・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

# Fully-connected bond percolation on $\mathbb{Z}^d$

#### **David Dereudre**, Laboratoire de Mathématiques Paul Painlevé, University of Lille, France

Rencontres de Probabilités, Rouen, November 2022













◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathcal{E} = \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} = \{ \text{edges of } \Lambda \}, \Lambda \subset \mathbb{Z}^d.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{split} \mathcal{E} &= \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} = \{ \text{edges of } \Lambda \}, \ \Lambda \subset \mathbb{Z}^d. \\ \Omega &= \{0,1\}^{\mathcal{E}}, \ \ \Omega_{\Lambda} = \{0,1\}^{\mathcal{E}_{\Lambda}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{aligned} \mathcal{E} &= \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} &= \{ \text{edges of } \Lambda \}, \ \Lambda \subset \mathbb{Z}^d. \\ \Omega &= \{ 0, 1 \}^{\mathcal{E}}, \ \Omega_{\Lambda} &= \{ 0, 1 \}^{\mathcal{E}_{\Lambda}} \\ \mathbb{P}_p &= \mathcal{B}(p)^{\otimes \mathcal{E}}, \ \mathbb{P}_p^{\Lambda} &= \mathcal{B}(p)^{\otimes \mathcal{E}_{\Lambda}}, \ 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{split} \mathcal{E} &= \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} = \{ \text{edges of } \Lambda \}, \ \Lambda \subset \mathbb{Z}^d \\ \Omega &= \{ 0, 1 \}^{\mathcal{E}}, \quad \Omega_{\Lambda} = \{ 0, 1 \}^{\mathcal{E}_{\Lambda}} \\ \mathbb{P}_p &= \mathcal{B}(p)^{\otimes \mathcal{E}}, \ \mathbb{P}_p^{\Lambda} = \mathcal{B}(p)^{\otimes \mathcal{E}_{\Lambda}}, \quad 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\begin{split} & \mathcal{E} = \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} = \{ \text{edges of } \Lambda \}, \ \Lambda \subset \mathbb{Z}^d. \\ & \Omega = \{0,1\}^{\mathcal{E}}, \quad \Omega_{\Lambda} = \{0,1\}^{\mathcal{E}_{\Lambda}} \\ & \mathbb{P}_p = \mathcal{B}(p)^{\otimes \mathcal{E}}, \ \mathbb{P}_p^{\Lambda} = \mathcal{B}(p)^{\otimes \mathcal{E}_{\Lambda}}, \quad 0$$

$$\mathcal{A} = \{N_{cc} = 1\}$$

#### Notations

$$\begin{split} &\mathcal{E} = \{ \text{edges of } \mathbb{Z}^d \}, \ \mathcal{E}_{\Lambda} = \{ \text{edges of } \Lambda \}, \ \Lambda \subset \mathbb{Z}^d. \\ &\Omega = \{0,1\}^{\mathcal{E}}, \quad \Omega_{\Lambda} = \{0,1\}^{\mathcal{E}_{\Lambda}} \\ &\mathbb{P}_p = \mathcal{B}(p)^{\otimes \mathcal{E}}, \mathbb{P}_p^{\Lambda} = \mathcal{B}(p)^{\otimes \mathcal{E}_{\Lambda}}, \quad 0$$

$$\mathcal{A} = \{N_{cc} = 1\}$$

 $N_{cc}^{bc(\Lambda)}$  = number of open connected components of edges in  $\Lambda$  with boundary condition "bc",

$$\mathcal{A}^{bc(\Lambda)} = \{N^{bc(\Lambda)}_{cc} = 1\}$$

"bc"=wired, free, periodic, left-right crossing, etc...

(ロ)、(型)、(E)、(E)、 E) のQ(()

## Fully-connected bond model

Formally, we want to give a sense to

$$\mathbb{P}_p(.|N_{cc}=1),$$

but  $\mathbb{P}_p(N_{cc}=1)=0.$ 



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

### Fully-connected bond model

Formally, we want to give a sense to

$$\mathbb{P}_p(.|N_{cc}=1),$$

but  $\mathbb{P}_p(N_{cc}=1)=0.$ 

• (Thermodynamic approach)  $\mathbb{P}_p(.|N_{cc} = 1)$  is defined as the limit of finite volume models.

うして ふゆ く は く は く む く し く

## Fully-connected bond model

Formally, we want to give a sense to

$$\mathbb{P}_p(.|N_{cc}=1),$$

but  $\mathbb{P}_p(N_{cc}=1)=0.$ 

- (Thermodynamic approach)  $\mathbb{P}_p(.|N_{cc} = 1)$  is defined as the limit of finite volume models.
- (DLR approach)  $\mathbb{P}_p(.|N_{cc} = 1)$  is defined via implicit local conditional probability measures (specifications).

