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𝐿 𝑉 𝑥 + 𝑓 x = 0 x ∈ K

𝑓 = 0
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Markov jump process 
generator

𝑓 = ෍ 𝜌 𝑥 𝑓(𝑥)

For a given centered 
function f, what is V?

vertices of 
irreducible graph

Poisson equation



𝑥

𝑦

State space K Transition rates

𝑘(𝑥, 𝑦)

𝑘(𝑦, 𝑥)

𝑥

𝑦

Probability per unit time 

for x ➔ y
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Markov jump process



𝑑ρ𝑡 𝑥

𝑑𝑡
= ෍

𝑦
𝑘 𝑦, 𝑥 𝜌t 𝑦 − 𝑘 𝑥, 𝑦 𝜌t 𝑥 = 𝜌𝐿 (𝑥)

𝐿𝑥𝑥 = − ෍

𝑦

𝑘(𝑥, 𝑦)

𝐿𝑥𝑦 = 𝑘 𝑥, 𝑦  𝑥 ≠ 𝑦

𝐿 =

Set of linear equations

Backward generator

Markov jump process

Stationary distribution 𝐿∗𝜌𝑠 = 0 ∃! 𝜌𝑠 > 0
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Breaking detailed balanced

Nonreversible Markov jump process

𝜌𝑠 𝑥 𝑘 𝑥, 𝑦 ≠ 𝜌𝑠(𝑦)𝑘(𝑦, 𝑥)
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Nonreversible Markov jump process

𝜀

Breaking detailed Balanced 𝜌𝑠 𝑥 𝑘 𝑥, 𝑦 ≠ 𝜌𝑠(𝑦)𝑘(𝑦, 𝑥)

No simple expression for stationary distributions

driving
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applications

➢ Properties of V, such as behavior at large driving, e.g

uniform boundedness in system parameters?

➢ Relation with mean first-passage times (helping to construct 

the solution V)

➢ Current –current relationship
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Message of talk: potential theory for irreversible jump processes

1) There are interesting relations between nonequilibrium Currents

2)Graphical representations are available for solutions of Poisson

equation and are most useful in asymptotic regimes of low-temperature

(yet irreversible) Markov jump processes.



Poisson equations and solutions:

I. Quasipotential

II. First-passage time



Quasipotential!



𝑉 𝑥 = න
0

∞

𝑑𝑡 𝑒𝑡 𝐿 𝑓(𝑥)

Resolvent inverse

𝐿 = 0 L is not invertible: how 

to represent solution??

𝑉 = −𝐿−1𝑓 formally…

Quasipotential

𝐿 𝑉 𝑥 + 𝑓 x = 0 x ∈ K

𝑓 = 0 has unique centered solution 

(the quasipotential corresponding to f)



Method 1: via graphical representation of resolvent inverse  

(forest extension of tree theorem=Kirchhoff formula): 



Resolvent inverse 

of Laplacian
1

𝐼 −  α 𝐿

𝐿−1 𝑓 = ( lim
α →∞

−α

𝐼 − α 𝐿
) 𝑓

Matrix-forest theorem

1

𝐼 − α 𝐿
𝑥𝑦

=
σ𝑚=0

𝑛−γ
α𝑚𝑤 𝐹𝑚

𝑥→𝑦

σ
𝑚=0
𝑛−γ

α𝑚𝑤 𝐹𝑚

P. Chebotarev and E. Shamis. Matrix-forest theorems. arXiv, 0602575 [math.CO], (2006).

Matrix-forest 

theorems



𝑉 𝑥 =
σ𝑦 𝑤 𝑥 → 𝑦 𝑓(𝑦)

𝑊

𝑥 𝑦

Illustration of matrix forest theorem for simple example



𝑉 𝑥 =
σ𝑦 𝑤 𝑥 → 𝑦 𝑓(𝑦)

𝑊

𝑊

𝑥 𝑦

: Weight of all spanning forests rooted at y 
such that x is in the same tree with y

𝑥

: Weight of all rooted spanning trees 𝑤(𝑥 → 𝑦)

𝑥 𝑦

Quasipotential

Products over 
edges of the 
rates



Method 2 (of representing solution (quasoipotential) of 

Poisson eq:  First passage time!



Mean-First passage time

𝐿τ z + 1 = 0

෍
𝑦

𝑘 𝑥, 𝑦 τ 𝑦, 𝑧 − τ 𝑥, 𝑧 + 1 = 0, 𝑥 ≠ 𝑧, τ 𝑧, 𝑧 = 0

𝑧𝑥

The mean of the first time that process started from x hits
state z = τ x, z



Quasipotential and mean first-passage time

𝑉 𝑥 − 𝑉 𝑦 = ෍
𝑧
𝜌𝑠 𝑧 𝑓 𝑧 𝜏 𝑦, 𝑧 − 𝜏 𝑥, 𝑧

ൟ𝑉 𝑥 − 𝑉 𝑦 ≤ 𝑓 min ሼ τ 𝑥, 𝑦 , τ 𝑦, 𝑥Upper bound 

The vanishing of excess heat for nonequilibrium processes reaching zero ambient temperature.  
F. Khodabandehlou, C. Maes,  I. Maes and K. Netočný,  Annales Henri Poincaré (2023).



