Metastable Hierarchy in Abstract Low-Temperature Lattice Models

Seonwoo Kim

Rencontres de Probabilités 2024

Université de Rouen Normandie, September 26th, 2024

Basic Setup

• Lattice Model: connected space $\Omega = S^{\Lambda}$, Hamiltonian $\mathbb{H} : \Omega \to \mathbb{R}$

<u>Ising Model</u> $\Omega = \{-1, +1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x$ (h small) <u>Potts Model</u> $\Omega = \{1, 2, \dots, q\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} 1\{\eta_x = \eta_y\}$ <u>XY Model</u> $\Omega = (\mathbb{R}/\mathbb{Z})^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} J_{xy} \cos(\eta_x - \eta_y) - \sum_{x \in \Lambda} h_x \cos\eta_x$

-	-	-	-	-	-	-	-	-	-
-	-	-	+	-	-	-	-	-	-
-	-	-	+	-	-	+	+	-	-
-	-	-	-	-	-	-	+	+	-
—	-	-	-	-	-	+	+	+	-
-	-	+	+	-	-	-	+	-	-
—	-	+	+	+		1	+	-	
-	-	+	+	+	-	-	-	-	-
-	-	-	-	+	-	-	-	-	-
-	-	-		-	-	1	-	-	-

Ľ	Ľ	K	⊬	←	←	≮_	ĸ	ĸ	人
2	Ľ	×	Ķ	Ť	Ť	7	К	ĸ	Х
1	V	Ľ	K	Ť	1	ĸ	乀	7	1
4	¥	1	Ľ	Ł	≮_	乀	7	7	1
Ļ	Ť	Ļ	1	Ľ	ĸ	1	Ŷ	Ŷ	→
Ť	Ť	1	7	ĸ	7	1	1	1	Î
7	7	7	И	1	7	↗	7	1	1
7	\mathbf{Y}	K	\searrow	1	\rightarrow	$^{\times}$	$^{\vee}$	7	7
\mathbf{Y}	Ŕ	1	1	1	\rightarrow	7	Z	$^{\sim}$	₹
М	X	X	\checkmark	\rightarrow	\rightarrow	->	X	$^{\times}$	7

Basic Setup

• Lattice Model: connected space $\Omega = S^{\Lambda}$, Hamiltonian $\mathbb{H} : \Omega \to \mathbb{R}$

 $\begin{array}{ll} \underline{\text{Ising Model}} & \Omega = \{-1, +1\}^{\Lambda}, & \mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x & (h \text{ small}) \\ \\ \underline{\text{Potts Model}} & \Omega = \{1, 2, \dots, q\}^{\Lambda}, & \mathbb{H}(\eta) = -\sum_{x \sim y} \mathbf{1} \{\eta_x = \eta_y\} \\ \\ \underline{\text{XY Model}} & \Omega = (\mathbb{R}/\mathbb{Z})^{\Lambda}, & \mathbb{H}(\eta) = -\sum_{x \sim y} J_{xy} \cos(\eta_x - \eta_y) - \sum_{x \in \Lambda} h_x \cos\eta_x \end{array}$

• Gibbs Measure: $\mu_{\beta}(\eta) = Z_{\beta}^{-1} e^{-\beta \mathbb{H}(\eta)}, \quad \beta: \text{ inverse temperature} \to \infty$

Basic Setup

• Lattice Model: connected space $\Omega = S^{\Lambda}$, Hamiltonian $\mathbb{H} : \Omega \to \mathbb{R}$

 $\begin{array}{ll} \underline{\text{Ising Model}} & \Omega = \{-1, +1\}^{\Lambda}, & \mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x & (h \text{ small}) \\ \\ \underline{\text{Potts Model}} & \Omega = \{1, 2, \ldots, q\}^{\Lambda}, & \mathbb{H}(\eta) = -\sum_{x \sim y} \mathbf{1} \{\eta_x = \eta_y\} \\ \\ \underline{\text{XY Model}} & \Omega = (\mathbb{R}/\mathbb{Z})^{\Lambda}, & \mathbb{H}(\eta) = -\sum_{x \sim y} J_{xy} \cos\left(\eta_x - \eta_y\right) - \sum_{x \in \Lambda} h_x \cos\eta_x \\ \end{array}$

