈ S, t > 0

π(y) =
∑
x∈S

π(x)pt(x, y)

and reversible if
π(y)pt(y, x) = π(x)pt(x, y).

• Every reversible measure is stationary

• Stationary measure: πSt = π and
∑

x∈S π(x)qxy = 0

• Ergodic process: π(x) > 0 for all x ∈ S

Definition 1.4 (Time-)reversed process:

Process with transition rates qrevx,y =
π(y)
π(x)

qy,x

Reversible process: Qrev = Q
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1.3 Some linear algebra

Focus now on finite state space, cardinality |S| = dS

• Bra-ket notation: {⟨n |, n ∈ {0, 1, . . . , ds−1} = canonical basis vectors
en of CdS , represented as row vector (0, . . . , 0, 1, 0, . . . , 0) with compo-
nent 1 at position n and 0 else

• Consider vector f⃗ ∈ CdS with components f(n) ∈ C with complex
conjugate f∗(n), then:

− Bra vector: ⟨ f | =
∑dS−1

n=0 f∗(n)⟨n | (row vector)

− Ket vector: | f ⟩ =
∑dS−1

n=0 f(n)|n ⟩T (column vector)

• Matrix product: Consider dS1
× dS2

matrix A and dS2
× dS3

matrix

B. Then (A ·B)mn ≡ (AB)mn =

dS2∑
k=0

AmkBkn 10/56



• Scalar product: ⟨ f⃗ , g⃗ ⟩ :=
∑dS−1

n=0 f∗(n)g(n) = ⟨ f | g ⟩ with matrix
multiplication ⟨ f | g ⟩ := ⟨ f | · | g ⟩

Notice: ⟨ f |A| g ⟩ = ⟨ f⃗ , (Ag⃗) ⟩ = ⟨ (A∗T f⃗), g⃗ ⟩

• Kronecker product: Consider dS1 ×dS2 matrix A and dS3 ×dS4 matrix
B. Then (A⊗B)pdS3

+m,qdS4
+n = ApqBmn

A⊗B =



A00B A01B A02B . . .
A10B A11B A12B . . .
A20B A21B A22B . . .
A56B A56B A32B . . .
A40B A41B A42B . . .

...
...

...
. . .


.

• Dyadic product: | f ⟩⟨ g | := | f ⟩ ⊗ ⟨ g | with matrix elements
(| f ⟩⟨ g |)mn = f(m)g∗(n) 11/56



What does all of this have to do with probability theory?

• Bijective enumeration function ı : S → Z (label all configurations by
some integer) =⇒ bijective mapping S → CdS , x 7→ ⟨ ı(x) | ≡ ⟨x |

• Special vectors and matrices:

− Probability vector ⟨µ | =
∑

x∈S µ(x)⟨x |

− Summation vector | s ⟩ =
∑

x∈S |x ⟩ (all components 1)

− Identity matrix 1 =
∑

x∈S |x ⟩⟨x |

− Probability matrix µ̂ =
∑

x∈S µ(x)|x ⟩⟨x | (diagonal)

− Function matrix f̂ =
∑

x∈S f(x)|x ⟩⟨x | (diagonal)

− Intensity matrix Q =
∑

x∈S
∑

y∈S qxy |x ⟩⟨ y |
12/56



• Some probabilistic concepts:

− Normalization of probability measure: ⟨µ | s ⟩ = 1

− Conservation of probability: Q| s ⟩ = 0

− Stationarity : ⟨π |eQt = ⟨π | and ⟨π |Q = 0

− Generator: (Lf)(x) = ⟨x |Q| f ⟩

− Measure on state space S at time t, starting from µ: ⟨µt | = ⟨µ |eQt

− Reversed process: Qrev = π̂−1QT π̂

− Reversible measure: eQ
T tµ̂ = µ̂eQt (no normalization needed)
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− Transition probability pt(x, y) = ⟨x |eQt| y ⟩

− Chapman-Kolmogorov equation ps+t(x, y) = ⟨x |eQ(s+t)| y ⟩

= ⟨x |eQ(s)1eQ(t)| y ⟩ =
∑
z∈S

⟨x |eQs| z ⟩⟨ z |eQt| y ⟩ =
∑
z∈S

ps(x, z)pt(z, y)

− Kolmogorov forward equation d
dt
pt(x, y) = (⟨x |Q)eQt| y ⟩

− Kolmogorov backward equation d
dt
pt(x, y) = ⟨x |eQt(Q| y ⟩)

