Duality and symmetry in interacting particle systems

G.M. Schütz (FZ Jülich and University of Bonn)

Lecture 1: General

- 1. Setting the stage
- 2. Duality
- 3. Symmetries

Lecture 2: Applications

- 4. Symmetric simple exclusion process
- 5. Asymmetric simple exclusion process
- 6. Factorized Duality

1. Setting the stage

Q1: How can we describe the behavior of a VERY large number of interacting particles?

Q2: Emergence of large scale behavior from microscopic interactions?

1.1 Interacting particle systems [Spitzer, 1970], ...

- Many particles hopping randomly on a lattice (Markovian)
- Lattice gases: Particle numbers of all species conserved
- Reaction-diffusion systems: some particle numbers not conserved
- Approach: Statistical Physics and Probability Theory

Three types of problems:

- Microsopic properties: Description on lattice scale
- Invariant measures
- Correlations
- Large deviations
- . . .
- Macrosopic properties: Large-scale behavior
- Hydrodynamic limit
- Fluctuations
- Large deviations

- . . .

• Universality: Are there specific macroscopic properties that do not depend on microscopic details of the interaction? 3/56

Paradigmatic example: 1-dim (A)symmetric simple exclusion process

- (A)symmetric nearest neighbor jumps on integer lattice
- Exclusion principle: at most one particle per site

- Finite or (semi-)infinite integer lattice Λ
- Local state space $\mathbb{S}_{loc} = \{0, 1\}$
- Local occupation variables $\eta_k \in \mathbb{S}_{loc}$ for $k \in \Lambda$
- (Global) state space $\mathbb{S} = \mathbb{S}^{\Lambda}_{loc}$
- Configuration $\boldsymbol{\eta} = \{\eta(1), \dots, \eta(L)\} \in \mathbb{S}$

1.2 Continuous time Markov chains

[Liggett, Continuous Time Markov Processes: An Introduction, 2010]

• Conventions:

 $\mathbb{N} = \{1, 2, \dots\}, \mathbb{N}_0 = \{0, 1, 2, \dots\}, \mathbb{R}^+ = (0, \infty), \mathbb{R}_0^+ = [0, \infty)$

• Ingredients in definition of CTMC:

- Countable state space \mathbb{S} , time $t \in \mathbb{R}_0^+$

- Path space Ω : Set of right continuous functions $\omega : \mathbb{R}^+_0 \to \mathbb{S}$ with finitely many jumps in any finite time interval

- Time shift $\theta_s: \Omega \to \Omega$, $s \in \mathbb{R}^+_0$ defined by $(\theta_s \omega)(t) = \omega(t+s)$

– Stochastic process X(t) where $X(t,\omega)=\omega(t)$

- $\mathcal{F}:$ Smallest $\sigma\text{-algebra s.t.}$ the mapping $\omega\to\omega(t)$ is measurable for each $t\geq 0$

Definition 1.1 Markov chain on S:

(i) Collection of probability measures $\{P^x, x \in \mathbb{S}\}$ on Ω (ii) Right continuous filtration $\mathcal{F}_t, t \geq 0$ s.t. X(t) is \mathcal{F}_t measurable for each $t \geq 0$ and $P^x(X(0) = x) = 1$ (iii) Markov property $E^x(Y \circ \theta_s | \mathcal{F}_s) = E^{X(s)}Y$ for all $x \in \Omega$ and all bounded measurable Y on Π

• Specific chain defined by generator $\mathcal{L}:$ Linear operator on $C(\mathbb{S})$ s.t. for all $x,y\in\mathbb{S}$

$$(\mathcal{L}f)(x) = \sum_{y \in \mathbb{S} \setminus x} w(x \to y)[f(y) - f(x)]$$

with transition rates $w(x \rightarrow y)$ from configuration x to configuration y

• Equivalent definition by *intensity matrix* Q:

$$(\mathcal{L}f)(x) = \sum_{y \in \mathbb{S}} Q_{xy} f(y)$$

with $Q_{xy} = w(x \to y)$ for $x \neq y$ and $Q_{xx} = -\sum_{y \in \mathbb{S} \setminus x} w(x \to y)$ (conservation of probability)

Definition 1.2 Probability semigroup:

Family of continuous linear operators S_t , $t \in \mathbb{R}^+_0$ on $C(\mathbb{S})$ satisfying (i) $S_0 f = \lim_{t \searrow 0} S_t f = f$ for all $f \in C(\mathbb{S})$ (ii) $S_{s+t} f = S_s S_t f$ for all $f \in C(\mathbb{S})$ (iii) $S_t f \ge 0$ for all nonnegative $f \in C(\mathbb{S})$ (iv) Compact \mathbb{S} : $S_t 1 = 1$ for all $t \ge 0$, noncompact \mathbb{S} : ...

- Semigroup and generator: $S_t = e^{\mathcal{L}t} := \lim_{n \to \infty} (I \frac{t}{n}\mathcal{L})^{-n}$
- Semigroup and intensity matrix for finite state space: $S_t = e^{Qt}$

• Notation for action of semigroup: $f_t := S_t f$ for measurable functions $f: \mathbb{S} \to \mathbb{R}$, and $\mu_t := \mu S_t$ for probability measure μ on state space \mathbb{S}

• Transition probability $p_t(x,y) := P^x(X(t) = y)$ satisfying

$$- \frac{\mathrm{d}}{\mathrm{d}t} p_t(x, y)|_{t=0} = Q_{xy}$$

– Chapman-Kolmogorov equation $p_{s+t}(x,y) = \sum_{z \in \mathbb{S}} p_s(x,z) p_t(z,y)$

- Kolmogorov forward equation $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x,y)=\sum_{z\in\mathbb{S}}Q_{xz}p_t(z,y)$
- Kolmogorov backward equation $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x,y)=\sum_{z\in\mathbb{S}}p_t(x,z)Q_{zy}$

 $(-p_t(x,y) = (\mathrm{e}^{Qt})_{xy}$ (finite \mathbb{S} , mild conditions for countable \mathbb{S})

Notation for expectations:

 $-E^{x}(A) \text{ for } A \in \mathcal{F} \text{ w.r.t. probability measure } P^{x} \text{ on path space } \Omega$ $-\langle f \rangle_{\mu} = \sum_{x \in \mathbb{S}} f(x)\mu(x) \text{ w.r.t. probability measure } \mu \text{ on state space } \mathbb{S}$ $-\langle f_{t} \rangle_{\mu} = \langle f \rangle_{\mu} = \sum_{x \in \mathbb{S}} f(x)\mu_{t}(x) = \sum_{x \in \mathbb{S}} \mu(x)E^{x}f(X(t))$

$$-\langle f_t \rangle_{\mu} = \langle f \rangle_{\mu_t} = \sum_{x \in \mathbb{S}} f(x)\mu_t(x) = \sum_{x \in \mathbb{S}} \mu(x)E^x f(X(t))$$
 8/56