Quasipotential bounds:

𝑉 𝑥 − 𝑉 𝑦 = ෍
𝑧
𝜌𝑠 𝑧 𝑓 𝑧 𝜏 𝑦, 𝑧 − 𝜏 𝑥, 𝑧

ൟ𝑉 𝑥 − 𝑉 𝑦 ≤ 𝑓 min ሼ τ 𝑥, 𝑦 , τ 𝑦, 𝑥Upper bound 

If for any two neighboring states, the difference of quasipotentials is 

bounded, then also the quasipotential of every state is bounded. 

(lemma)

The vanishing of excess heat for nonequilibrium processes reaching zero ambient temperature.  
F. Khodabandehlou, C. Maes,  I. Maes and K. Netočný,  Annales Henri Poincaré (2023).



APPLICATION:  Extended Third Law (Theorem)

The extended Third Law states that the nonequilibrium heat capacity, under 

two conditions, vanishes at absolute zero:

𝐶 𝑇
𝑇↓0

0

1. Unique dominant state II.   Accessibility (boundedness of quasipotential)

The vanishing of excess heat for nonequilibrium processes reaching zero ambient temperature.  
F. Khodabandehlou, C. Maes,  I. Maes and K. Netočný,  Annales Henri Poincaré (2023).



Application 2

Current-current relation



𝑗 𝑥, 𝑦 = 𝜌𝑠 𝑥 𝑘 𝑥, 𝑦 − 𝜌𝑠 𝑦 𝑘(𝑦, 𝑥)

Steady current

Transition rate

𝑘(𝑥, 𝑦)

𝑘(𝑦, 𝑥)

𝑥

𝑦

𝑦

𝑥



𝑗 𝑥, 𝑦 = 𝛼 + 𝜆 𝑗 𝑧, 𝑧′

𝑦

𝑥

Current-current relation

𝑧’

𝑧

Mutual Linearity of Nonequilibrium Network Currents. Pedro E. Harunari, Sara Dal Cengio, 
Vivien Lecomte, and Matteo Polettini. Phys. Rev. Lett. 2024.



𝑗 𝑥, 𝑦 = 𝛼 + 𝜆 𝑗 𝑧, 𝑧′

𝑦

𝑥

Current-current relation

𝑧’

𝑧

Susceptibility depends neither on k(z, z’) nor k(z’, 
z). Interestingly, λ can also be expressed in term 
of quasipotential (solution of Poisson eq)

Current over the edge (x,y) in the 
graph where {z,z’} is removed.



𝑘𝑖 𝑥, 𝑦 = 𝑘𝑖
0 𝑥, 𝑦 + Δ𝑖 𝑥, 𝑦

Perturbing the rates

1

𝑥𝑦
𝑖

2

𝑘𝑖(𝑦, 𝑥)

𝑦 𝑘𝑖(𝑥, 𝑦) 𝑥



𝑗𝑖 𝑥, 𝑦 = 𝑗𝑖
0 𝑥, 𝑦 + ෍

𝑧,𝑧′
𝜆𝑖

0 𝑧𝑧′, 𝑥, 𝑦 𝑗Δ 𝑧, 𝑧′

λ𝑖
0 𝑧𝑧′, 𝑥, 𝑦 =

1

2

ρ0 𝑥 𝑘𝑖
0 𝑥, 𝑦 τ0 𝑧, 𝑥 − τ0 𝑧′, 𝑥

−ρ0 𝑦 𝑘𝑖
0 𝑦, 𝑥 τ0 𝑧, 𝑦 − τ0 𝑧′, 𝑦

Current-current relation (First passage time)

𝑦

𝑥

𝑧’

𝑧



𝑗 𝑥, 𝑦 = 𝑗0 𝑥, 𝑦 + 𝑉𝑥𝑦
0 𝑧′ − 𝑉𝑥𝑦

0 𝑧 𝑗 𝑧, 𝑧′

𝑛 𝑧 = lim
𝑡→0+

𝑁𝑥𝑦 𝑡
𝑧

0

𝑡
= ቐ

𝑘0 𝑥, 𝑦  𝑖𝑓 𝑧 = 𝑥

−𝑘0 𝑦, 𝑥  𝑖𝑓 𝑧 = 𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Current-current relation (Quasipotential)

𝑦

𝑥

𝑧’

𝑧

𝐿0𝑉0 𝑧 = 𝑗0 𝑥, 𝑦 − 𝑛 𝑧
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