うして ふゆ く は く は く む く し く

### Fully-connected bond model

Formally, we want to give a sense to

$$\mathbb{P}_p(.|N_{cc}=1),$$

but  $\mathbb{P}_p(N_{cc}=1)=0.$ 

- (Thermodynamic approach)  $\mathbb{P}_p(.|N_{cc} = 1)$  is defined as the limit of finite volume models.
- (DLR approach)  $\mathbb{P}_p(.|N_{cc}=1)$  is defined via implicit local conditional probability measures (specifications).

Both approaches are standard in statistical physics : Gibbs measures, Ising model, FK-percoation, etc..

うして ふゆ く は く は く む く し く

## Fully-connected bond model

Formally, we want to give a sense to

$$\mathbb{P}_p(.|N_{cc}=1),$$

but  $\mathbb{P}_p(N_{cc}=1)=0.$ 

- (Thermodynamic approach)  $\mathbb{P}_p(.|N_{cc} = 1)$  is defined as the limit of finite volume models.
- (DLR approach)  $\mathbb{P}_p(.|N_{cc}=1)$  is defined via implicit local conditional probability measures (specifications).

Both approaches are standard in statistical physics : Gibbs measures, Ising model, FK-percoation, etc.. Issues : Existence, uniqueness, etc...

うして ふゆ く は く は く む く し く

## Thermodynamic approach

#### Definition (Thermodynamic approach)

A fully-connected bond percolation measure is any accumulation point (for the weak convergence of measures) of sequences of probability measures

$$\left(\mathbb{P}_p^{\Lambda_n}(.|N_{cc}^{bc(\Lambda_n)}=1)\right)_{n\geq 1},$$

for any choice of boundary conditions  $bc(\Lambda_n)_{n\geq 1}$ .  $\mathcal{L}(p)$  denotes the space of such accumulation points.  $\mathcal{L}_s(p)$  is for elements of  $\mathcal{L}(p)$  which are stationary in space.

## Thermodynamic approach

#### Definition (Thermodynamic approach)

A fully-connected bond percolation measure is any accumulation point (for the weak convergence of measures) of sequences of probability measures

$$\left(\mathbb{P}_p^{\Lambda_n}(.|N_{cc}^{bc(\Lambda_n)}=1)\right)_{n\geq 1},$$

for any choice of boundary conditions  $bc(\Lambda_n)_{n\geq 1}$ .  $\mathcal{L}(p)$  denotes the space of such accumulation points.  $\mathcal{L}_s(p)$  is for elements of  $\mathcal{L}(p)$  which are stationary in space.

Since  $\Omega$  is a compact set,  $\mathcal{L}(p)$  is not empty.  $\mathcal{L}_s(p)$  is not empty as well, using "bc=periodic".

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

## Dobrushin-Lanford-Ruelle approach

#### Definition (DLR approach)

A fully-connected bond percolation measure is any probability measure P on  $\Omega$  such that  $P(\mathcal{A}) = P(N_{cc} = 1) = 1$  and for all bounded  $\Lambda \subset \mathbb{Z}^d$  and P-a.e.  $\omega$ 

$$P(d\omega_{\Lambda}|\omega_{\mathcal{E}^{c}_{\Lambda}}) = \frac{1}{Z_{\Lambda}(\omega_{\mathcal{E}^{c}_{\Lambda}})} \mathbf{1}_{\mathcal{A}}(\omega) \mathbb{P}^{\Lambda}_{p}(d\omega_{\Lambda}).$$

 $\mathcal{G}(p)$  denotes the space of such probability measures.  $\mathcal{G}_s(p)$  is for elements of  $\mathcal{G}(p)$  which are stationary in space.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

### Dobrushin-Lanford-Ruelle approach

#### Definition (DLR approach)

A fully-connected bond percolation measure is any probability measure P on  $\Omega$  such that  $P(\mathcal{A}) = P(N_{cc} = 1) = 1$  and for all bounded  $\Lambda \subset \mathbb{Z}^d$  and P-a.e.  $\omega$ 

$$P(d\omega_{\Lambda}|\omega_{\mathcal{E}^{c}_{\Lambda}}) = \frac{1}{Z_{\Lambda}(\omega_{\mathcal{E}^{c}_{\Lambda}})} \mathbf{1}_{\mathcal{A}}(\omega) \mathbb{P}^{\Lambda}_{p}(d\omega_{\Lambda}).$$

 $\mathcal{G}(p)$  denotes the space of such probability measures.  $\mathcal{G}_s(p)$  is for elements of  $\mathcal{G}(p)$  which are stationary in space.