Definition 1.3 Stationary and reversible measure: A measure π on the state space \mathbb{S} is said to be stationary if for all $x, y \in \mathbb{S}$, t > 0

$$\pi(y) = \sum_{x \in \mathbb{S}} \pi(x) p_t(x, y)$$

and reversible if

$$\pi(y)p_t(y,x) = \pi(x)p_t(x,y).$$

- Every reversible measure is stationary
- Stationary measure: $\pi S_t = \pi$ and $\sum_{x \in \mathbb{S}} \pi(x) q_{xy} = 0$
- Ergodic process: $\pi(x) > 0$ for all $x \in \mathbb{S}$

Definition 1.4 (*Time-*)reversed process: Process with transition rates $q_{x,y}^{rev} = \frac{\pi(y)}{\pi(x)}q_{y,x}$ Reversible process: $Q^{rev} = Q$

1.3 Some linear algebra

Focus now on finite state space, cardinality $|\mathbb{S}|=d_S$

• Bra-ket notation: { $\langle n | , n \in \{0, 1, \ldots, d_s - 1\}$ = canonical basis vectors \mathfrak{e}_n of \mathbb{C}^{d_S} , represented as row vector $(0, \ldots, 0, 1, 0, \ldots, 0)$ with component 1 at position n and 0 else

• Consider vector $\vec{f} \in \mathbb{C}^{d_S}$ with components $f(n) \in \mathbb{C}$ with complex conjugate $f^*(n)$, then:

- Bra vector:
$$\langle f | = \sum_{n=0}^{d_S-1} f^*(n) \langle n |$$
 (row vector)

- Ket vector: $|f\rangle = \sum_{n=0}^{d_S-1} f(n) |n\rangle^T$ (column vector)
- Matrix product: Consider $d_{S_1} \times d_{S_2}$ matrix A and $d_{S_2} \times d_{S_3}$ matrix B. Then $(A \cdot B)_{mn} \equiv (AB)_{mn} = \sum_{k=0}^{d_{S_2}} A_{mk} B_{kn}$ 10/56

• Scalar product: $\langle \vec{f}, \vec{g} \rangle := \sum_{n=0}^{d_S-1} f^*(n)g(n) = \langle f | g \rangle$ with matrix multiplication $\langle f | g \rangle := \langle f | \cdot | g \rangle$ Notice: $\langle f | A | g \rangle = \langle \vec{f}, (A \vec{q}) \rangle = \langle (A^{*T} \vec{f}), \vec{g} \rangle$

• Kronecker product: Consider $d_{S_1}\times d_{S_2}$ matrix A and $d_{S_3}\times d_{S_4}$ matrix B. Then $(A\otimes B)_{pd_{S_3}+m,qd_{S_4}+n}=A_{pq}B_{mn}$

$$A \otimes B = \begin{pmatrix} A_{00}B & A_{01}B & A_{02}B & \dots \\ A_{10}B & A_{11}B & A_{12}B & \dots \\ A_{20}B & A_{21}B & A_{22}B & \dots \\ A_{56}B & A_{56}B & A_{32}B & \dots \\ A_{40}B & A_{41}B & A_{42}B & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Dyadic product: $|f\rangle\langle g|:=|f\rangle\otimes\langle g|$ with matrix elements $(|f\rangle\langle g|)_{mn}=f(m)g^*(n)$

What does all of this have to do with probability theory?

• Bijective enumeration function $\iota : \mathbb{S} \to Z$ (label all configurations by some integer) \Longrightarrow bijective mapping $\mathbb{S} \to \mathbb{C}^{d_S}$, $x \mapsto \langle \iota(x) | \equiv \langle x |$

- Special vectors and matrices:
- Probability vector $\langle\,\mu\,|=\sum_{x\in\mathbb{S}}\mu(x)\langle\,x\,|$
- Summation vector $|\,s\,\rangle = \sum_{x\in\mathbb{S}} |\,x\,\rangle$ (all components 1)
- Identity matrix $\mathbf{1} = \sum_{x \in \mathbb{S}} |x\rangle \langle x|$
- Probability matrix $\hat{\mu} = \sum_{x \in \mathbb{S}} \mu(x) |\, x \, \rangle \langle \, x \, |$ (diagonal)
- Function matrix $\hat{f} = \sum_{x \in \mathbb{S}} f(x) |\, x \, \rangle \langle \, x \, |$ (diagonal)
- Intensity matrix $Q = \sum_{x \in \mathbb{S}} \sum_{y \in \mathbb{S}} q_{xy} | \, x \, \rangle \langle \, y \, |$

- Some probabilistic concepts:
- Normalization of probability measure: $\langle \, \mu \, | \, s \, \rangle = 1$
- Conservation of probability: $\left. Q \right| s \left. \right\rangle = 0$
- Stationarity : $\langle\,\pi\,|{\rm e}^{Qt}=\langle\,\pi\,|$ and $\langle\,\pi\,|Q=0$

- Generator:
$$(\mathcal{L}f)(x) = \langle x | Q | f \rangle$$

- Measure on state space S at time t, starting from μ : $\langle \mu_t | = \langle \mu | e^{Qt}$
- Reversed process: $Q^{rev} = \hat{\pi}^{-1} Q^T \hat{\pi}$

- Reversible measure: $e^{Q^T t} \hat{\mu} = \hat{\mu} e^{Qt}$ (no normalization needed)

- Transition probability $p_t(x,y) = \langle \, x \, | \mathrm{e}^{Qt} | \, y \, \rangle$
- Chapman-Kolmogorov equation $p_{s+t}(x,y) = \langle \, x \, | \mathrm{e}^{Q(s+t)} | \, y \, \rangle$

$$= \langle x | \mathbf{e}^{Q(s)} \mathbf{1} \mathbf{e}^{Q(t)} | y \rangle = \sum_{z \in \mathbb{S}} \langle x | \mathbf{e}^{Qs} | z \rangle \langle z | \mathbf{e}^{Qt} | y \rangle = \sum_{z \in \mathbb{S}} p_s(x, z) p_t(z, y)$$

- Kolmogorov forward equation $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x,y) = (\langle \, x \, | Q) \mathrm{e}^{Qt} | \, y \, \rangle$
- Kolmogorov backward equation $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x,y) = \langle x | \mathrm{e}^{Qt}(Q|y\rangle)$
- Expectation w.r.t measure μ : $\langle f \rangle = \langle \mu \, | \, f \rangle = \langle \mu \, | \, \hat{f} | \, s \rangle$
- Expectation at time t with initial measure μ :

$$\langle f_t \rangle_{\mu} \equiv \sum_{x \in \mathbb{S}} \mu(x) E^x f(X(t)) = \langle \mu | e^{Qt} | f \rangle = \langle \mu | e^{Qt} \hat{f} | s \rangle$$

Symmetry:

Definition 1.5 Let $\Sigma : \mathbb{S} \times \mathbb{S} \to \mathbb{C}$ be a function and S be a matrix with elements $S_{xy} = \Sigma(x, y)$. S is called a symmetry of a process if the intensity matrix Q and S satisfy the commutation relation

[Q,S] = 0.

except if S = 1. If S is diagonal then it is called a diagonal symmetry.