− Expectation w.r.t measure µ: ⟨ f ⟩ = ⟨µ | f ⟩ = ⟨µ |f̂ | s ⟩

− Expectation at time t with initial measure µ:

⟨ ft ⟩µ ≡
∑

x∈S µ(x)E
xf(X(t)) = ⟨µ |eQt| f ⟩ = ⟨µ |eQtf̂ | s ⟩

14/56



Symmetry:

Definition 1.5 Let Σ : S × S → C be a function and S be a matrix
with elements Sxy = Σ(x, y). S is called a symmetry of a process if the
intensity matrix Q and S satisfy the commutation relation

[Q,S] = 0.

except if S = 1. If S is diagonal then it is called a diagonal symmetry.

• If S is a symmetry and ⟨π | is a stationary probability vector, then also
⟨πS | := ⟨π |S is stationary

• Existence of a diagonal symmetry implies that the process is not ergodic.
The number of ergodic subspaces is larger or equal to the number of
distinct eigenvalues of S
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2. Duality

Ingredients:

• Two Markov processes x(t) and ηt with state spaces X and S

• Duality function D : X× S → R

2.1 Definition and basic properties
Definition 2.1 Let x(t) be a Markov process with state space X and η(t)
be a Markov process with state space S. Furthermore, let D : X×S → R
be a bounded measurable function. The processes x(t) and η(t) are said
to be dual w.r.t. the duality function D if

ExD(x(t), η) = EηD(x, η(t)).

Use of duality: Express properties of one process in terms
of another (possibly simpler) one.
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• For Markov chains with countable state spaces the matrix

D̂ :=
∑
x∈Ξ

∑
η∈Ω

D(x, η)|x ⟩⟨ η |

with matrix elements Dx,η = D(x, η) is called the duality matrix.

• A duality function of the form D(x, η) =
∑

x d(x)δx,η is called diago-
nal.

• If the intensity matrices of the two processes are equal then the process
is said to be self-dual w.r.t. D.

• A process with strictly positive stationary measure π and its reversed
are dual w.r.t. the diagonal duality function D(x, y) =

∑
x π

−1(x)δx,y .
=⇒ Dualities always exist!
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Remark 2.2 In terms of transition probabilities pt(·|·) for x(t) and p̃t(·|·)
for η(t) the duality property reads

∑
y∈X

pt(x, y)D(y, η) =
∑
ζ∈S

D(x, ζ)qt(ζ, η).

With intensity matrix Q for X(t) and Q̃ for η(t) this means

eQtD = DeQ̃
T t

for all t > 0.

• Take time derivative at t = 0: Duality becomes [Sudbury et al. (1995),

Giardinà et al. (2009)]

QD = DQ̃T
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• Slightly stronger version of Theorem 2.6 in Giardinà et al. (2009)
(making no assumption on the existence of S−1) [Belitsky and GMS (2015)]:

Theorem 2.3 (Belitsky and GMS (2015)) Let Q be the intensity ma-
trix of an ergodic Markov process X(t) with countable state space and
stationary measure π and Qrev be the intensity matrix of the reversed
process Xrev(t). Assume that there exists an intertwiner S such that

QS = SQrev .

Then X(t) is self-dual with duality matrix

D = Sπ̂−1.

Proof: Chain of equalities from the hypothesis of the theorem and the
definition of reversed process:

QSπ̂−1=SQrevπ̂−1 = Sπ̂−1π̂Qrevπ̂−1 = Sπ̂−1QT

□
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Corollary 2.4 If X(t) is reversible then the hypothesis reads QS = SQ,
i.e. S is a symmetry of X(t).

=⇒ Use of duality: Exploit symmetries to express proper-
ties of one process in terms of another (possibly simpler)
one. [GMS and Sandow (1994)]

•D(x, η) can be understood as a family of measurable functions fx : S 7→
R indexed by x ∈ X and defined by fx(η) := D(x, η), or, alternatively as
a family of functions gη : X 7→ R indexed by η and defined by gη(x) :=
D(x, η). =⇒ Reformulation of duality

⟨ fxt ⟩η = ⟨ gηt ⟩x

with ⟨ fx0 ⟩η = ⟨ gη0 ⟩
x
= D(x, η).

• Intensity matrix has nontrivial right invariant subspace if |S| < |X| c.f.