- Gibbs Measure: $\mu_{\beta}(\eta) = Z_{\beta}^{-1} e^{-\beta \mathbb{H}(\eta)}, \quad \beta: \text{ inverse temperature} \to \infty$
- Metropolis Dynamics: continuous-time MC $\{\eta_{\beta}(t)\}_{t\geq 0}$ in Ω with jump rate

$$r_{\beta}(\eta, \xi) = \begin{cases} e^{-\beta \max{\{\mathbb{H}(\xi) - \mathbb{H}(\eta), 0\}}} & \text{if } \eta \sim \xi, \\ 0 & \text{otherwise.} \end{cases}$$

*Reversible w.r.t. the Gibbs measure μ_{β}

Metastable Behavior as $\beta \to \infty$

• Metropolis Dynamics: continuous-time MC $\{\eta_{\beta}(t)\}_{t>0}$ in Ω with jump rate

$$r_{\beta}(\eta, \xi) = \begin{cases} e^{-\beta \max{\{\mathbb{H}(\xi) - \mathbb{H}(\eta), 0\}}} & \text{if } \eta \sim \xi, \\ 0 & \text{otherwise.} \end{cases}$$

*Reversible w.r.t. the Gibbs measure μ_{β}

Metastable Behavior as $\beta \to \infty$

• Metropolis Dynamics: continuous-time MC $\{\eta_{\beta}(t)\}_{t>0}$ in Ω with jump rate

$$r_{\beta}(\eta, \xi) = \begin{cases} e^{-\beta \max{\{\mathbb{H}(\xi) - \mathbb{H}(\eta), 0\}}} & \text{if } \eta \sim \xi, \\ 0 & \text{otherwise.} \end{cases}$$

*Reversible w.r.t. the Gibbs measure μ_{β}

Metastable Behavior as $\beta \to \infty$

• Metropolis Dynamics: continuous-time MC $\{\eta_{\beta}(t)\}_{t>0}$ in Ω with jump rate

$$r_{\beta}(\eta, \xi) = \begin{cases} e^{-\beta \max{\{\mathbb{H}(\xi) - \mathbb{H}(\eta), 0\}}} & \text{if } \eta \sim \xi, \\ 0 & \text{otherwise.} \end{cases}$$

*Reversible w.r.t. the Gibbs measure μ_{β}

• Glauber Dynamics: $\Omega = \{-1, +1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x$

 $\eta \sim \xi \quad \Leftrightarrow \quad \xi \text{ is obtained from } \eta \text{ by a single spin flip}$

• Glauber Dynamics: $\Omega = \{-1, +1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x$

 $\eta \sim \xi \quad \Leftrightarrow \quad \xi \text{ is obtained from } \eta \text{ by a single spin flip}$

*Whole graph Ω is connected w.r.t. the Glauber dynamics

• Glauber Dynamics: $\Omega = \{-1, +1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x$ $\eta \sim \xi \iff \xi$ is obtained from η by a single spin flip

*Whole graph Ω is connected w.r.t. the Glauber dynamics

Kawasaki Dynamics: Ω = {0, 1}^Λ, ℍ(η) = -∑_{x∼y} η_xη_y
η ~ ξ ⇔ ξ is obtained from η by a single particle jump