• If S is a symmetry and $\langle\,\pi\,|$ is a stationary probability vector, then also $\langle\,\pi_S\,|:=\langle\,\pi\,|S$ is stationary

 \bullet Existence of a diagonal symmetry implies that the process is not ergodic. The number of ergodic subspaces is larger or equal to the number of distinct eigenvalues of S

2. Duality

Ingredients:

- \bullet Two Markov processes x(t) and η_t with state spaces $\mathbb X$ and $\mathbb S$
- Duality function $D: \mathbb{X} \times \mathbb{S} \to \mathbb{R}$

2.1 Definition and basic properties

Definition 2.1 Let x(t) be a Markov process with state space X and $\eta(t)$ be a Markov process with state space S. Furthermore, let $D : X \times S \to \mathbb{R}$ be a bounded measurable function. The processes x(t) and $\eta(t)$ are said to be dual w.r.t. the duality function D if

 $\mathbf{E}^{x} D(x(t), \eta) = \mathbf{E}^{\eta} D(x, \eta(t)).$

Use of duality: Express properties of one process in terms of another (possibly simpler) one.

• For Markov chains with countable state spaces the matrix

$$\hat{D} := \sum_{x \in \Xi} \sum_{\eta \in \Omega} D(x, \eta) | x \rangle \langle \eta |$$

with matrix elements $D_{x,\eta} = D(x,\eta)$ is called the duality matrix.

• A duality function of the form $D(x,\eta) = \sum_x d(x) \delta_{x,\eta}$ is called diagonal.

 \bullet If the intensity matrices of the two processes are equal then the process is said to be self-dual w.r.t. D.

• A process with strictly positive stationary measure π and its reversed are dual w.r.t. the diagonal duality function $D(x, y) = \sum_x \pi^{-1}(x)\delta_{x,y}$. \implies Dualities always exist! **Remark 2.2** In terms of transition probabilities $p_t(\cdot|\cdot)$ for x(t) and $\tilde{p}_t(\cdot|\cdot)$ for $\eta(t)$ the duality property reads

$$\sum_{y \in \mathbb{X}} p_t(x, y) D(y, \eta) = \sum_{\zeta \in \mathbb{S}} D(x, \zeta) q_t(\zeta, \eta).$$

With intensity matrix Q for X(t) and \tilde{Q} for $\eta(t)$ this means

$$e^{Qt}D = De^{\tilde{Q}^Tt}$$

for all t > 0.

• Take time derivative at t = 0: Duality becomes [Sudbury et al. (1995), Giardinà et al. (2009)]

$$QD = D\tilde{Q}^T$$

• Slightly stronger version of Theorem 2.6 in Giardinà et al. (2009) (making no assumption on the existence of S^{-1}) [Belitsky and GMS (2015)]:

Theorem 2.3 (Belitsky and GMS (2015)) Let Q be the intensity matrix of an ergodic Markov process X(t) with countable state space and stationary measure π and Q^{rev} be the intensity matrix of the reversed process $X^{rev}(t)$. Assume that there exists an intertwiner S such that

 $QS = SQ^{rev}.$

Then X(t) is self-dual with duality matrix

$$D = S\hat{\pi}^{-1}.$$

Proof: Chain of equalities from the hypothesis of the theorem and the definition of reversed process:

$$QS\hat{\pi}^{-1} = SQ^{rev}\hat{\pi}^{-1} = S\hat{\pi}^{-1}\hat{\pi}Q^{rev}\hat{\pi}^{-1} = S\hat{\pi}^{-1}Q^T$$

19/56

Corollary 2.4 If X(t) is reversible then the hypothesis reads QS = SQ, i.e. S is a symmetry of X(t).

 \implies Use of duality: Exploit symmetries to express properties of one process in terms of another (possibly simpler) one. [GMS and Sandow (1994)]

• $D(x,\eta)$ can be understood as a family of measurable functions $f^x : \mathbb{S} \mapsto \mathbb{R}$ indexed by $x \in \mathbb{X}$ and defined by $f^x(\eta) := D(x,\eta)$, or, alternatively as a family of functions $g^{\eta} : \mathbb{X} \mapsto \mathbb{R}$ indexed by η and defined by $g^{\eta}(x) := D(x,\eta)$. \Longrightarrow Reformulation of duality

$$\langle\,f^x_t\,\rangle_\eta = \langle\,g^\eta_t\,\rangle_x$$

with $\left\langle \left. f_{0}^{x} \right. \right\rangle_{\eta} = \left\langle \left. g_{0}^{\eta} \right. \right\rangle_{x} = D(x,\eta).$

• Intensity matrix has nontrivial right invariant subspace if $|\mathbb{S}| < |\mathbb{X}|$ c.f. [Redig, Sau (2019)] 20/56

• Paradigmatic example: Selfdual symmetric simple exclusion process (SSEP) where hard-core particles perform lattice random walk

- Expectation of local density at time t for many-particle initial state given in terms of transition probability for just one particle

- Joint expectation for N particles at times t_1,\ldots,t_N given in terms of transition probability for N particles

- Origin: SU(2) symmetry of generator (apparent through relationship to quantum XXX Heisenberg spin chain [GMS and Sandow, 1994])

• Simple example:

(1): Symmetric random walk X(t) on state space $\mathbb{X}=\mathbb{Z}$ with jump rate $w(x \to x \pm 1)=1$

(2) Coin tossing $\eta(t)$ with flip rate $w(1\to -1)=w(-1\to 1)=1$ (state space $\mathbb{S}=\{1,-1\}$

- RW:
$$Q_{xy} = \delta_{x,y-1} + \delta_{x,y+1} - 2\delta_{x,y}$$
 (discrete Laplacian)
 $p_t(x,y) = e^{-2t}I_{x-y}(2t)$ (modified Bessel function)
- Coin: $\tilde{Q}_{\eta\zeta} = \delta_{\eta,-\zeta} - \delta_{\eta,\zeta}$, $\tilde{p}_t(\eta,\zeta) = e^{-t} \left(\delta_{\eta,\zeta} \cosh t + \delta_{\eta,-\zeta} \sinh t\right)$

Q1: What is the probability p_t^+ to find X(t) at time t on an even site?

