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Notations

E = {edges of Zd}, EΛ = {edges of Λ}, Λ ⊂ Zd.

Ω = {0, 1}E , ΩΛ = {0, 1}EΛ
Pp = B(p)⊗E , PΛ

p = B(p)⊗EΛ , 0 < p < 1

Λn = {−n, . . . , n}d, n ≥ 1
Ncc = number of open connected components of edges (bounded

or not),

A = {Ncc = 1}

N
bc(Λ)
cc = number of open connected components of edges in Λ

with boundary condition "bc",

Abc(Λ) = {N bc(Λ)
cc = 1}

"bc"=wired, free, periodic, left-right crossing, etc...
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Fully-connected bond model

Formally, we want to give a sense to

Pp(.|Ncc = 1),

but Pp(Ncc = 1) = 0.

(Thermodynamic approach) Pp(.|Ncc = 1) is de�ned as the

limit of �nite volume models.

(DLR approach) Pp(.|Ncc = 1) is de�ned via implicit local

conditional probability measures (speci�cations).

Both approaches are standard in statistical physics : Gibbs

measures, Ising model, FK-percoation, etc..

Issues : Existence, uniqueness, etc...
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Thermodynamic approach

De�nition (Thermodynamic approach)

A fully-connected bond percolation measure is any accumulation

point (for the weak convergence of measures) of sequences of

probability measures(
PΛn
p (.|N bc(Λn)

cc = 1)
)
n≥1

,

for any choice of boundary conditions bc(Λn)n≥1.

L(p) denotes the space of such accumulation points. Ls(p) is for
elements of L(p) which are stationary in space.

Since Ω is a compact set, L(p) is not empty. Ls(p) is not empty

as well, using "bc=periodic".
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Dobrushin-Lanford-Ruelle approach

De�nition (DLR approach)

A fully-connected bond percolation measure is any probability

measure P on Ω such that P (A) = P (Ncc = 1) = 1 and for all

bounded Λ ⊂ Zd and P -a.e. ω

P (dωΛ|ωEc
Λ
) =

1

ZΛ(ωEc
Λ
)
1A(ω)PΛ

p (dωΛ).

G(p) denotes the space of such probability measures. Gs(p) is for
elements of G(p) which are stationary in space.

G(p) could be empty !
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Motivations

Random Cluster Model (Widom Rowlinson) with "q=0" :

Formally

P ∼ qNccPp.

No monotonicity. No FKG inequality.

Connection with the incipient cluster : For p = pc

Pp(.|0 ↔ ∞).

Percolation at criticality.

Weighted random connected graph : For p = 1/2,
P(.|Ncc = 1) samples uniformly a connected graph in Zd.

Connection with the conjecture "θ(pc) = 0".
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Topological results

Theorem

For any P ∈ Ls(p),
i) P (there exists a bounded connected component) = 0
ii) P (Ncc = 0 or 1) = 1.

For all P ∈ G(p), by de�nition P (Ncc = 1) = 1.

Ideas of proof for i) :

If there exists a bounded connected component ⇒ It is not

unique.

Contradiction with P = limn→∞ PΛn
p (.|N bc(Λn)

cc = 1)

Ideas of proof for ii) : Finite energy property and Burton-Keane

arguments.

The event {Ncc = 0} is possible for small p (microscopic

connected component).
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A phase transition result

Theorem

For any d ≥ 2, there exists a threshold 0 < p∗(d) < 1 such that

if p < p∗(d), Gs(p) = ∅ and Ls(p) = {δ0E}.
if p > p∗(d), there exists P in ∈ Ls(p) ∩ Gs(p) with
P (A) = 1.

No monotonocity, no FKG innequality : The existence of the

threshold is not obvious.

Gs(p) ⊂ Ls(p) and for all P ∈ Ls(p) such that P (A) > 0 then

P (.|A) ∈ Gs(p).
For p > p∗(d), |Gs(p)| = 1 ? It is mainly a conjecture. True for

d = 2 and p ≥ 1/2 (details in 3 slides !)
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Simulation

Birth-death Metropolis Hastings algorithm with free boundary

condition on a 2D grid 30 ∗ 30.

At the middle, a simulation with p = 0.2.

On the left, the number of open edges during the run for

p = 0.2.

On the right, the number of open edges during the run for

p = 0.15.
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Bounds for p∗(d)

pc(d) = the standard bond percolation threshold on Zd.