- Glauber Dynamics: Ω = {-1, +1}^Λ, ℍ(η) = -¹/₂ Σ_{x∼y} η_xη_y ^h/₂ Σ_{x∈Λ} η_x η ~ ξ ⇔ ξ is obtained from η by a single spin flip
 *Whole graph Ω is connected w.r.t. the Glauber dynamics
- Kawasaki Dynamics: Ω = {0, 1}^Λ, ℍ(η) = -∑_{x∼y} η_xη_y η ~ ξ ⇔ ξ is obtained from η by a single particle jump
 *Subgraph Ω' = {η ∈ Ω : Σ_{x∈Λ} η_x = 𝒴} is connected

Stable Plateau and Initial Depth

- Stable Plateau \mathcal{P} : nonempty connected subset s.t.
 - $\mathbb{H}(\eta) = \mathbb{H}(\mathcal{P})$ for all $\eta \in \mathcal{P}$
 - $\mathbb{H}(\zeta) > \mathbb{H}(\mathcal{P})$ for all $\zeta \in \partial \mathcal{P}$

Stable Plateau and Initial Depth

- Stable Plateau \mathcal{P} : nonempty connected subset s.t.
 - $\mathbb{H}(\eta) = \mathbb{H}(\mathcal{P})$ for all $\eta \in \mathcal{P}$
 - $\mathbb{H}(\zeta) > \mathbb{H}(\mathcal{P})$ for all $\zeta \in \partial \mathcal{P}$
- **Depth** $\Gamma^{\mathcal{P}}$: minimal barrier from \mathcal{P} to reach another one

Stable Plateau and Initial Depth

- Stable Plateau \mathcal{P} : nonempty connected subset s.t.
 - $\mathbb{H}(\eta) = \mathbb{H}(\mathcal{P})$ for all $\eta \in \mathcal{P}$
 - $\mathbb{H}(\zeta) > \mathbb{H}(\mathcal{P})$ for all $\zeta \in \partial \mathcal{P}$
- **Depth** $\Gamma^{\mathcal{P}}$: minimal barrier from \mathcal{P} to reach another one
- Initial Depth: $\Gamma^1 = \min \{ \Gamma^{\mathcal{P}} : \mathcal{P} \text{ is a stable plateau} \}$

Metastable Transitions at Level 1

• Initial Depth: $\Gamma^1 = \min \{ \Gamma^{\mathcal{P}} : \mathcal{P} \text{ is a stable plateau} \}$

Metastable Transitions at Level 1

• Initial Depth: $\Gamma^1 = \min \{ \Gamma^{\mathcal{P}} : \mathcal{P} \text{ is a stable plateau} \}$

 \Rightarrow accelerate the dynamics $\{\eta_{\beta}(t)\}_{t\geq 0}$ by the time-scale $e^{\Gamma^{1}\beta} \gg 1$

Metastable Transitions at Level 1

• Initial Depth: $\Gamma^1 = \min \{ \Gamma^{\mathcal{P}} : \mathcal{P} \text{ is a stable plateau} \}$

 \Rightarrow accelerate the dynamics $\{\eta_{\beta}(t)\}_{t\geq 0}$ by the time-scale $e^{\Gamma^1\beta} \gg 1$

Theorem (K., *arXiv:2405.08488*)

 $\{\eta_{\beta}(e^{\Gamma^{1}\beta}t)\}_{t\geq 0}$ converges to $\{\mathfrak{X}^{1}(t)\}_{t\geq 0}$ in the sense of marginal distributions

From Level 1 to Level 2

• Next Step: collect the *recurrent* components of $\{\mathfrak{X}^1(t)\}_{t\geq 0}$ at level 1

From Level 1 to Level 2

- Next Step: collect the *recurrent* components of $\{\mathfrak{X}^1(t)\}_{t\geq 0}$ at level 1
- 2nd Depth: Γ^2 = minimal depth of transitions between these components > Γ^1

From Level 1 to Level 2

- Next Step: collect the *recurrent* components of $\{\mathfrak{X}^1(t)\}_{t\geq 0}$ at level 1
- 2nd Depth: Γ^2 = minimal depth of transitions between these components > Γ^1