A1: Duality function: $D(x,\eta) = \frac{1}{2} [1 + (-1)^x \eta] \Longrightarrow QD = \tilde{Q}^T D$ $\Longrightarrow p_t^+ = \frac{1}{2} (1 + e^{-2t}) \text{ for } p_0^+ = 1 \text{ and } p_t^+ = \frac{1}{2} (1 - e^{-2t}) \text{ for } p_0^+ = 0$

 $Proof: \langle x | e^{\bar{Q}t} D | \eta \rangle = \langle x | D e^{\bar{Q}^T t} | \eta \rangle = \sum_{\zeta \in \mathbb{S}} \langle x | D | \zeta \rangle \langle \zeta | e^{\bar{Q}^T t} | \eta \rangle$

$$= \sum_{\zeta \in \mathbb{S}} \langle x | D | \zeta \rangle \langle \eta | e^{\tilde{Q}t} | \zeta \rangle = \sum_{\zeta \in \mathbb{S}} D(x,\zeta) \tilde{p}_t(\eta,\zeta) = \frac{1}{2} [1 + (-1)^x \eta e^{-2t}]$$

Q2: How did I find this duality (dual process and duality function)?

A2: (i) Define $|+\rangle := \sum |2x\rangle, |-\rangle := \sum |2x-1\rangle, \langle y_t| := \langle y|e^{Qt}$ (ii) Form two-dimensional vector $(p_t^+, p_t^-) = \langle y_t | (|+\rangle, |-\rangle)$ (iii) Kolmogorov forward equation for $p_t^{\pm} = \langle y | e^{Qt} | \pm \rangle$ $\frac{\mathrm{d}}{\mathrm{d}t}(p_t^+, p_t^-) = \langle y_t \mid (Q \mid + \rangle, Q \mid - \rangle) = \langle y_t \mid \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} (\mid + \rangle, \mid - \rangle)$ \implies $\langle + |$ and $\langle - |$ span two-dimensional left-invariant subspace of Q- Dual intensity matrix pops up: $\frac{d}{dt}(p_t^+, p_t^-) = \tilde{Q}^T(p_t^+, p_t^-)$

- Correspondence between family of expectations and duality yields duality matrix \boldsymbol{D}

 \Longrightarrow Computation of p_t^\pm without use of random walk transition probability 23/56

2.2 Three different concepts of duality

• Consider two Markov processes $\eta(t)$ and $\mathbf{x}(t)$ with generally different countable state spaces and intensity matrices $Q_{\eta\eta'} = w(\eta \rightarrow \eta')$, $\tilde{Q}_{\mathbf{xx'}} = w(\mathbf{x} \rightarrow \mathbf{x'})$

- Quantum Hamiltonian formalism: $H = -Q^T$, $G = -\tilde{Q}^T$
- Invariant measures $\mu(oldsymbol{\eta})$, $\pi(\mathbf{x})$
- Probability vectors $\mid \mu \rangle$, $\mid \pi \rangle$
- Stationarity: $H|\mu^*\rangle = 0$, $G|\pi^*\rangle = 0$
- Reverse processes for strictly positive invariant measures:

$$H_{rev} = \hat{\mu} H^T \hat{\mu}^{-1}, \quad G_{rev} = \hat{\pi} G^T \hat{\pi}^{-1}$$

• (Conventional) Duality: Relationship between two processes that yields time-dependent expectations of one process in terms of the dual in terms of a duality function $D(\mathbf{x}, \boldsymbol{\eta})$

• Duality at the level of generators: $DH = G^T D$

• Useful information about <u>expectations</u> if dual process has simple properties:

For family of functions $f^{\mathbf{x}}(\boldsymbol{\eta}) := D(\mathbf{x}, \boldsymbol{\eta})$:

$$\left\langle \, f^{\mathbf{x}}(t) \, \right\rangle_{\mu} = \sum_{\mathbf{y}} P(\mathbf{x},t | \mathbf{y},0) \left\langle \, f^{\mathbf{y}}(0) \, \right\rangle_{\mu}$$

with transition probability $P(\mathbf{x},t|\mathbf{y},0)$ of dual process

25/56

• Reverse duality: $HR = RG^T$ [GMS, 2023]

with reverse duality matrix R and duality function $R_{\eta \mathbf{x}} = R(\boldsymbol{\eta}, \mathbf{x})$

• Useful information about <u>measures</u> if reverse dual process has simple properties

For family of measures $\mu_{\eta}^{\mathbf{x}}(t) := R(\eta, \mathbf{x})$:

$$\mu_{\boldsymbol{\eta}}^{\mathbf{x}}(t) = \sum_{\mathbf{y}} P(\mathbf{x}, t | \mathbf{y}, 0) \mu_{\boldsymbol{\eta}}^{\mathbf{y}}(0)$$

- Duality function can take negative values (corresponding to signed measures)
- Reversible process $H = G^T$: Reverse duality = Symmetry

• Intertwining duality: BH = GB

with intertwining duality matrix B and duality function $B_{\eta x} = B(\eta, x)$

$$\langle f^{\mathbf{x}}(t) \rangle_{\mu} = \sum_{\mathbf{y}} P(\mathbf{y}, t | \mathbf{x}, 0) \langle f^{\mathbf{y}}(0) \rangle_{\mu}$$
$$\mu^{\mathbf{x}}_{\eta}(t) = \sum_{\mathbf{y}} P(\mathbf{y}, t | \mathbf{x}, 0) \mu^{\mathbf{y}}_{\eta}(0)$$

- Link with conventional duality: $B=\hat{\pi}^*D$
- Invertible B: Similarity of processes H and $G = BHB^{-1}$
- Selfduality G = H: Intertwining duality = Symmetry

27/56

3 Symmetries

3.1 Lie algebras

Definition 3.1 A Lie algebra is vector space \mathfrak{g} over a field F and binary map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ (Lie bracket), satisfying the following axioms: (i) Bilinearity:

[aX+bY,Z]=a[X,Z]+b[Y,Z], [Z,aX+bY]=a[Z,X]+b[Z,Y]

for all $a, b \in F$ and all $X, Y, Z \in \mathfrak{g}$.

(ii) Alternating property: [X, X] = 0 for all $X \in \mathfrak{g}$.

(iii) Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 for all $X, Y, Z \in \mathfrak{g}$.