Theorem

For any d ≥ 2

eλ
∗
min

(d)

1 + eλ
∗
min

(d)
≤ p∗(d) ≤ eλ

∗
max

(d)

1 + eλ
∗
max

(d)
,

with

λ∗
min

(d) = − log(2d− 1) + (2d− 2) log

(
2d− 2

2d− 1

)
,

λ∗
max

(d) = log(pc(d)) +
1− pc(d)

pc(d)
log(1− pc(d)),

For d = 2, pc(2) = 1/2 and so 0.128 < p∗(2) < 0.202.
For d = 3, pc(3) ≃ 0.25 and so 0.075 < p∗(3) < 0.099.
When d → ∞, pc(d) ∼ 1/(2d) and so p∗(d) ∼ e−1pc(d).
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An uniqueness result

Theorem

For d = 2 and p ≥ 1/2 there exists a stationary probability

measure P such that

G(p) = Gs(p) = {P}.

Moreover for any Q ∈ L(p), there exists α ∈ [0, 1] such that

Q = αP + (1− α)δ0E .

Lemma

Let P ∈ G(p) ∪ L(p). Let E ⊂ E be a �nite subset of edges and

ω̃ ∈ A an allowed con�guration. Let e be an edge in E\E. We

assume that there exists an open edge f in ω̃E having a common

vertex with e. Then

P (e is open |ω̃E) ≥ p.
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The main results
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The �nite volume two-parameter model

De�nition (Finite volume two-parameter model)

(λ, µ) ∈ R2, Λ ⊂ Zd bounded and ”bc” a boundary condition,

Qbc
Λ,λ,µ(ωΛ) :=

1

Zbc
Λ (λ, µ)

1I{Nbc(Λ)
cc (ωΛ)=1}e

λNΛ(ωΛ)eµ∂N
bc
Λ (ωΛ),

Zbc
Λ (λ, µ) the partition function.

NΛ(ωΛ) = the number of open edges in ωΛ.

∂NΛ(ωΛ) = the number of closed edges with at least one of its

extremities belonging to an open edge of ωΛ or an open vertex

at the boundary.

For (λ, µ) = (log(p/(1− p)), 0)

Pp(.|N bc(Λ)
cc = 1) = Qbc

Λ,λ,µ.

For p ∈ (0, 1), G(p) = G2(log(p/(1− p)), 0).
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extremities belonging to an open edge of ωΛ or an open vertex

at the boundary.

For (λ, µ) = (log(p/(1− p)), 0)

Pp(.|N bc(Λ)
cc = 1) = Qbc

Λ,λ,µ.

For p ∈ (0, 1), G(p) = G2(log(p/(1− p)), 0).
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Phase transition

De�nition

For (λ, µ) ∈ R2, P(λ, µ) = limn→∞
log(Zwired

n (λ,µ))
#En .

λ∗(µ) = sup
{
λ ∈ R,P(λ, µ) = 0

}
.

Theorem

In any dimension d ≥ 2 and for all (λ, µ) ∈ R2

if λ > λ∗(µ) then G2
s (λ, µ) ̸= ∅.

if λ < λ∗(µ) then G2
s (λ, µ) = ∅.

Zwired

n (λ, µ) =
∑
ωΛn

1I{Nwired
cc (ωΛn )=1}e

λN(ωΛn )eµ∂N
wired

Λn
(ωΛn ) ≥ Cnd−1

.

∂ log(Zwired
n (λ, µ))

∂λ
= EQwired

Λn
(λ,µ)(NΛn

).
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Semi-explicit phase diagram

G2
s (λ, µ) = ∅

(0, 0)

µ

λ∗(µ)?

G2
s (λ, µ) ̸= ∅

log(1− pc(d))
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Details for the explicit part

Proposition

For any p ∈ (0, 1), P
(
log(p), log(1− p)

)
= 0.

In particular, λ∗(µ) ≥ log(1− eµ).

P∞
p = the distribution of the in�nite open cluster in the

Benoulli bond percolation Pp.

Proposition

For p > pc(d), P∞
p ∈ G2

s

(
log(p), log(1− p)

)
.

In particular, λ∗(µ) ≤ log(1− eµ).

Corollary

For µ ≤ log(1− pc(d))

λ∗(µ) = log(1− eµ).
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Proof of lower and upper bounds.

Upper-bound : Convexity

Lower-bound :

Lemma

There exists a constanct C > 0 such that for each n ≥ 1

∂ log(Zwired
n (λ, µ))

∂µ
≤ (2d− 2)

∂ log(Zwired
n (λ, µ))

∂λ
+ Cnd−1.

d log(Zwired
n (λ, µ))

dλ
= EQwired

Λn
(λ,µ)(NΛn).

d log(Zwired
n (λ, µ))

dµ
= EQwired

Λn
(λ,µ)(∂N

wired

Λn
).

Isoperimetric inequality :

∂N ≤ (2d− 2)N + 2d.
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Thank you for your attention
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