Fully-connected bond percolation on Z?

David Dereudre,
Laboratoire de Mathématiques Paul Painlevé,
University of Lille, France

Rencontres de Probabilités, Rouen, November 2022



© Model and motivations

© Results

© Sketches of proofs



Model and motivations

[ Jelelele]e]

@ Model and motivations



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.
Q=1{0,1}¢, Q= {0,1}



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.
Q={0,1}¢, Qp={0,1}%2
Py = B(p)®¢, Py = B(p)***, 0<p<1



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.
Q=1{0,1}¢, Q= {0,1}

P, = B(p)¥, Py = B(p)®*», 0<p<1
Ap={-n,...,n} n>1



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.

Q=1{0,1}¢, Q= {0,1}

P, = B(p)¥, Py = B(p)®*», 0<p<1

Ap={-n,...,n} n>1

N.. = number of open connected components of edges (bounded
or not),

A={N,=1}



Model and motivations

Notations

£ = {edges of Z1}, & = {edges of A}, A C Z¢.

Q=1{0,1}¢, Q= {0,1}

P, = B(p)¥, Py = B(p)®*», 0<p<1

Ap={-n,...,n} n>1

N.. = number of open connected components of edges (bounded
or not),

A={N,=1}

bC(A) = number of open connected components of edges in A

Wlth boundary condition "bc",
Abc( { Nbc(A }

"he'"=wired, free, periodic, left-right crossing, etc...
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Fully-connected bond model

Formally, we want to give a sense to
Pp(-‘Ncc =1),

but Pp(Nee = 1) = 0.
o (Thermodynamic approach) Pp(.|Ne. = 1) is defined as the
limit of finite volume models.
o (DLR approach) Pp(.|Nee = 1) is defined via implicit local
conditional probability measures (specifications).
Both approaches are standard in statistical physics : Gibbs

measures, Ising model, FK-percoation, etc..
Issues : Existence, uniqueness, etc...
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Definition (Thermodynamic approach)

A fully-connected bond percolation measure is any accumulation
point (for the weak convergence of measures) of sequences of
probability measures

(B (vt = 1)

for any choice of boundary conditions bc(Ay)p>1-
L(p) denotes the space of such accumulation points. Ls(p) is for
elements of L(p) which are stationary in space.

Since ) is a compact set, £(p) is not empty. Ls(p) is not empty
as well, using "bc=periodic".
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Definition (DLR approach)
A fully-connected bond percolation measure is any probability
measure P on  such that P(A) = P(Ng = 1) =1 and for all
bounded A € Z¢ and P-a.e. w
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Dobrushin-Lanford-Ruelle approach

Definition (DLR approach)
A fully-connected bond percolation measure is any probability

measure P on  such that P(A) = P(Ng = 1) =1 and for all
bounded A C Z% and P-a.e. w

1
Pdwp|wee) = ——14(w PA dwp).
(o) = 7S LA )
G(p) denotes the space of such probability measures. Gs(p) is for
elements of G(p) which are stationary in space.

G(p) could be empty!
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Random Cluster Model (Widom Rowlinson) with "q=0" :
Formally
P~ gNeeP,.

No monotonicity. No FKG inequality.

o Connection with the incipient cluster : For p = p,
P, (.0 <> o0).

Percolation at criticality.

Weighted random connected graph : For p = 1/2,
P(.|Ne. = 1) samples uniformly a connected graph in Z<.

e Connection with the conjecture "0(p.) = 0".
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Topological results

For any P € Ls(p),
i) P(there exists a bounded connected component) =0
i) P(Nee =0 or 1) = 1.

For all P € G(p), by definition P(N.. =1) = 1.
Ideas of proof for i) :
o If there exists a bounded connected component = It is not
unique.

o Contradiction with P = lim,_ye PAn ([ Nec®) = 1)
Ideas of proof for i) : Finite energy property and Burton-Keane
arguments.

The event { N.. = 0} is possible for small p (microscopic
connected component).
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A phase transition result

For any d > 2, there exists a threshold 0 < p*(d) < 1 such that

o if p<p*(d), Gs(p) =0 and Ls(p) = {dpe }-
e if p > p*(d), there exists P in € L(p) N Gs(p) with
P(A) =1.

No monotonocity, no FKG innequality : The existence of the
threshold is not obvious.

Gs(p) C Ls(p) and for all P € L4(p) such that P(A) > 0 then
P(4) € Gu(p).

For p > p*(d), |Gs(p)| = 17 It is mainly a conjecture. True for
d=2and p > 1/2 (details in 3 slides!)
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Simulation

Birth-death Metropolis Hastings algorithm with free boundary
condition on a 2D grid 30 = 30.

o At the middle, a simulation with p = 0.2.

@ On the left, the number of open edges during the run for
p=0.2.

@ On the right, the number of open edges during the run for
p = 0.15.
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Bounds for p*(d)

pe(d) = the standard bond percolation threshold on Z<.