Theorem (K. *arXiv:2405.08488*)

 $\{\eta_{\beta}(e^{\Gamma^{2}\beta}t)\}_{t\geq 0}$ converges to $\{\mathfrak{X}^{2}(t)\}_{t\geq 0}$ in the sense of marginal distributions

From Level $\ell - 1$ to Level ℓ

- Next Step: collect the *recurrent* components of $\{\mathfrak{X}^{\ell-1}(t)\}_{t\geq 0}$ at level $\ell-1$
- *l*-th Depth: Γ^{ℓ} = minimal depth of transitions between these components > $\Gamma^{\ell-1}$

From Level $\ell - 1$ to Level ℓ

- Next Step: collect the *recurrent* components of $\{\mathfrak{X}^{\ell-1}(t)\}_{t\geq 0}$ at level $\ell-1$
- ℓ -th Depth: Γ^{ℓ} = minimal depth of transitions between these components > $\Gamma^{\ell-1}$

Theorem (K. *arXiv:2405.08488*)

For each $\ell \geq 1$, $\{\eta_{\beta}(e^{\Gamma^{\ell}\beta}t)\}_{t\geq 0}$ converges to $\{\mathfrak{X}^{\ell}(t)\}_{t\geq 0}$ in the sense of marginal distributions

Summary: Metastable Hierarchy

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y - \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0

 $\eta \sim \xi \iff \xi$ is obtained from η by a single spin flip Neves–Schonmann *CMP* '91,, Beltrán–Landim *SPA* '11

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y \frac{h}{2} \sum_{x \in \Lambda} \eta_x$, h > 0Neves-Schonmann *CMP* '91,, Beltrán-Landim *SPA* '11
- Time-Scales: $e^{h\beta} \ll e^{2h\beta} \ll \cdots \ll e^{(\mathfrak{m}-2)h\beta} \ll e^{(2-h)\beta} \ll e^{\Gamma\beta}$ $\mathfrak{m} = \lceil \frac{2}{h} \rceil, \quad \Gamma = 4\mathfrak{m} - h(\mathfrak{m}^2 - \mathfrak{m} + 1)$

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L, \quad \Omega = \{\pm 1\}^{\Lambda}, \quad \mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y$

Nardi-Zocca SPA '19, Bet-Gallo-Nardi JSP '21, K.-Seo AoP '24+

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y$ Nardi-Zocca *SPA* '19, Bet-Gallo-Nardi *JSP* '21, K.-Seo *AoP* '24+
- Time-Scales: $e^{2\beta} \ll e^{(2L+2)\beta}$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y$ Nardi-Zocca *SPA* '19, Bet-Gallo-Nardi *JSP* '21, K.-Seo *AoP* '24+
- Time-Scales: $e^{2\beta} \ll e^{(2L+2)\beta}$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y$ Nardi-Zocca *SPA* '19, Bet-Gallo-Nardi *JSP* '21, K.-Seo *AoP* '24+
- Time-Scales: $e^{2\beta} \ll e^{(2L+2)\beta}$

- $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{\pm 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\frac{1}{2} \sum_{x \sim y} \eta_x \eta_y$ Nardi-Zocca *SPA* '19, Bet-Gallo-Nardi *JSP* '21, K.-Seo *AoP* '24+
- Time-Scales: $e^{2\beta} \ll e^{(2L+2)\beta}$

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$ $\eta \sim \xi \Leftrightarrow \xi$ is obtained from η by a single particle jump Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathcal{N}\}, \quad \mathcal{N} < \frac{L^2}{4}$

 $\Delta \mathbb{H} = 2$

 \Rightarrow

slow

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$ $\eta \sim \xi \Leftrightarrow \xi$ is obtained from η by a single particle jump Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathscr{N}\}, \quad \mathscr{N} < \frac{L^2}{4}$ Beltrán–Landim *AIHP* '15