[Redig, Sau (2019)] 20/56



• Paradigmatic example: Selfdual symmetric simple exclusion process
(SSEP) where hard-core particles perform lattice random walk

− Expectation of local density at time t for many-particle initial state
given in terms of transition probability for just one particle

− Joint expectation for N particles at times t1, . . . , tN given in terms of
transition probability for N particles

− Origin: SU(2) symmetry of generator (apparent through relationship
to quantum XXX Heisenberg spin chain [GMS and Sandow, 1994])

• Simple example:

(1): Symmetric random walk X(t) on state space X = Z with jump rate
w(x→ x± 1) = 1

(2) Coin tossing η(t) with flip rate w(1 → −1) = w(−1 → 1) = 1 (state
space S = {1,−1}

21/56



− RW: Qxy = δx,y−1 + δx,y+1 − 2δx,y (discrete Laplacian)

pt(x, y) = e−2tIx−y(2t) (modified Bessel function)

− Coin: Q̃ηζ = δη,−ζ − δη,ζ , p̃t(η, ζ) = e−t
(
δη,ζ cosh t+ δη,−ζ sinh t

)
Q1: What is the probability p+t to find X(t) at time t on an even site?

A1: Duality function: D(x, η) = 1
2
[1 + (−1)xη] =⇒ QD = Q̃TD

=⇒ p+t = 1
2

(
1 + e−2t

)
for p+0 = 1 and p+t = 1

2

(
1− e−2t

)
for p+0 = 0

Proof: ⟨x |eQtD| η ⟩ = ⟨x |DeQ̃
T t| η ⟩ =

∑
ζ∈S

⟨x |D| ζ ⟩⟨ ζ |eQ̃
T t| η ⟩

=
∑
ζ∈S

⟨x |D| ζ ⟩⟨ η |eQ̃t| ζ ⟩ =
∑
ζ∈S

D(x, ζ)p̃t(η, ζ) =
1

2
[1 + (−1)xη e−2t]

22/56



Q2: How did I find this duality (dual process and duality function)?

A2: (i) Define |+ ⟩ :=
∑
x∈Z

| 2x ⟩, | − ⟩ :=
∑
x∈Z

| 2x− 1 ⟩, ⟨ yt | := ⟨ y |eQt

(ii) Form two-dimensional vector (p+t , p
−
t ) = ⟨ yt |(|+ ⟩, | − ⟩)

(iii) Kolmogorov forward equation for p±t = ⟨ y |eQt| ± ⟩

d

dt
(p+t , p

−
t ) = ⟨ yt |(Q|+ ⟩, Q| − ⟩) = ⟨ yt |

(
−1 1
1 −1

)
(|+ ⟩, | − ⟩)

=⇒ ⟨+ | and ⟨− | span two-dimensional left-invariant subspace of Q

− Dual intensity matrix pops up: d
dt

(p+t , p
−
t ) = Q̃T (p+t , p

−
t )

− Correspondence between family of expectations and duality yields du-
ality matrix D

=⇒ Computation of p±t without use of random walk transition probability
23/56



2.2 Three different concepts of duality

• Consider two Markov processes η(t) and x(t) with generally differ-
ent countable state spaces and intensity matrices Qηη′ = w(η → η′),

Q̃xx′ = w(x → x′)

• Quantum Hamiltonian formalism: H = −QT , G = −Q̃T

− Invariant measures µ(η), π(x)

− Probability vectors |µ ⟩, |π ⟩

− Stationarity: H|µ∗ ⟩ = 0, G|π∗ ⟩ = 0

− Reverse processes for strictly positive invariant measures:

Hrev = µ̂HT µ̂−1, Grev = π̂GT π̂−1
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• (Conventional) Duality: Relationship between two processes that yields
time-dependent expectations of one process in terms of the dual in terms
of a duality function D(x,η)

• Duality at the level of generators: DH = GTD

• Useful information about expectations if dual process has simple prop-
erties:

For family of functions fx(η) := D(x,η):

⟨ fx(t) ⟩µ =
∑
y

P (x, t|y, 0)⟨ fy(0) ⟩µ

with transition probability P (x, t|y, 0) of dual process
25/56



• Reverse duality: HR = RGT [GMS, 2023]

with reverse duality matrix R and duality function Rηx = R(η,x)

• Useful information about measures if reverse dual process has simple
properties

For family of measures µxη(t) := R(η,x):

µxη(t) =
∑
y

P (x, t|y, 0)µyη(0)