 $\mathcal{G}(p)$  could be empty!

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

### Motivations

 $\bullet$  Random Cluster Model (Widom Rowlinson) with "q=0" : Formally

$$P \sim q^{N_{cc}} \mathbb{P}_p$$

No monotonicity. No FKG inequality.

#### Results

うしゃ 本理 そう キャット マックタイ

### Motivations

• Random Cluster Model (Widom Rowlinson) with "q=0" : Formally

$$P \sim q^{N_{cc}} \mathbb{P}_p.$$

No monotonicity. No FKG inequality.

• Connection with the incipient cluster : For  $p = p_c$ 

 $\mathbb{P}_p(.|0\leftrightarrow\infty).$ 

Percolation at criticality.

#### Results

うして ふゆ く は く は く む く し く

### Motivations

• Random Cluster Model (Widom Rowlinson) with "q=0" : Formally

$$P \sim q^{N_{cc}} \mathbb{P}_p.$$

No monotonicity. No FKG inequality.

• Connection with the incipient cluster : For  $p = p_c$ 

$$\mathbb{P}_p(.|0\leftrightarrow\infty).$$

Percolation at criticality.

• Weighted random connected graph : For p = 1/2,  $\mathbb{P}(.|N_{cc} = 1)$  samples uniformly a connected graph in  $\mathbb{Z}^d$ .

#### Results

うして ふゆ く は く は く む く し く

## Motivations

• Random Cluster Model (Widom Rowlinson) with "q=0" : Formally

$$P \sim q^{N_{cc}} \mathbb{P}_p.$$

No monotonicity. No FKG inequality.

• Connection with the incipient cluster : For  $p = p_c$ 

$$\mathbb{P}_p(.|0\leftrightarrow\infty).$$

Percolation at criticality.

- Weighted random connected graph : For p = 1/2,  $\mathbb{P}(.|N_{cc} = 1)$  samples uniformly a connected graph in  $\mathbb{Z}^d$ .
- Connection with the conjecture " $\theta(p_c) = 0$ ".



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

## Topological results

#### Theorem

For any 
$$P \in \mathcal{L}_s(p)$$
,  
*i*)  $P(\text{there exists a bounded connected component}) = 0$   
*ii*)  $P(N_{cc} = 0 \text{ or } 1) = 1$ .

For all  $P \in \mathcal{G}(p)$ , by definition  $P(N_{cc} = 1) = 1$ .



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

# Topological results

#### Theorem

For any 
$$P \in \mathcal{L}_s(p)$$
,  
*i)*  $P(\text{there exists a bounded connected component}) = 0$   
*ii)*  $P(N_{cc} = 0 \text{ or } 1) = 1.$ 

For all  $P \in \mathcal{G}(p)$ , by definition  $P(N_{cc} = 1) = 1$ . Ideas of proof for i:

- If there exists a bounded connected component  $\Rightarrow$  It is not unique.
- Contradiction with  $P = \lim_{n \to \infty} \mathbb{P}_p^{\Lambda_n}(.|N_{cc}^{bc(\Lambda_n)} = 1)$

# Topological results

#### Theorem

For any 
$$P \in \mathcal{L}_s(p)$$
,  
*i)*  $P(\text{there exists a bounded connected component}) = 0$   
*ii)*  $P(N_{cc} = 0 \text{ or } 1) = 1.$ 

For all 
$$P \in \mathcal{G}(p)$$
, by definition  $P(N_{cc} = 1) = 1$ .  
Ideas of proof for  $i$ ):

• If there exists a bounded connected component  $\Rightarrow$  It is not unique.

• Contradiction with  $P = \lim_{n \to \infty} \mathbb{P}_p^{\Lambda_n}(.|N_{cc}^{bc(\Lambda_n)} = 1)$ Ideas of proof for *ii*) : Finite energy property and Burton-Keane

arguments.

## Topological results

#### Theorem

For any 
$$P \in \mathcal{L}_s(p)$$
,  
*i)*  $P(\text{there exists a bounded connected component}) = 0$   
*ii)*  $P(N_{cc} = 0 \text{ or } 1) = 1.$ 

For all 
$$P \in \mathcal{G}(p)$$
, by definition  $P(N_{cc} = 1) = 1$ .  
Ideas of proof for  $i$ ):

- If there exists a bounded connected component  $\Rightarrow$  It is not unique.
- Contradiction with  $P = \lim_{n \to \infty} \mathbb{P}_p^{\Lambda_n}(.|N_{cc}^{bc(\Lambda_n)} = 1)$

Ideas of proof for ii) : Finite energy property and Burton-Keane arguments.