• Structure constants: Specific Lie algebra with n generators $x_i, i \in \{1, \ldots, n\}$ is defined by the structure constants in Lie bracket

$$[X_i, X_j] = \sum_{k=1}^n c_{ijk} X_k$$

- Representation of Lie algebra: Set of matrices M_i that satisfy the Lie bracket relations with commutator $[M_i, M_j] := M_i M_j M_j M_i$
- Example: Lie algebra $\mathfrak{sl}(2,\mathbb{C})$: Three generators X^{\pm},X^{z} , Lie brackets

$$[X^+, X^-] = 2X^z, [X^z, X^{\pm}] = \pm X^{\pm}$$

• Representations: $X^{\alpha}\mapsto s^{\alpha}$

$$s^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, s^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, s^{z} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

29/56

• Universal enveloping algebra: Unital associative algebra generated by elements $X_1, \ldots X_n$ subject to the relations $X_i X_j - X_j X_i = \sum_{k=1}^n c_{ijk} X_k$.

• A Casimir element C_i is an element of the center of the universal enveloping algebra of a Lie algebra.

• Example: Basis elements of $U[\mathfrak{sl}(2,\mathbb{C})]$: 1, $X^+, X^-, X^z, (X^+)^2, X^+X^-, X^+X^z, (X^-)^2, X^-X^z, (X^z)^2, (X^+)^3, \dots$ but NOT $X^-X^+, X^zX^+, X^zX^-, \dots$,

Casimirs: $C_0 = \mathbf{1}, C_1 = X^+ X^- + X^- X^+ + (X^z)^2/2$

- Algebra homomorphism: Mapping that preserves defining relations of an algebra
- Coproduct $\Delta: \mathfrak{g} \to \mathfrak{g} \times \mathfrak{g}$ where $\Delta(X) = I \otimes X + X \otimes I$ 30/56

3.2 Particle systems on arbitrary lattices

The explicit form of the intensity matrix for IPS, i.e., for a suitable choice of tensor basis of the intensity matrix, often makes explicit non-abelian symmetries that allow for the derivation of non-trivial dualities.

• Let $\Gamma=(\Lambda,\Upsilon)$ be a finite graph with vertices $k\in\Lambda$ and undirected edges $\langle k,l\rangle\in\Upsilon$

• Take coproduct $\Delta(C)$ of a Casimir operator on vertices of edges $\langle k, l \rangle \implies \Delta(C) = Q_{kl} =$ Kronecker product of unit matrices for each vertex (except vertices k, l) with matrix w which is determined by C

• If Q_{kl} is the intensity matrix of a stochastic process then this process has the Lie algebra for which C is a Casimir as a symmetry \Longrightarrow Selfduality with duality matrices given by arbitrary product of the generators of the Lie algebra 31/56

4 The symmetric simple exclusion process

4.1 Definition

• SSEP on an arbitrary graph Λ : Configuration $\eta := \{\eta_k : k \in \Lambda\}$ with occupation numbers $\eta_k \in \{0, 1\} \Longrightarrow \mathbb{S} = \{0, 1\}^{\Lambda}$

• Each edge carries a "clock" that rings after an exponentially distributed random time with parameter $w_{kl} \equiv w_{lk}$. When the clock rings the occupation numbers η_k and η_l are interchanged, corresponding to a particle jump across bond $\langle k, l \rangle$ if one of the two sites is occupied and the other is empty \Longrightarrow configuration $\boldsymbol{\eta}^{kl}$ with interchanged occupation numbers $\eta_j^{kl} = \eta_j + (\eta_k - \eta_l) \left(\delta_{j,l} - \delta_{k,l} \right)$

•
$$w(\boldsymbol{\eta} \to \boldsymbol{\eta}') = \sum_{\langle k,l \rangle \in \Upsilon} w_{kl} \left(\eta_k (1 - \eta_l) + (1 - \eta_k) \eta_l \right) \delta_{\boldsymbol{\eta}', \boldsymbol{\eta}^{kl}}$$

• Generator
$$\mathcal{L}f(oldsymbol{\eta}) = \sum_{\langle k,l
angle \in \Upsilon} w_{kl}$$
 32/56

• To compute quantum Hamiltonian take enumeration function $\imath(\eta) = \sum_{k=1}^{L} \eta_k 2^{L-k}$ to fix the canonical basis vectors $\langle \eta | = \langle e_{\iota(\eta)} |$ (decimal value of the binary number $\eta_1 \eta_2 \dots \eta_L$)

 \implies tensor basis $\langle \boldsymbol{\eta} | \equiv \langle \eta_1, \dots, \eta_L | = \langle \eta_1 | \otimes \dots \otimes \langle \eta_L |$ with the one-site basis vectors $\langle \eta_k | = (1 - \eta_k, \eta_k)$.

• Summation vector $\langle s | = (1,1)^{\otimes L}$

ullet Two-dimensional unit matrix 1 and spin-lowering and raising operator

$$\sigma^+ = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad \sigma^- = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \quad \sigma^z = \frac{1}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

• projectors on a particle and vacancy vector respectively:

$$\hat{n} = \frac{1}{2} \left(\mathbb{1} + \sigma^z \right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \hat{v} = \frac{1}{2} \left(\mathbb{1} - \sigma^z \right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

 $\implies |\boldsymbol{\eta}^{kl}\rangle = (\mathbf{1} + \sigma_k^+ \sigma_l^- + \sigma_k^- \sigma_l^+ - \hat{n}_k \hat{v}_l - \hat{v}_k \hat{n}_l) |\boldsymbol{\eta}\rangle$ 33/56

 \implies Hamiltonian of the spin-1/2 Heisenberg ferromagnet

$$H = \sum_{\langle k,l
angle} w_{kl} h_{kl}$$

with the hopping matrices

$$h_{kl} = -\left(\sigma^{+} \otimes \sigma^{-} + \sigma^{-} \otimes \sigma^{+} - \hat{n} \otimes \hat{v} - \hat{v} \otimes \hat{n}\right)_{kl}$$

- Invariant measure for fixed N: uniform
- Grand canonical Bernoulli product measure

$$| \pi^*_{L,\phi} \rangle = \left(\begin{array}{c} 1-\rho \\ \rho \end{array} \right)^{\otimes L}$$

with parameter ρ (particle density)

4.2 $\mathfrak{sl}(2,\mathbb{C})$ symmetry

- σ^{\pm}, σ^{z} are representation of $\mathfrak{sl}(2, \mathbb{C})$
- Coproduct of Casimirs: $\Delta(C_0) = \mathbb{1} \otimes \mathbb{1}$, $\Delta(C_1) = \sigma^+ \otimes \sigma^- + \sigma^- \otimes \sigma^+ + \sigma^z \otimes \sigma^z/2$
- $h = \Delta(C_1) \Delta(C_0) \Longrightarrow [H, S^{\pm}] = [H, S^z] = 0$ with the representation matrices

$$S^{\pm} = \sum_{k \in \Lambda} \sigma_k^{\pm}, \quad S^z = \frac{1}{2} \sum_{k \in \Lambda} \sigma_k^z$$

which satisfy the $\mathfrak{sl}(2,\mathbb{C})$ commutation relations

$$[S^+, S^-] = 2S^z, \quad [S^z, S^{\pm}] = \pm S^{\pm},$$

· Generalizes to higher-dimensional representations

4.3 Duality

Theorem 4.1 (GMS and Sandow (1994)) The SSEP on a lattice Λ is selfdual w.r.t. the factorized duality function

$$D(\boldsymbol{\zeta}, \boldsymbol{\eta}) = \prod_{k \in \Lambda} (\alpha + \beta \eta_k)^{\gamma + \delta \zeta_k}$$

for configurations $\eta, \zeta \in \{0,1\}^{\Lambda}$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. provided that $N(\eta) < \infty$ if $\gamma \neq 0$ and $N(\zeta) < \infty$ if $\delta \neq 0$.