• Duality function can take negative values (corresponding to signed
measures)

• Reversible process H = GT : Reverse duality = Symmetry
26/56



• Intertwining duality: BH = GB

with intertwining duality matrix B and duality function Bηx = B(η,x)

⟨ fx(t) ⟩µ =
∑
y

P (y, t|x, 0)⟨ fy(0) ⟩µ

µxη(t) =
∑
y

P (y, t|x, 0)µyη(0)

- Link with conventional duality: B = π̂∗D

- Invertible B: Similarity of processes H and G = BHB−1

- Selfduality G = H: Intertwining duality = Symmetry
27/56



3 Symmetries

3.1 Lie algebras

Definition 3.1 A Lie algebra is vector space g over a field F and binary
map [ · , · ] : g× g → g (Lie bracket), satisfying the following axioms:

(i) Bilinearity:

[aX + bY, Z] = a[X,Z] + b[Y, Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ]

for all a, b ∈ F and all X,Y, Z ∈ g.

(ii) Alternating property: [X,X] = 0 for all X ∈ g.

(iii) Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0
for all X,Y, Z ∈ g.
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• Structure constants: Specific Lie algebra with n generators xi, i ∈
{1, . . . , n} is defined by the structure constants in Lie bracket

[Xi, Xj ] =
n∑

k=1

cijkXk

• Representation of Lie algebra: Set of matrices Mi that satisfy the Lie
bracket relations with commutator [Mi,Mj ] :=MiMj −MjMi

• Example: Lie algebra sl(2,C): Three generators X±, Xz , Lie brackets

[X+, X−] = 2Xz , [Xz , X±] = ±X±

• Representations: Xα 7→ sα

s+ =

(
0 1
0 0

)
, s− =

(
0 0
1 0

)
, sz = 1

2

(
1 0
0 −1

)
29/56



• Universal enveloping algebra: Unital associative algebra generated by el-

ements X1, . . . Xn subject to the relations XiXj −XjXi =
n∑

k=1

cijkXk.

• A Casimir element Ci is an element of the center of the universal en-
veloping algebra of a Lie algebra.

• Example: Basis elements of U [sl(2,C)]:
1, X+, X−, Xz , (X+)2, X+X−, X+Xz , (X−)2, X−Xz , (Xz)2, (X+)3, . . .

but NOT X−X+, XzX+, XzX−, . . . ,

Casimirs: C0 = 1, C1 = X+X− +X−X+ + (Xz)2/2

• Algebra homomorphism: Mapping that preserves defining relations of
an algebra

• Coproduct ∆ : g → g× g where ∆(X) = I ⊗X +X ⊗ I 30/56



3.2 Particle systems on arbitrary lattices

The explicit form of the intensity matrix for IPS, i.e.,
for a suitable choice of tensor basis of the intensity
matrix, often makes explicit non-abelian symmetries
that allow for the derivation of non-trivial dualities.

• Let Γ = (Λ,Υ) be a finite graph with vertices k ∈ Λ and undirected
edges ⟨k, l⟩ ∈ Υ

• Take coproduct ∆(C) of a Casimir operator on vertices of edges ⟨k, l⟩
=⇒ ∆(C) = Qkl = Kronecker product of unit matrices for each vertex
(except vertices k, l) with matrix w which is determined by C

• If Qkl is the intensity matrix of a stochastic process then this process
has the Lie algebra for which C is a Casimir as a symmetry =⇒ Selfduality
with duality matrices given by arbitrary product of the generators of the
Lie algebra 31/56



4 The symmetric simple exclusion process

4.1 Definition

• SSEP on an arbitrary graph Λ: Configuration η := {ηk : k ∈ Λ} with
occupation numbers ηk ∈ {0, 1} =⇒ S = {0, 1}Λ

• Each edge carries a “clock” that rings after an exponentially distributed
random time with parameter wkl ≡ wlk. When the clock rings the occu-
pation numbers ηk and ηl are interchanged, corresponding to a particle
jump across bond ⟨k, l⟩ if one of the two sites is occupied and the other
is empty =⇒ configuration ηkl with interchanged occupation numbers
ηklj = ηj + (ηk − ηl)

(
δj,l − δk,l

)
• w(η → η′) =

∑
⟨k,l⟩∈Υ

wkl (ηk(1− ηl) + (1− ηk)ηl) δη′,ηkl

• Generator Lf(η) =
∑

⟨k,l⟩∈Υ

wkl 32/56



• To compute quantum Hamiltonian take enumeration function ı(η) =∑L
k=1 ηk2

L−k to fix the canonical basis vectors ⟨η | = ⟨ eι(η) | (decimal
value of the binary number η1η2 . . . ηL)

=⇒ tensor basis ⟨η | ≡ ⟨ η1, . . . , ηL | = ⟨ η1 | ⊗ · · · ⊗ ⟨ ηL | with the
one-site basis vectors ⟨ ηk | = (1− ηk, ηk).