The event  $\{N_{cc} = 0\}$  is possible for small p (microscopic connected component).

## A phase transition result

#### Theorem

For any  $d \ge 2$ , there exists a threshold  $0 < p^*(d) < 1$  such that

- if  $p < p^*(d)$ ,  $\mathcal{G}_s(p) = \emptyset$  and  $\mathcal{L}_s(p) = \{\delta_{0\varepsilon}\}$ .
- if  $p > p^*(d)$ , there exists P in  $\in \mathcal{L}_s(p) \cap \mathcal{G}_s(p)$  with  $P(\mathcal{A}) = 1$ .

# A phase transition result

#### Theorem

For any  $d \ge 2$ , there exists a threshold  $0 < p^*(d) < 1$  such that

- if  $p < p^*(d)$ ,  $\mathcal{G}_s(p) = \emptyset$  and  $\mathcal{L}_s(p) = \{\delta_{0\varepsilon}\}$ .
- if  $p > p^*(d)$ , there exists P in  $\in \mathcal{L}_s(p) \cap \mathcal{G}_s(p)$  with  $P(\mathcal{A}) = 1$ .

No monotonocity, no FKG innequality : The existence of the threshold is not obvious.

うして ふゆ く は く は く む く し く

# A phase transition result

#### Theorem

For any  $d \ge 2$ , there exists a threshold  $0 < p^*(d) < 1$  such that

- if  $p < p^*(d)$ ,  $\mathcal{G}_s(p) = \emptyset$  and  $\mathcal{L}_s(p) = \{\delta_{0\varepsilon}\}$ .
- if  $p > p^*(d)$ , there exists P in  $\in \mathcal{L}_s(p) \cap \mathcal{G}_s(p)$  with  $P(\mathcal{A}) = 1$ .

No monotonocity, no FKG innequality : The existence of the threshold is not obvious.

 $\mathcal{G}_s(p) \subset \mathcal{L}_s(p)$  and for all  $P \in \mathcal{L}_s(p)$  such that  $P(\mathcal{A}) > 0$  then  $P(.|\mathcal{A}) \in \mathcal{G}_s(p)$ .

## A phase transition result

#### Theorem

For any  $d \ge 2$ , there exists a threshold  $0 < p^*(d) < 1$  such that

- if  $p < p^*(d)$ ,  $\mathcal{G}_s(p) = \emptyset$  and  $\mathcal{L}_s(p) = \{\delta_{0\varepsilon}\}$ .
- if  $p > p^*(d)$ , there exists P in  $\in \mathcal{L}_s(p) \cap \mathcal{G}_s(p)$  with  $P(\mathcal{A}) = 1$ .

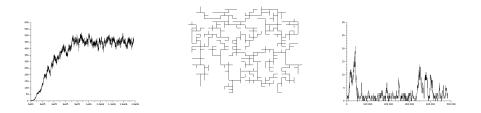
No monotonocity, no FKG innequality : The existence of the threshold is not obvious.

 $\mathcal{G}_s(p) \subset \mathcal{L}_s(p)$  and for all  $P \in \mathcal{L}_s(p)$  such that  $P(\mathcal{A}) > 0$  then  $P(.|\mathcal{A}) \in \mathcal{G}_s(p)$ . For  $p > p^*(d)$ ,  $|\mathcal{G}_s(p)| = 1$ ? It is mainly a conjecture. True for d = 2 and  $p \ge 1/2$  (details in 3 slides!)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

# Simulation

Birth-death Metropolis Hastings algorithm with free boundary condition on a 2D grid 30 \* 30.



- At the middle, a simulation with p = 0.2.
- On the left, the number of open edges during the run for p = 0.2.
- On the right, the number of open edges during the run for p = 0.15.

## Bounds for $p^*(d)$

 $p_c(d)$  = the standard bond percolation threshold on  $\mathbb{Z}^d$ .



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

# Bounds for $p^*(d)$

#### $p_c(d)$ = the standard bond percolation threshold on $\mathbb{Z}^d$ .

#### Theorem

For any  $d \geq 2$ 

$$\frac{e^{\lambda_{\min}^*(d)}}{1 + e^{\lambda_{\min}^*(d)}} \le p^*(d) \le \frac{e^{\lambda_{\max}^*(d)}}{1 + e^{\lambda_{\max}^*(d)}},$$

with

$$\lambda_{\min}^*(d) = -\log(2d-1) + (2d-2)\log\left(\frac{2d-2}{2d-1}\right),$$
$$\lambda_{\max}^*(d) = \log(p_c(d)) + \frac{1-p_c(d)}{p_c(d)}\log(1-p_c(d)),$$