Remark 4.2 Any Markov process whose generator is a function of the hopping matrices $e_{k,l} = \sigma_k^x \sigma_l^x + \sigma_k^y \sigma_l^y + \sigma_k^z \sigma_l^z - 1$ is $\mathfrak{sl}(2, \mathbb{C})$ symmetric and therefore self-dual w.r.t. the same duality functions as the SSEP.

Remark 4.3 Generalizes to partial exclusion with jump rate $(\eta_k(m-\eta_l) + (m-\eta_k)\eta_l)$ (spin-(m/2) representation) [GMS and Sandow (1994)]

Remark 4.4 Let $\mathbf{x}(\boldsymbol{\zeta}) := \{k : \zeta_k = 1\}$ be the set of occupied sites $x_i \in \Lambda$ of the configuration $\boldsymbol{\zeta}$ and $N(\mathbf{x}) = |\mathbf{x}|$ be the number of particles in the configuration \mathbf{x} . For $\gamma = 0$ and with $a = \alpha^{\delta}$, $b = (\alpha + \beta)^{\delta} - \alpha^{\delta}$ the duality function becomes

$$\tilde{D}(\mathbf{x}, \boldsymbol{\eta}) = \prod_{i=1}^{N(\mathbf{x})} (a + b\eta_{x_i})$$

for all $\mathbf{x} \in \Xi$ and $\eta \in \Omega$. For $\alpha = 0$, $\beta = \delta = 1$ corresponding to a = 0 and b = 1 one recovers the well-known duality function formulated and proved in a different way in [Liggett, 1985] and which goes back to [Spitzer, 1970].

Proof: The $\mathfrak{sl}(2,\mathbb{C})$ -symmetry implies that the L-fold Kronecker product $D = B^{\otimes L}$ is a symmetry operator for any 2×2 matrix B. Since the SSEP is reversible with uniform invariant measure this yields the duality function $D(\boldsymbol{\zeta},\boldsymbol{\eta}) = \langle \boldsymbol{\zeta} | \hat{D} | \boldsymbol{\eta} \rangle$. The factorization of the symmetry operator and also of the basis vectors yields

$$D(\boldsymbol{\zeta}, \boldsymbol{\eta}) = \prod_{k \in \Lambda} \left\langle \left. \zeta_k \left| B \right| \eta_k \right. \right\rangle \tag{1}$$

Explicit computation of the two-dimensional bilinear form

$$\langle \zeta_k | B | \eta_k \rangle = (1 - \zeta_k, \zeta_k) \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} 1 - \eta_k \\ \eta_k \end{pmatrix}$$
(2)

yields $(\alpha + \beta \eta_k)^{\gamma + \delta \zeta_k}$ with $B_{11} = \alpha^{\gamma}$, $B_{12} = (\alpha + \beta)^{\gamma}$, $B_{12} = \alpha^{\gamma + \delta}$, $B_{22} = (\alpha + \beta)^{\gamma + \delta}$.

38/56

4.4 Density profile and dynamical structure function

 \bullet Take $\alpha=\gamma=0$ and $\beta=\delta=1$ in the duality function

 \implies Duality matrix $D = e^{S^+}$

Theorem 4.5 For an arbitrary multi-particle initial measure μ the density profile $\rho_x(t) := \langle \eta_x(t) \rangle_{\mu}$ is given by

$$\rho_x(t) = \sum_{x' \in \Lambda} \rho_{x'}(0) p_t(x'x)$$

where $p_t(x'x)$ is the transition probability of the single random walk on Λ with edge jump rates w_{kl} .

Proof: For a single site $(1,1) = (1,0)e^{\sigma^+}$ and $e^{\sigma^+}\hat{n}e^{-\sigma^+} = \hat{n} + \sigma^+$. Therefore $\langle s | = \langle 0 | e^{S^+}$. Hence

$$\begin{aligned} (t) &= \langle s | \hat{n}_k e^{-Ht} | \mu \rangle \\ &= \langle 0 | e^{S^+} \hat{n}_k e^{-S^+} e^{S^+} e^{-Ht} | \mu \rangle \\ &= \langle 0 | e^{\sigma_k^+} \hat{n}_k e^{-\sigma_k^+} e^{S^+} e^{-Ht} | \mu \rangle \\ &= \langle 0 | (\hat{n} + \sigma^+) e^{-Ht} e^{S^+} | \mu \rangle \\ &= \langle k | e^{S^+} e^{-Ht} | \mu \rangle \\ &= \sum_{k' \in \Lambda} \langle k | e^{-Ht} | k' \rangle \langle k' | e^{S^+} | \mu \rangle \\ &= \sum_{k' \in \Lambda} \langle k | e^{-Ht} | k' \rangle \langle s | \hat{n}_{k'} | \mu \rangle \end{aligned}$$

 ρ_x

Corollary 4.6 Take as initial state $(\hat{n}_0 - \rho) | \rho \rangle$ with Bernoulli product measure $| \rho \rangle$ with density ρ . Then $S(k,t) = \langle s | \hat{n}_k e^{-Ht} (\hat{n}_0 - \rho) | \rho \rangle$ is the dynamical structure function with initial value $S(k,0) = \rho(1-\rho)\delta_k, 0$ and $S(k,t) = \rho(1-\rho)p_t(0,k)$.

Remark 4.7 Theorem 4.5 generalizes to multi-time joint expectations $\langle \hat{n}_{k_m}(t_m) \dots \hat{n}_{k_m}(t_m) \rangle_{\mu}$. For any initial measure with support on configurations with any number of particles the joint expectations of m occupation numbers can be expressed in terms of transition probabilities for initial states with only m particles.