• Summation vector ⟨ s | = (1, 1)⊗L

• Two-dimensional unit matrix 1 and spin-lowering and raising operator

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz = 1

2

(
1 0
0 −1

)
• projectors on a particle and vacancy vector respectively:

n̂ = 1
2
(1+ σz) =

(
0 0
0 1

)
, v̂ = 1

2
(1− σz) =

(
1 0
0 0

)
=⇒ |ηkl ⟩ = (1+ σ+

k σ
−
l + σ−

k σ
+
l − n̂k v̂l − v̂kn̂l)|η ⟩ 33/56



=⇒ Hamiltonian of the spin-1/2 Heisenberg ferromagnet

H =
∑
⟨k,l⟩

wklhkl

with the hopping matrices

hkl = −
(
σ+ ⊗ σ− + σ− ⊗ σ+ − n̂⊗ v̂ − v̂ ⊗ n̂

)
kl

• Invariant measure for fixed N : uniform

• Grand canonical Bernoulli product measure

|π∗
L,ϕ ⟩ =

(
1− ρ
ρ

)⊗L

with parameter ρ (particle density)
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4.2 sl(2,C) symmetry

• σ±, σz are representation of sl(2,C)

• Coproduct of Casimirs: ∆(C0) = 1 ⊗ 1, ∆(C1) = σ+ ⊗ σ− + σ− ⊗
σ+ + σz ⊗ σz/2

• h = ∆(C1)−∆(C0) =⇒
[
H,S±]

= [H,Sz ] = 0 with the representa-
tion matrices

S± =
∑
k∈Λ

σ±
k , Sz =

1

2

∑
k∈Λ

σz
k

which satisfy the sl(2,C) commutation relations

[
S+, S−]

= 2Sz ,
[
Sz , S±]

= ±S±.

• Generalizes to higher-dimensional representations
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4.3 Duality

Theorem 4.1 (GMS and Sandow (1994)) The SSEP on a lattice Λ is
selfdual w.r.t. the factorized duality function

D(ζ,η) =
∏
k∈Λ

(α+ βηk)
γ+δζk

for configurations η, ζ ∈ {0, 1}Λ and α, β, γ, δ ∈ R. provided that
N(η) <∞ if γ ̸= 0 and N(ζ) <∞ if δ ̸= 0.

Remark 4.2 Any Markov process whose generator is a function of the
hopping matrices ek,l = σx

kσ
x
l + σy

kσ
y
l + σz

kσ
z
l − 1 is sl(2,C) symmetric

and therefore self-dual w.r.t. the same duality functions as the SSEP.

Remark 4.3 Generalizes to partial exclusion with jump rate
(ηk(m− ηl) + (m− ηk)ηl) (spin-(m/2) representation) [GMS and Sandow

(1994)]
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Remark 4.4 Let x(ζ) := {k : ζk = 1} be the set of occupied sites
xi ∈ Λ of the configuration ζ and N(x) = |x| be the number of particles
in the configuration x. For γ = 0 and with a = αδ, b = (α + β)δ − αδ

the duality function becomes

D̃(x,η) =

N(x)∏
i=1

(a+ bηxi )

for all x ∈ Ξ and η ∈ Ω. For α = 0, β = δ = 1 corresponding to
a = 0 and b = 1 one recovers the well-known duality function formulated
and proved in a different way in [Liggett, 1985] and which goes back to
[Spitzer, 1970].
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Proof: The sl(2,C)-symmetry implies that the L-fold Kronecker product
D = B⊗L is a symmetry operator for any 2×2 matrix B. Since the SSEP
is reversible with uniform invariant measure this yields the duality function
D(ζ,η) = ⟨ ζ |D̂|η ⟩. The factorization of the symmetry operator and
also of the basis vectors yields

D(ζ,η) =
∏
k∈Λ

⟨ ζk |B| ηk ⟩ (1)