# Bounds for $p^*(d)$

#### $p_c(d)$ = the standard bond percolation threshold on $\mathbb{Z}^d$ .

#### Theorem

For any  $d \geq 2$ 

$$\frac{e^{\lambda_{\min}^*(d)}}{1 + e^{\lambda_{\min}^*(d)}} \le p^*(d) \le \frac{e^{\lambda_{\max}^*(d)}}{1 + e^{\lambda_{\max}^*(d)}},$$

with

$$\lambda_{min}^*(d) = -\log(2d-1) + (2d-2)\log\left(\frac{2d-2}{2d-1}\right),$$
$$\lambda_{max}^*(d) = \log(p_c(d)) + \frac{1-p_c(d)}{p_c(d)}\log(1-p_c(d)),$$

For d = 2,  $p_c(2) = 1/2$  and so  $0.128 < p^*(2) < 0.202$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Bounds for $p^*(d)$

#### $p_c(d)$ = the standard bond percolation threshold on $\mathbb{Z}^d$ .

#### Theorem

For any  $d \geq 2$ 

$$\frac{e^{\lambda^*_{\min}(d)}}{1 + e^{\lambda^*_{\min}(d)}} \le p^*(d) \le \frac{e^{\lambda^*_{\max}(d)}}{1 + e^{\lambda^*_{\max}(d)}},$$

with

$$\lambda_{\min}^*(d) = -\log(2d-1) + (2d-2)\log\left(\frac{2d-2}{2d-1}\right),$$
$$\lambda_{\max}^*(d) = \log(p_c(d)) + \frac{1-p_c(d)}{p_c(d)}\log(1-p_c(d)),$$

For d = 2,  $p_c(2) = 1/2$  and so  $0.128 < p^*(2) < 0.202$ . For d = 3,  $p_c(3) \simeq 0.25$  and so  $0.075 < p^*(3) < 0.099$ .

# Bounds for $p^*(d)$

### $p_c(d)$ = the standard bond percolation threshold on $\mathbb{Z}^d$ .

### Theorem

For any  $d \geq 2$ 

$$\frac{e^{\lambda_{\min}^*(d)}}{1 + e^{\lambda_{\min}^*(d)}} \le p^*(d) \le \frac{e^{\lambda_{\max}^*(d)}}{1 + e^{\lambda_{\max}^*(d)}},$$

with

$$\lambda_{\min}^{*}(d) = -\log(2d-1) + (2d-2)\log\left(\frac{2d-2}{2d-1}\right)$$
$$\lambda_{\max}^{*}(d) = \log(p_{c}(d)) + \frac{1-p_{c}(d)}{p_{c}(d)}\log(1-p_{c}(d)),$$

For d = 2,  $p_c(2) = 1/2$  and so  $0.128 < p^*(2) < 0.202$ . For d = 3,  $p_c(3) \simeq 0.25$  and so  $0.075 < p^*(3) < 0.099$ . When  $d \to \infty$ ,  $p_c(d) \sim 1/(2d)$  and so  $p^*(d) \sim e^{-1}p_c(d)$ .

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

# An uniqueness result

#### Theorem

For d = 2 and  $p \ge 1/2$  there exists a stationary probability measure P such that

$$\mathcal{G}(p) = \mathcal{G}_s(p) = \{P\}.$$

Moreover for any  $Q \in \mathcal{L}(p)$ , there exists  $\alpha \in [0, 1]$  such that  $Q = \alpha P + (1 - \alpha)\delta_0 \varepsilon$ .

# An uniqueness result

#### Theorem

For d = 2 and  $p \ge 1/2$  there exists a stationary probability measure P such that

$$\mathcal{G}(p) = \mathcal{G}_s(p) = \{P\}.$$

Moreover for any  $Q \in \mathcal{L}(p)$ , there exists  $\alpha \in [0, 1]$  such that  $Q = \alpha P + (1 - \alpha)\delta_0 \varepsilon$ .

#### Lemma

Let  $P \in \mathcal{G}(p) \cup \mathcal{L}(p)$ . Let  $E \subset \mathcal{E}$  be a finite subset of edges and  $\tilde{\omega} \in \mathcal{A}$  an allowed configuration. Let e be an edge in  $\mathcal{E} \setminus E$ . We assume that there exists an open edge f in  $\tilde{\omega}_E$  having a common vertex with e. Then

 $P(e \text{ is open } | \tilde{\omega}_E) \geq p.$ 





### The main results

#### Theorem

For any  $d \ge 2$ , there exists a threshold  $0 < p^*(d) < 1$  such that

- if  $p > p^*(d)$ , there exists P in  $\in \mathcal{L}_s(p) \cap \mathcal{G}_s(p)$  with  $P(\mathcal{A}) = 1$ .
- if  $p < p^*(d)$ ,  $\mathcal{G}_s(p) = \emptyset$  and  $\mathcal{L}_s(p) = \{\delta_0 \varepsilon\}$ .