Remark 4.8 On the *d*-dimensional hypercubic lattice \mathbb{Z}^d with translationinvariant nearest-neighbour hopping the single-particle propagator satisfies a discrete diffusion equation which can be solved in explicit form in terms of modified Bessel functions

$$I_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{d}p \, \mathrm{e}^{ipn-t\cos p}$$

 $\begin{array}{l} \text{On } \mathbb{Z}^d \text{ with hopping rates } w_i \text{ in each direction one then has} \\ \rho_{\vec{x}}(t) = \prod_{j=1}^d \sum_{x'_j \in \mathbb{Z}} \rho_{x'_j}(0) \mathrm{e}^{-w_j t} I_{x_j - x'_j}(w_j t). \end{array}$

The dynamical structure function becomes

$$S_{\vec{x}}(t) = \prod_{j=1}^{d} e^{-2w_j t} I_{x_j - x'_j}(2w_j t).$$

In the scaling limit $x_i(t)=r_i\sqrt{4w_it}$ and $t\to\infty$ the modified Bessel function becomes a Gaussian. Thus

$$\prod_{j=1}^{d} \sqrt{4\pi w_j} \lim_{t \to \infty} t^{d/2} S_{\vec{x}(t)}(t) = e^{-\sum_{j=1}^{d} r_j^2}.$$

We read off the dynamical exponent z = 2 and the universal Gaussian scaling function with diagonal diffusion matrix $D_{ij} = 2w_i \delta_{ij}$.

5. Reverse duality for the open ASEP 5.1 Open asymmetric simple exclusion process

At most one particle per site on integer lattice with L sites

Process	Transition	Rate
Jump to the right	$10 \rightarrow 01$	r
Jump to the left	$01 \to 10$	l
Creation at site 1 (L)	$0 \rightarrow 1$	${oldsymbol lpha}\left(\delta ight)$
Annihilation at site 1 (L)	$1 \rightarrow 0$	γ (β)
		β

• Quantum Hamiltonian:

$$H = -Q^{T} = \sum_{k=1}^{L-1} \tilde{h}_{k,k+1} + \tilde{h}_{L_{-}}^{-} + \tilde{h}_{L_{+}}^{+}$$

where

$$\begin{split} \tilde{h}_{k,k+1} &= r(\hat{v}_k \hat{n}_{k+1} - \sigma_k^+ \sigma_{k+1}^-) + \ell(\hat{n}_k \hat{v}_{k+1} - \sigma_k^- \sigma_{k+1}^+) \\ \tilde{h}_{L_-}^- &= \alpha(\hat{v}_1 - \sigma_1^-) + (\gamma + r - \ell)\hat{n}_1 - \gamma \sigma_1^+ \\ \tilde{h}_{L_+}^+ &= \delta(\hat{v}_L - \sigma_L^-) + (\beta - r + \ell)\hat{n}_L - \beta \sigma_L^+ \end{split}$$

• Invariant matrix product measure (MPM) with generally infinite-dimensional matrices [Derrida et al., 1993]

- Hopping asymmetry and time scale $q:=\sqrt{rac{r}{\ell}}, \quad w:=\sqrt{r\ell}$
- ullet Boundary densities ρ_\pm and boundary jump barriers ω_\pm

$$\begin{split} \alpha &= (r+\omega_-)\rho_-, \quad \gamma = (\ell+\omega_-)(1-\rho_-)\\ \beta &= (r+\omega_+)(1-\rho_+), \quad \delta = (\ell+\omega_+)\rho_+ \end{split}$$

• Fugacities:
$$z_{\sharp} \equiv z(\rho_{\sharp}) = \frac{\rho_{\sharp}}{1 - \rho_{\sharp}}$$

• Sandow function [Sandow, 1994]

$$\kappa_{\pm}(x,y) := \frac{1}{2x}(y-x+r-\ell \pm \sqrt{(y-x+r-\ell))^2 + 4xy})$$
$$\kappa_{+}(\alpha,\gamma) = z_{-}^{-1}, \quad \kappa_{+}(\beta,\delta) = z_{+}$$
$$\kappa_{-}(\alpha,\gamma) = -\frac{\ell+\omega_{-}}{r+\omega_{-}}, \quad \kappa_{-}(\beta,\delta) = -\frac{\ell+\omega_{+}}{r+\omega_{+}}$$

5.2 Bernoulli shock measures

Definition 5.1 (Bernoulli shock measures) With auxiliary boundary reservoir sites $x_0 := 0$ and $x_{N+1} := L + 1$ the product measure $\mu_{\eta}^{\mathbf{x}} = \prod_{k=1}^{L} p_{\eta_k}^{\mathbf{x}}$ with marginals

$$p_{\eta_k}^{\mathbf{x}} = \begin{cases} (1 - \rho_i^*)(1 - \eta_k) + \rho_i^* \eta_k & k = x_i, \ 1 \le i \le N \\ (1 - \rho_i)(1 - \eta_k) + \rho_i \eta_k & x_i < k < x_{i+1}, \ 0 \le i \le N \end{cases}$$

is called a Bernoulli shock measure with N microscopic shocks at positions $x_i \in \{1, ..., L\}$ and bulk densities ρ_i for $0 \le i \le N$, and shock densities ρ_i^* for $1 \le i \le N$.

46/56

5.3 Shock ASEP

• At most one particle per site on integer lattice with L sites, N particles, single-file jumps, closed boundaries

 $\mathbf{x} = (x_1, \dots, x_N), \ 1 \le x_1 < \dots < x_i < x_{i+1} < \dots < x_N \le L$

• Definition of rates implies

$$z_{i+1} = q^2 z_i$$

for all i with free parameter z_0

• Reversible w.r.t. the unnormalized product measure

$$\pi_{\mathbf{x}}^* = \prod_{i=1}^N \left(\frac{r_i}{\ell_i}\right)^{x_i}$$

• Focus now on special manifolds

$$\begin{split} \mathcal{B}_N &:= \{\alpha, \beta, \gamma, \delta \in \mathbb{R}^+ : \kappa_+(\alpha, \gamma) \kappa_+(\beta, \delta) = q^{2N} \} \\ \mathcal{B}_N^M &:= \{\alpha, \beta, \gamma, \delta \in \mathcal{B}_N : \kappa_-(\alpha, \gamma) \kappa_-(\beta, \delta) = q^{-2M} \}, \quad 1 \leq M \leq N \end{split}$$