Explicit computation of the two-dimensional bilinear form

⟨ ζk |B| ηk ⟩ = (1− ζk, ζk)

(
B11 B12

B21 B22

)(
1− ηk
ηk

)
(2)

yields (α + βηk)
γ+δζk with B11 = αγ , B12 = (α + β)γ , B12 = αγ+δ,

B22 = (α+ β)γ+δ. □
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4.4 Density profile and dynamical structure function

• Take α = γ = 0 and β = δ = 1 in the duality function

=⇒ Duality matrix D = eS
+

Theorem 4.5 For an arbitrary multi-particle initial measure µ the density
profile ρx(t) := ⟨ ηx(t) ⟩µ is given by

ρx(t) =
∑
x′∈Λ

ρx′ (0)pt(x
′x)

where pt(x′x) is the transition probability of the single random walk on
Λ with edge jump rates wkl.

Proof: For a single site (1, 1) = (1, 0)eσ
+

and eσ
+
n̂e−σ+

= n̂ + σ+.

Therefore ⟨ s | = ⟨ 0 |eS+
. Hence
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ρx(t) = ⟨ s |n̂ke
−Ht|µ ⟩

= ⟨ 0 |eS
+
n̂ke

−S+
eS

+
e−Ht|µ ⟩

= ⟨ 0 |eσ
+
k n̂ke

−σ+
k eS

+
e−Ht|µ ⟩

= ⟨ 0 |(n̂+ σ+)e−HteS
+
|µ ⟩

= ⟨ k |eS
+
e−Ht|µ ⟩

=
∑
k′∈Λ

⟨ k |e−Ht| k′ ⟩⟨ k′ |eS
+
|µ ⟩

=
∑
k′∈Λ

⟨ k |e−Ht| k′ ⟩⟨ s |n̂k′ |µ ⟩

□
Corollary 4.6 Take as initial state (n̂0 − ρ)| ρ ⟩ with Bernoulli product
measure | ρ ⟩ with density ρ. Then S(k, t) = ⟨ s |n̂ke

−Ht(n̂0 − ρ)| ρ ⟩ is
the dynamical structure function with initial value S(k, 0) = ρ(1−ρ)δk, 0
and S(k, t) = ρ(1− ρ)pt(0, k).
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Remark 4.7 Theorem 4.5 generalizes to multi-time joint expectations
⟨ n̂km (tm) . . . n̂km (tm) ⟩µ. For any initial measure with support on con-

figurations with any number of particles the joint expectations of m oc-
cupation numbers can be expressed in terms of transition probabilities for
initial states with only m particles.

Remark 4.8 On the d-dimensional hypercubic lattice Zd with translation-
invariant nearest-neighbour hopping the single-particle propagator satis-
fies a discrete diffusion equation which can be solved in explicit form in
terms of modified Bessel functions

In(t) =
1

2π

∫ π

−π
dp eipn−t cos p.

On Zd with hopping rates wi in each direction one then has

ρx⃗(t) =
d∏

j=1

∑
x′
j∈Z

ρx′
j
(0)e−wjtIxj−x′

j
(wjt). 41/56



The dynamical structure function becomes

Sx⃗(t) =
d∏

j=1

e−2wjtIxj−x′
j
(2wjt).

In the scaling limit xi(t) = ri
√
4wit and t → ∞ the modified Bessel

function becomes a Gaussian. Thus

d∏
j=1

√
4πwj lim

t→∞
td/2Sx⃗(t)(t) = e−

∑d
j=1 r2j .

We read off the dynamical exponent z = 2 and the universal Gaussian
scaling function with diagonal diffusion matrix Dij = 2wiδij .
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5. Reverse duality for the open ASEP

5.1 Open asymmetric simple exclusion process

At most one particle per site on integer lattice with L sites

Process Transition Rate

Jump to the right 10 → 01 r

Jump to the left 01 → 10 ℓ

Creation at site 1 (L) 0 → 1 α (δ)

Annihilation at site 1 (L) 1 → 0 γ (β)

β

l r l rα

γ

δ
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• Quantum Hamiltonian:

H = −QT =

L−1∑
k=1

h̃k,k+1 + h̃−L−
+ h̃+L+

where

h̃k,k+1 = r(v̂kn̂k+1 − σ+
k σ

−
k+1) + ℓ(n̂k v̂k+1 − σ−

k σ
+
k+1)

h̃−L−
= α(v̂1 − σ−

1 ) + (γ + r − ℓ)n̂1 − γσ+
1

h̃+L+
= δ(v̂L − σ−

L ) + (β − r + ℓ)n̂L − βσ+
L

• Invariant matrix product measure (MPM) with generally
infinite-dimensional matrices [Derrida et al., 1993]
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• Hopping asymmetry and time scale q :=
√

r
ℓ
, w :=

√
rℓ

• Boundary densities ρ± and boundary jump barriers ω±

α = (r + ω−)ρ−, γ = (ℓ+ ω−)(1− ρ−)

β = (r + ω+)(1− ρ+), δ = (ℓ+ ω+)ρ+

• Fugacities: z♯ ≡ z(ρ♯) =
ρ♯

1− ρ♯

• Sandow function [Sandow, 1994]

κ±(x, y) :=
1

2x
(y − x+ r − ℓ±

√
(y − x+ r − ℓ))2 + 4xy)

κ+(α, γ) = z−1
− , κ+(β, δ) = z+

κ−(α, γ) = −
ℓ+ ω−

r + ω−
, κ−(β, δ) = −

ℓ+ ω+

r + ω+
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5.2 Bernoulli shock measures

Definition 5.1 (Bernoulli shock measures) With auxiliary boundary reser-
voir sites x0 := 0 and xN+1 := L + 1 the product measure µxη =∏L

k=1 p
x
ηk

with marginals

pxηk =

{
(1− ρ⋆i )(1− ηk) + ρ⋆i ηk k = xi, 1 ≤ i ≤ N
(1− ρi)(1− ηk) + ρiηk xi < k < xi+1, 0 ≤ i ≤ N

is called a Bernoulli shock measure with N microscopic shocks at posi-
tions xi ∈ {1, . . . , L} and bulk densities ρi for 0 ≤ i ≤ N , and shock
densities ρ⋆i for 1 ≤ i ≤ N .

4

ρ∗
1 2

4
ρ∗

ρ∗
3ρ∗

ρ
ρ

ρ
ρ

0

1

3
4

x x5x x x0 1 x2 3
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5.3 Shock ASEP

• At most one particle per site on integer lattice with L sites, N particles,
single-file jumps, closed boundaries
x = (x1, . . . , xN ), 1 ≤ x1 < · · · < xi < xi+1 < · · · < xN ≤ L

Process Transition Rate

Jump of particle i to the right xi → xi + 1 ri

Jump of particle i to the left xi → xi − 1 ℓi

4
r l r ll 1 1 2 3

ri = (r − ℓ)
ρi(1− ρi)

ρi − ρi−1
, ℓi = (r − ℓ)

ρi−1(1− ρi−1)

ρi − ρi−1

with ρi ∈ (0, 1) and riℓi = w2 for all i. 47/56



• Definition of rates implies

zi+1 = q2zi ⋆

for all i with free parameter z0

• Reversible w.r.t. the unnormalized product measure

π∗
x =

N∏
i=1

(
ri

ℓi

)xi

• Focus now on special manifolds

BN := {α, β, γ, δ ∈ R+ : κ+(α, γ)κ+(β, δ) = q2N}

BM
N := {α, β, γ, δ ∈ BN : κ−(α, γ)κ−(β, δ) = q−2M}, 1 ≤M ≤ N
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5.4 Reverse duality

Theorem 5.2 (GMS (2023)) Let H be the quantum Hamiltonian of the
open ASEP and for parameters ρ0, . . . , ρN let G be the quantum Hamil-
tonian of the N -particle shock exclusion process. Further, let µxη be the
BSM with left boundary density ρ0 = ρ− and shock fugacities

z⋆i =
α

γ
q2(i−1)

for 1 ≤ i ≤ N ≤ L. The reverse-duality relation

HR = RGT

w.r.t. the duality matrix R with matrix elements Rηx = π(x)µxη holds
if and only if the following two conditions are satisfied:
(i) The microscopic shock stability condition (⋆) is satisfied for all i ∈
{1, . . . , N},
(ii) The boundary rates are on the manifold B1

N .
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Corollary 5.3 (Shock random walk) N = 1: Denote by µxη(t) the dis-
tribution at time t of the open ASEP, and let Conditions (i) - (ii) of the
previous Theorem be satisfied. Then, for any x ∈ {1, . . . , L}

µxη(t) =
L∑

y=1

P (y, t|x, 0)µyη(0)

where

P (y, t|x, 0) =
d21 − 1

d2L1 − 1
d
2(y−1)
1 +

2

L

L−1∑
p=1

dy−x
1 ψp(x)ψp(y)

w

ϵp
e−ϵpt

with ϵp = w
[
d1 + d−1

1 − 2 cos
(πp

L

)]
and ψp(y) := d1 sin

(πpy
L

)
−

sin
(

πp(y−1)
L

)
is the transition probability of the biased random walk

starting at time t = 0 from x.
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Corollary 5.4 The evolution of the open ASEP with an initial BSM with
N shocks is given by the transition probabilities of the conservative N -
particle shock exclusion process.