### Theorem

$$\frac{e^{\lambda^*_{\min}(d)}}{1+e^{\lambda^*_{\min}(d)}} \leq p^*(d) \leq \frac{e^{\lambda^*_{\max}(d)}}{1+e^{\lambda^*_{\max}(d)}},$$

with

$$\lambda_{\min}^*(d) = -\log(2d-1) + (2d-2)\log\left(\frac{2d-2}{2d-1}\right),$$
  
$$\lambda_{\max}^*(d) = \log(p_c(d)) + \frac{1-p_c(d)}{p_c(d)}\log(1-p_c(d)),$$

an

うして ふゆ く 山 マ ふ し マ う く し マ

### The finite volume two-parameter model

Definition (Finite volume two-parameter model)

 $(\lambda,\mu)\in\mathbb{R}^2,\,\Lambda\subset\mathbb{Z}^d$  bounded and "bc" a boundary condition,

$$Q_{\Lambda,\lambda,\mu}^{bc}(\omega_{\Lambda}) := \frac{1}{Z_{\Lambda}^{bc}(\lambda,\mu)} \mathrm{I\!I}_{\{N_{cc}^{bc}(\Lambda)}(\omega_{\Lambda})=1\}} e^{\lambda N_{\Lambda}(\omega_{\Lambda})} e^{\mu \partial N_{\Lambda}^{bc}(\omega_{\Lambda})},$$

 $Z_{\Lambda}^{bc}(\lambda,\mu)$  the partition function.  $N_{\Lambda}(\omega_{\Lambda}) =$  the number of open edges in  $\omega_{\Lambda}$ .  $\partial N_{\Lambda}(\omega_{\Lambda}) =$  the number of closed edges with at least one of its extremities belonging to an open edge of  $\omega_{\Lambda}$  or an open vertex at the boundary.

・ロト・日本・モン・モン・ ヨー うへぐ

### The finite volume two-parameter model

Definition (Finite volume two-parameter model)

 $(\lambda,\mu)\in\mathbb{R}^2,\,\Lambda\subset\mathbb{Z}^d$  bounded and "bc" a boundary condition,

$$Q_{\Lambda,\lambda,\mu}^{bc}(\omega_{\Lambda}) := \frac{1}{Z_{\Lambda}^{bc}(\lambda,\mu)} \mathbb{1}_{\{N_{cc}^{bc(\Lambda)}(\omega_{\Lambda})=1\}} e^{\lambda N_{\Lambda}(\omega_{\Lambda})} e^{\mu \partial N_{\Lambda}^{bc}(\omega_{\Lambda})},$$

 $Z_{\Lambda}^{bc}(\lambda,\mu)$  the partition function.  $N_{\Lambda}(\omega_{\Lambda}) =$  the number of open edges in  $\omega_{\Lambda}$ .  $\partial N_{\Lambda}(\omega_{\Lambda}) =$  the number of closed edges with at least one of its extremities belonging to an open edge of  $\omega_{\Lambda}$  or an open vertex at the boundary.

For  $(\lambda, \mu) = (\log(p/(1-p)), 0)$  $\mathbb{P}_p(.|N_{cc}^{bc(\Lambda)} = 1) = Q_{\Lambda,\lambda,\mu}^{bc}.$ 

### The finite volume two-parameter model

Definition (Finite volume two-parameter model)

 $(\lambda,\mu)\in\mathbb{R}^2,\,\Lambda\subset\mathbb{Z}^d$  bounded and "bc" a boundary condition,

$$Q_{\Lambda,\lambda,\mu}^{bc}(\omega_{\Lambda}) := \frac{1}{Z_{\Lambda}^{bc}(\lambda,\mu)} \mathrm{I\!I}_{\{N_{cc}^{bc}(\Lambda)}(\omega_{\Lambda})=1\}} e^{\lambda N_{\Lambda}(\omega_{\Lambda})} e^{\mu \partial N_{\Lambda}^{bc}(\omega_{\Lambda})},$$

 $Z_{\Lambda}^{bc}(\lambda,\mu)$  the partition function.  $N_{\Lambda}(\omega_{\Lambda}) =$  the number of open edges in  $\omega_{\Lambda}$ .  $\partial N_{\Lambda}(\omega_{\Lambda}) =$  the number of closed edges with at least one of its extremities belonging to an open edge of  $\omega_{\Lambda}$  or an open vertex at the boundary.