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$ $\eta \sim \xi \Leftrightarrow \xi$ is obtained from η by a single particle jump Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathcal{N}\}, \quad \mathcal{N} < \frac{L^2}{4}$ Beltrán–Landim *AIHP* '15

• Time-Scales: $e^{\beta} \ll e^{2\beta}$

• $\Lambda = \mathbb{T}_L \times \mathbb{T}_L$, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$ $\eta \sim \xi \Leftrightarrow \xi$ is obtained from η by a single particle jump Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathcal{N}\}, \quad \mathcal{N} < \frac{L^2}{4}$ Beltrán-Landim *AIHP* '15

• Time-Scales: $e^{\beta} \ll e^{2\beta}$

•
$$\Lambda = \mathbb{T}_L \times \mathbb{T}_L$$
, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$
Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathcal{N}\}$, $\mathcal{N} > \frac{L^2}{4}$
K. arXiv:2405.08488

•
$$\Lambda = \mathbb{T}_L \times \mathbb{T}_L$$
, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$
Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathscr{N}\}$, $\mathscr{N} > \frac{L^2}{4}$
K. arXiv:2405.08488

•
$$\Lambda = \mathbb{T}_L \times \mathbb{T}_L$$
, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$
Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathscr{N}\}$, $\mathscr{N} > \frac{L^2}{4}$
K. arXiv:2405.08488

• Time-Scales: $e^{\beta} \ll e^{2\beta} \ll e^{4\beta}$

THE		HŦ	Ŧ
HH		Ħ	Ħ
	₽	H	Ξ.
Шt		ш	Η.
ĦĦ	##	 ₩	#
ĦĦ	##	Ħ	Ħ.
HH		Ħ	Ħ
			Π.

•
$$\Lambda = \mathbb{T}_L \times \mathbb{T}_L$$
, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$
Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathscr{N}\}$, $\mathscr{N} > \frac{L^2}{4}$
K. arXiv:2405.08488

• Time-Scales: $e^{\beta} \ll e^{2\beta} \ll e^{4\beta}$

•
$$\Lambda = \mathbb{T}_L \times \mathbb{T}_L$$
, $\Omega = \{0, 1\}^{\Lambda}$, $\mathbb{H}(\eta) = -\sum_{x \sim y} \eta_x \eta_y$
Subset $\Omega' = \{\eta \in \Omega : \sum_{x \in \Lambda} \eta_x = \mathscr{N}\}$, $\mathscr{N} > \frac{L^2}{4}$
K. arXiv:2405.08488

• Time-Scales: $e^{\beta} \ll e^{2\beta} \ll e^{4\beta}$

Further Directions

• Regime of $\beta \to \infty$ & $|\Lambda| \to \infty$: for Case 3, Brownian motion Gois-Landim AoP '15

• Large Deviation Approach: empirical measure

$$\mu_{\beta,T} := \frac{1}{T} \int_0^T \delta_{\eta_\beta(t)} \mathrm{d}t \xrightarrow{T \to \infty} \mu_\beta, \quad \mathbb{P}[\mu_{\beta,T} \in A] \sim \mathcal{I}_\beta(A).$$

 μ_{β} does not explain metastability, but \mathcal{I}_{β} does! Bertini–Gabrielli–Landim AAP '24

$${\mathcal I}_eta\simeq {\mathcal I}^0+\sum_{\ell=1}^{\mathfrak m}rac{1}{ heta_eta^\ell}{\mathcal I}^\ell$$

• 2.5 LD Rate Function: empirical flow

$$Q_{\beta,T} := \frac{1}{T} \sum_{t \in [0,T]: \eta_{\beta}(t-) \neq \eta_{\beta}(t)} \delta_{(\eta_{\beta}(t-), \eta_{\beta}(t))}.$$

LDP of $(\mu_{\beta,T}, Q_{\beta,T})$ is called *level 2.5* LDP Bertini–Faggionato–Gabrielli *AIHP* '15

Thank you! Merci beaucoup!