5.4 Reverse duality

Theorem 5.2 (GMS (2023)) Let H be the quantum Hamiltonian of the open ASEP and for parameters ρ_0, \ldots, ρ_N let G be the quantum Hamiltonian of the N-particle shock exclusion process. Further, let $\mu_{\eta}^{\mathbf{x}}$ be the BSM with left boundary density $\rho_0 = \rho_-$ and shock fugacities

$$z_i^{\star} = \frac{\alpha}{\gamma} q^{2(i-1)}$$

for $1 \leq i \leq N \leq L$. The reverse-duality relation

$$HR = RG^T$$

w.r.t. the duality matrix R with matrix elements $R_{\eta x} = \pi(\mathbf{x})\mu_{\eta}^{\mathbf{x}}$ holds if and only if the following two conditions are satisfied: (i) The microscopic shock stability condition (\star) is satisfied for all $i \in \{1, ..., N\}$, (ii) The boundary rates are on the manifold \mathcal{B}_N^1 . **Corollary 5.3 (Shock random walk)** N = 1: Denote by $\mu_{\eta}^{x}(t)$ the distribution at time t of the open ASEP, and let Conditions (i) - (ii) of the previous Theorem be satisfied. Then, for any $x \in \{1, \ldots, L\}$

$$\mu_{\boldsymbol{\eta}}^{x}(t) = \sum_{y=1}^{L} P(y,t|x,0) \, \mu_{\boldsymbol{\eta}}^{y}(0)$$

where

$$P(y,t|x,0) = \frac{d_1^2 - 1}{d_1^{2L} - 1} d_1^{2(y-1)} + \frac{2}{L} \sum_{p=1}^{L-1} d_1^{y-x} \psi_p(x) \psi_p(y) \frac{w}{\epsilon_p} e^{-\epsilon_p t}$$

with $\epsilon_p = w \left[d_1 + d_1^{-1} - 2\cos\left(\frac{\pi p}{L}\right) \right]$ and $\psi_p(y) := d_1 \sin\left(\frac{\pi p y}{L}\right) - \sin\left(\frac{\pi p (y-1)}{L}\right)$ is the transition probability of the biased random walk starting at time t = 0 from x.

Corollary 5.4 The evolution of the open ASEP with an initial BSM with N shocks is given by the transition probabilities of the conservative N-particle shock exclusion process.

Remark 5.5 (1) The conservative reflective boundaries of the reverse dual are in contrast to the conventional duality for the open SSEP which is dual to the SSEP with nonconservative absorbing boundaries. [Spohn (1983); Carinci et al. (2013); Frassek et al. (2020)]

(2) A reverse dual with absorbing boundaries and one shock exists on the manifold $\mathcal{B}_1^1.$ [GMS (2023)]

51/56

• To prove reverse duality notice:

(a) Columns of duality matrix R are the BSM probability vectors $\mid \mu^{\mathbf{x}} \mid$

(b) Duality implies invariant subspace spanned by the BSM probability vectors: $H | \mu^{\mathbf{x}} \rangle \in \text{span}\{ | \mu^{\mathbf{y}} \rangle \}$

 \Rightarrow Step 1: Use local transitions to prove that $H|\mu^{\mathbf{x}}\rangle = \sum_{\mathbf{y}} G_{\mathbf{xy}}|\mu^{\mathbf{y}}\rangle$

⇒ Step 2: Prove by computation that coefficients G_{xy} are nonpositive for $x \neq y$ and conserve probability, i.e., $G_{xx} = -\sum_{x\neq y} G_{xy}$

 \bullet To prove explicit time-dependent transition probability for one shock notice that G is a tridiagonal Toeplitz matrix

• All steps involve only matrix multiplications of matrices with dimension of at most 4.

6. Factorized duality

- Search for useful dualities with factorization ansatz
- Consider reaction-diffusion systems with exclusion
- \bullet Arbitrary graph Λ with site reactions $1\leftrightarrow 0$ and bond reactions

 $\begin{array}{l} \{0,0\} \rightarrow a_{21}\{0,1\} + a_{31}\{1,0\} + a_{41}\{1,1\} \quad \mbox{(birth/pair creation)} \\ \{0,1\} \rightarrow a_{12}\{0,0\} + a_{32}\{1,0\} + a_{42}\{1,1\} \quad \mbox{(death/diffusion/decoagulation)} \\ \{1,0\} \rightarrow a_{13}\{0,0\} + a_{23}\{0,1\} + a_{43}\{1,1\} \quad \mbox{(death/diffusion/decoagulation)} \\ \{1,1\} \rightarrow a_{14}\{0,0\} + a_{24}\{0,1\} + a_{34}\{1,0\} \quad \mbox{(pair annihilation/coagulation)} \end{array}$

• Includes SSEP, ASEP, contact process, voter model, ...

53/56

Quantum Hamiltonian is of the form

$$H = \sum_{k \in \Lambda} g_k + \sum_{\langle k, l \rangle} h_{kl}$$

with

$$h_{kl} = - \begin{pmatrix} \cdot & a_{12} & a_{13} & a_{14} \\ a_{21} & \cdot & a_{23} & a_{24} \\ a_{31} & a_{32} & \cdot & a_{34} \\ a_{41} & a_{42} & a_{43} & \cdot \end{pmatrix}_{kl}$$

• Factorized duality: $D=B^{\otimes |\Lambda|}$ with 2×2 matrix B

 \Longrightarrow Duality: $Bg=\tilde{g}^{T}B$, $(B\otimes B)h=\tilde{h}^{T}(B\otimes B)$

 \Longrightarrow Reverse duality: $gB=B\tilde{g}^{T},\,h(B\otimes B)=(B\otimes B)\tilde{h}^{T}$

54/56

• Finding dualities for any process with Hamiltonian H on any graph = Multiplikation of 4×4 matrices [GMS (1995), Redig, Sau (2018)]

Theorem 6.1 (GMS (1995)) On the 10-parameter manifold defined by

$$0 = a_{12} + a_{32} + a_{21} + a_{41} - a_{23} - a_{43} - a_{14} - a_{34}$$

$$0 = a_{13} + a_{23} + a_{31} + a_{41} - a_{32} - a_{42} - a_{14} - a_{24}$$

the Hamiltonian H with g = 0 has a sequence of invariant subspaces with dimensions: (1) $a_{41} \neq 0$ or $a_{41} = 0$, $a_{21}a_{31} \neq 0$ $d_k^{(1)} = \binom{|\Lambda| + k}{k}$, or (2) $a_{41} = a_{21} = a_{31} = 0$: $d_k^{(2)} = \binom{|\Lambda|}{k}$. The dual Hamiltonian is stochastic on a subset of these manifolds.

Proof: Take $B = 1 + \sigma^+$ and demand the dual \tilde{h} to be tridiagonal. \Box

Remark 6.2 $d^{(i)}$: Cardinality of state space with k particles without exclusion (Case (1)) or with exclusion Case (2).

Conclusions: Algebraic approach to duality

- Construction of dualities using non-Abelian symmetries
- Duality for time evolution of specific expectations for arbitrary initial measures
- \bullet Reverse duality for time evolution of specfici measures and arbitrary expectations
- Reduction of complexity through invariant subspaces
- Factorized duality for arbitrary graphs even without apparent symmetries