For  $(\lambda, \mu) = (\log(p/(1-p)), 0)$   $\mathbb{P}_p(.|N_{cc}^{bc(\Lambda)} = 1) = Q_{\Lambda,\lambda,\mu}^{bc}$ . For  $p \in (0, 1)$ ,  $\mathcal{G}(p) = \mathcal{G}^2(\log(p/(1-p)), 0)$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Phase transition

### Definition

For 
$$(\lambda, \mu) \in \mathbb{R}^2$$
,  $\mathcal{P}(\lambda, \mu) = \lim_{n \to \infty} \frac{\log(Z_n^{\operatorname{wired}}(\lambda, \mu))}{\#\mathcal{E}_n}$ .  
 $\lambda^*(\mu) = \sup \left\{ \lambda \in \mathbb{R}, \mathcal{P}(\lambda, \mu) = 0 \right\}.$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

# Phase transition

### Definition

For 
$$(\lambda, \mu) \in \mathbb{R}^2$$
,  $\mathcal{P}(\lambda, \mu) = \lim_{n \to \infty} \frac{\log(Z_n^{\text{wired}}(\lambda, \mu))}{\#\mathcal{E}_n}$ 

$$\lambda^*(\mu) = \sup \Big\{ \lambda \in \mathbb{R}, \mathcal{P}(\lambda, \mu) = 0 \Big\}.$$

### Theorem

In any dimension  $d \geq 2$  and for all  $(\lambda, \mu) \in \mathbb{R}^2$ 

- if  $\lambda > \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) \neq \emptyset$ .
- if  $\lambda < \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) = \emptyset$ .

# Phase transition

### Definition

For 
$$(\lambda, \mu) \in \mathbb{R}^2$$
,  $\mathcal{P}(\lambda, \mu) = \lim_{n \to \infty} \frac{\log(Z_n^{\text{wired}}(\lambda, \mu))}{\#\mathcal{E}_n}$ 

$$\lambda^*(\mu) = \sup \Big\{ \lambda \in \mathbb{R}, \mathcal{P}(\lambda, \mu) = 0 \Big\}.$$

### Theorem

In any dimension  $d \geq 2$  and for all  $(\lambda, \mu) \in \mathbb{R}^2$ 

- if  $\lambda > \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) \neq \emptyset$ .
- if  $\lambda < \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) = \emptyset$ .

$$Z_n^{\text{wired}}(\lambda,\mu) = \sum_{\omega_{\Lambda_n}} \mathrm{I\!I}_{\{N_{cc}^{\text{wired}}(\omega_{\Lambda_n})=1\}} e^{\lambda N(\omega_{\Lambda_n})} e^{\mu \partial N_{\Lambda_n}^{\text{wired}}(\omega_{\Lambda_n})} \ge C^{n^{d-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

# Phase transition

### Definition

For 
$$(\lambda, \mu) \in \mathbb{R}^2$$
,  $\mathcal{P}(\lambda, \mu) = \lim_{n \to \infty} \frac{\log(Z_n^{\text{wired}}(\lambda, \mu))}{\#\mathcal{E}_n}$ 

$$\lambda^*(\mu) = \sup \Big\{ \lambda \in \mathbb{R}, \mathcal{P}(\lambda, \mu) = 0 \Big\}.$$

### Theorem

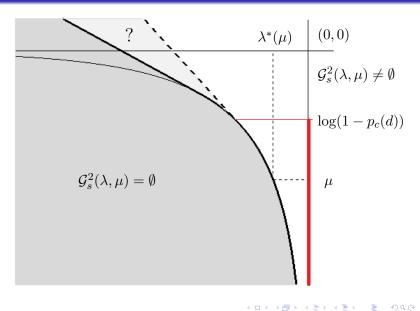
In any dimension  $d \geq 2$  and for all  $(\lambda, \mu) \in \mathbb{R}^2$ 

- if  $\lambda > \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) \neq \emptyset$ .
- if  $\lambda < \lambda^*(\mu)$  then  $\mathcal{G}_s^2(\lambda, \mu) = \emptyset$ .

$$\begin{split} Z_n^{\text{wired}}(\lambda,\mu) &= \sum_{\omega_{\Lambda_n}} \mathrm{I\!I}_{\{N_{cc}^{\text{wired}}(\omega_{\Lambda_n})=1\}} e^{\lambda N(\omega_{\Lambda_n})} e^{\mu \partial N_{\Lambda_n}^{\text{wired}}(\omega_{\Lambda_n})} \geq C^{n^{d-1}}.\\ &\frac{\partial \log(Z_n^{\text{wired}}(\lambda,\mu))}{\partial \lambda} = E_{Q_{\Lambda_n}^{\text{wired}}(\lambda,\mu)} (N_{\Lambda_n}). \end{split}$$