Remark 5.5 (1) The conservative reflective boundaries of the reverse
dual are in contrast to the conventional duality for the open SSEP which
is dual to the SSEP with nonconservative absorbing boundaries.
[Spohn (1983); Carinci et al. (2013); Frassek et al. (2020)]

(2) A reverse dual with absorbing boundaries and one shock exists on the
manifolc B1

1 . [GMS (2023)]
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• To prove reverse duality notice:

(a) Columns of duality matrix R are the BSM probability vectors |µx ⟩

(b) Duality implies invariant subspace spanned by the BSM probability
vectors: H|µx ⟩ ∈ span{|µy ⟩}

⇒ Step 1: Use local transitions to prove that H|µx ⟩ =
∑

y Gxy|µy ⟩}

⇒ Step 2: Prove by computation that coefficients Gxy are nonpositive
for x ̸= y and conserve probability, i.e., Gxx = −

∑
x ̸=y Gxy

• To prove explicit time-dependent transition probability for one shock
notice that G is a tridiagonal Toeplitz matrix

• All steps involve only matrix multiplications of matrices with dimension
of at most 4.
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6. Factorized duality

• Search for useful dualities with factorization ansatz

• Consider reaction-diffusion systems with exclusion

• Arbitrary graph Λ with site reactions 1 ↔ 0 and bond reactions

{0, 0} → a21{0, 1}+ a31{1, 0}+ a41{1, 1} (birth/pair creation)

{0, 1} → a12{0, 0}+ a32{1, 0}+ a42{1, 1} (death/diffusion/decoagulation)

{1, 0} → a13{0, 0}+ a23{0, 1}+ a43{1, 1} (death/diffusion/decoagulation)

{1, 1} → a14{0, 0}+ a24{0, 1}+ a34{1, 0} (pair annihilation/coagulation).

• Includes SSEP, ASEP, contact process, voter model, ...
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• Quantum Hamiltonian is of the form

H =
∑
k∈Λ

gk +
∑
⟨k,l⟩

hkl

with

hkl = −


· a12 a13 a14
a21 · a23 a24
a31 a32 · a34
a41 a42 a43 ·


kl

• Factorized duality: D = B⊗|Λ| with 2× 2 matrix B

=⇒ Duality: Bg = g̃TB, (B ⊗B)h = h̃T (B ⊗B)

=⇒ Reverse duality: gB = Bg̃T , h(B ⊗B) = (B ⊗B)h̃T
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• Finding dualities for any process with Hamiltonian H on any graph
= Multiplikation of 4× 4 matrices [GMS (1995), Redig, Sau (2018)]

Theorem 6.1 (GMS (1995)) On the 10-parameter manifold defined by

0 = a12 + a32 + a21 + a41 − a23 − a43 − a14 − a34

0 = a13 + a23 + a31 + a41 − a32 − a42 − a14 − a24

the Hamiltonian H with g = 0 has a sequence of invariant subspaces

with dimensions: (1) a41 ̸= 0 or a41 = 0, a21a31 ̸= 0 d
(1)
k =

(|Λ|+ k

k

)
,

or (2) a41 = a21 = a31 = 0: d
(2)
k =

(|Λ|
k

)
. The dual Hamiltonian is

stochastic on a subset of these manifolds.

Proof: Take B = 1+ σ+ and demand the dual h̃ to be tridiagonal. □

Remark 6.2 d(i): Cardinality of state space with k particles without
exclusion (Case (1)) or with exclusion Case (2).
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Conclusions: Algebraic approach to duality

• Construction of dualities using non-Abelian symmetries

• Duality for time evolution of specific expectations for arbitrary initial
measures

• Reverse duality for time evolution of specfici measures and arbitrary
expectations

• Reduction of complexity through invariant subspaces

• Factorized duality for arbitrary graphs even without apparent symme-
tries
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