For any d > 2

A5 (d) Az (d)

e \min e mas

1+ eMmin(d) — spd) < 1 4+ eMnao(d)’
with

)‘:nm(d) = _lOg(Qd — 1) . (Qd _ 2) log (;3 : i) 7
(d)

* 1- Pe
Aaz(d) = log(pe(d)) + od) log(1 — pc(d)),

For d =2, p.(2) = 1/2 and so 0.128 < p*(2) < 0.202.
For d = 3, p.(3) ~ 0.25 and so 0.075 < p*(3) < 0.099.
When d — 00, pe(d) ~ 1/(2d) and so p*(d) ~ e~ p.(d).
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For d =2 and p > 1/2 there ezists a stationary probability
measure P such that

G(p) = Gs(p) = {P}.

Moreover for any Q € L(p), there exists o € [0, 1] such that
Q =aP +(1—a)dy.




ivations Results

An uniqueness result

For d =2 and p > 1/2 there ezists a stationary probability
measure P such that

G(p) = Gs(p) = {P}.

Moreover for any Q € L(p), there exists o € [0, 1] such that
Q =aP +(1—a)dy.

Let P € G(p) U L(p). Let E C € be a finite subset of edges and
w € A an allowed configuration. Let e be an edge in E\E. We
assume that there exists an open edge f in Wg having a common
vertes with e. Then

P(e is open |wg) > p.
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The main results

For any d > 2, there exists a threshold 0 < p*(d) < 1 such that
e if p> p*(d), there exists P in € L4(p) N Gs(p) with
P(A) =1.
o if p<p*(d), Gs(p) = 0 and Ls(p) = {Jpe }-

eMmin(d) ermaz(d)

=rd S

.

1 4+ ermin(d)
with

Arin(d) = —log(2d — 1) + (2d — 2) log <2d — 2) 7

2d — 1
1 —pe(d)

Anaa(d) = log(pe(d)) + — 5

log(1 — pe(d)),

A
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The finite volume two-parameter model

Definition (Finite volume two-parameter model)

(\ 1) € R2, A € Z% bounded and ”bc” a boundary condition,

— 1 AN ( ) BNbc( )
Qhnn(n) = Zrer s te® ey R,

Z8¢(\, u) the partition function.

Nj(wp) = the number of open edges in wy.

ONj(wp) = the number of closed edges with at least one of its
extremities belonging to an open edge of wp or an open vertex
at the boundary.
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Definition (Finite volume two-parameter model)
(\ 1) € R2, A € Z% bounded and ”bc” a boundary condition,

— 1 AN ( ) BNbc( )
Qhnn(n) = Zrer s te® ey R,

Z8¢(\, u) the partition function.

Nj(wp) = the number of open edges in wy.

ONj(wp) = the number of closed edges with at least one of its
extremities belonging to an open edge of wp or an open vertex
at the boundary.

For (A, ) = (log(p/(1 = p)),0)
Bp(cINee™ = 1) = Q¢ .
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The finite volume two-parameter model

Definition (Finite volume two-parameter model)

(\ 1) € R2, A € Z% bounded and ”bc” a boundary condition,

— 1 AN ( ) BNbc( )
Qhnn(n) = Zrer s te® ey R,

Z8¢(\, u) the partition function.

Nj(wp) = the number of open edges in wy.

ONj(wp) = the number of closed edges with at least one of its
extremities belonging to an open edge of wp or an open vertex
at the boundary.

For (A, i) = (log(p/(1 - p)),0)
PP(|N35(A) ) QA A

For p € (0,1), G(p) = G*(log(p/(1 —p)),0).
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Phase transition

For (A, ) € RQ? P(A, p) = limy, 0 %M.

En

A*(p) = sup {)\ eER, P\ p) = 0}.

In any dimension d > 2 and for all (\, ) € R?
o if A > N*(u) then G2(\, ) # 0.
o if A < N (u) then G2(\, ) = 0.

.

\.

d—1

Zgired()\’,u) = Z ]I{Ngvcired(w/\n):l}eAN(wA")euaNX:Lmd(“’An) > "

WA R,

9log(Z3 (A, 1))
a)\ = EQXinred(/\“u’) (NAH).
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Details for the explicit part

For any p € (0,1), P(log(p), log(1 — p)) =0.
In particular, \*(p) > log(1 — et).

Pp° = the distribution of the infinite open cluster in the
Benoulli bond percolation P,.

For p > pc(d), Pr € gg(log(p), log(1 —p)).
In particular, \*(pn) < log(1 — e*).

For pp <log(1 — p.(d))

A"(p) = log(1 —e”).

.

.

™ = - =
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Proof of lower and upper bounds.

Upper-bound : Convexity
Lower-bound :

There exists a constanct C' > 0 such that for each n > 1

dlog(Zyred(X, 1))
op

dlog(Zyired(X, p))

d—1
E3 + Cn% "

< (2d - 2)
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Proof of lower and upper bounds.

Upper-bound : Convexity
Lower-bound :

There exists a constanct C' > 0 such that for each n > 1

0log(Z;™ 4\, 1)) 0log(Z;" 4\, 1))

< (2d -2 =1
o <( ) B\ +Cn
dlog(Zy™*4 (A, )
iy = Eqyirea(p, ) (NVA,)-

dlog(Zyd (X, 1))
dp

= EQ};\vi;ed ()\,,U,) (aNX/;ILI‘ed) .

Isoperimetric inequality :

ON < (2d —2)N + 2d.
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Thank you for your attention
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