#### Sketches of proofs

# Semi-explicit phase diagram



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Details for the explicit part

### Proposition

For any 
$$p \in (0,1)$$
,  $\mathcal{P}\Big(\log(p), \log(1-p)\Big) = 0$ .  
In particular,  $\lambda^*(\mu) \ge \log(1-e^{\mu})$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Details for the explicit part

### Proposition

For any 
$$p \in (0,1)$$
,  $\mathcal{P}\Big(\log(p), \log(1-p)\Big) = 0$ .  
In particular,  $\lambda^*(\mu) \ge \log(1-e^{\mu})$ .

 $\mathbb{P}_p^{\infty}$  = the distribution of the infinite open cluster in the Benoulli bond percolation  $\mathbb{P}_p$ .

# Details for the explicit part

### Proposition

For any 
$$p \in (0,1)$$
,  $\mathcal{P}\Big(\log(p), \log(1-p)\Big) = 0$ .  
In particular,  $\lambda^*(\mu) \ge \log(1-e^{\mu})$ .

 $\mathbb{P}_p^{\infty}$  = the distribution of the infinite open cluster in the Benoulli bond percolation  $\mathbb{P}_p$ .

### Proposition

For 
$$p > p_c(d)$$
,  $\mathbb{P}_p^{\infty} \in \mathcal{G}_s^2\Big(\log(p), \log(1-p)\Big)$ .  
In particular,  $\lambda^*(\mu) \le \log(1-e^{\mu})$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

# Details for the explicit part

### Proposition

For any 
$$p \in (0,1)$$
,  $\mathcal{P}\Big(\log(p), \log(1-p)\Big) = 0$ .  
In particular,  $\lambda^*(\mu) \ge \log(1-e^{\mu})$ .

 $\mathbb{P}_p^{\infty}$  = the distribution of the infinite open cluster in the Benoulli bond percolation  $\mathbb{P}_p$ .

### Proposition

For 
$$p > p_c(d)$$
,  $\mathbb{P}_p^{\infty} \in \mathcal{G}_s^2\Big(\log(p), \log(1-p)\Big)$ .  
In particular,  $\lambda^*(\mu) \le \log(1-e^{\mu})$ .

### Corollary

For  $\mu \leq \log(1 - p_c(d))$ 

 $\lambda^*(\mu) = \log(1 - e^{\mu}).$ 

# Proof of lower and upper bounds.

Upper-bound : Convexity



▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

# Proof of lower and upper bounds.

### Upper-bound : Convexity Lower-bound :

### Lemma

There exists a constanct C > 0 such that for each  $n \ge 1$ 

$$\frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \mu} \leq (2d-2) \frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \lambda} + C n^{d-1}.$$

# Proof of lower and upper bounds.

### Upper-bound : Convexity Lower-bound :

### Lemma

There exists a constanct C > 0 such that for each  $n \ge 1$ 

$$\frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \mu} \leq (2d-2) \frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \lambda} + Cn^{d-1}.$$

$$\frac{d \log(Z_n^{\text{wired}}(\lambda,\mu))}{d\lambda} = E_{Q_{\Lambda_n}^{\text{wired}}(\lambda,\mu)}(N_{\Lambda_n}).$$
$$\frac{d \log(Z_n^{\text{wired}}(\lambda,\mu))}{d\mu} = E_{Q_{\Lambda_n}^{\text{wired}}(\lambda,\mu)}(\partial N_{\Lambda_n}^{\text{wired}}).$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

# Proof of lower and upper bounds.

### Upper-bound : Convexity Lower-bound :

### Lemma

There exists a constanct C > 0 such that for each  $n \ge 1$ 

$$\frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \mu} \leq (2d-2) \frac{\partial \log(Z_n^{wired}(\lambda,\mu))}{\partial \lambda} + Cn^{d-1}.$$

$$\frac{d \log(Z_n^{\text{wired}}(\lambda,\mu))}{d\lambda} = E_{Q_{\Lambda_n}^{\text{wired}}(\lambda,\mu)}(N_{\Lambda_n}).$$
$$\frac{d \log(Z_n^{\text{wired}}(\lambda,\mu))}{d\mu} = E_{Q_{\Lambda_n}^{\text{wired}}(\lambda,\mu)}(\partial N_{\Lambda_n}^{\text{wired}}).$$

Isoperimetric inequality :

$$\partial N \leq (2d-2)N + 2d.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Thank you for your attention