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Chapter 1
Asymptotic methods for random tessellations

Pierre Calka

Abstract In this chapter, we are interested in two classical examples of random tes-
sellations which are the Poisson hyperplane tessellation and Poisson-Voronoi tessel-
lation. The first section introduces the main definitions, the application of an ergodic
theorem and the construction of the so-called typical cell as the natural object for a
statistical study of the tessellation. We investigate a few asymptotic properties of the
typical cell by estimating the distribution tails of some of its geometric characteris-
tics (inradius, volume, fundamental frequency). In the second section, we focus on
the particular situation where the inradius of the typical cell is large. We start with
precise distributional properties of the circumscribed radius that we use afterwards
to provide quantitative information about the closeness of the cell to a ball. We con-
clude with limit theorems for the number of hyperfaces when the inradius goes to
infinity.

1.1 Random tessellations - Distribution estimates

This section is devoted to the introduction of the main notions related to random
tessellations and to some examples of distribution tail estimates. In the first subsec-
tion, we define the two main examples of random tessellations, namely the Poisson
hyperplane tessellation and the Poisson-Voronoi tessellation. The next subsection is
restricted to the stationary tessellations for which it is possible to construct a statis-
tical object called typical cell C via several techniques (ergodicity, Palm measures,
explicit realizations). Having isolated the cell C, i.e. a random polyhedron which
represents a cell „picked at random“ in the whole tessellation, we can investigate its
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geometric characteristics. In the last subsection, we present techniques for estimat-
ing their distribution tails.

This section does not intend to provide the most general definitions and results. It
rather aims at emphasizing some basic examples. Quite often, we shall consider the
particular case of the plane. A more exhaustive study of random tessellations can be
found in the books [?], [?], [?] and [?] as well as the surveys [?] and [?].

1.1.1 Definitions

Definition 1.1. (Convex tessellation) A convex tessellation is a locally finite collec-
tion {Ξn}n∈N of convex polyhedra of Rd such that ∪n∈NΞn = Rd and Ξn and Ξm
have disjoint interiors if n 6= m. Each Ξn is called a cell of the tessellation.

The set T of convex tessellations is endowed with the σ -algebra generated by the
sets

{{Ξn}n∈N : [∪n∈N∂Ξn]∩K = /0}

where K is any compact set of Rd .

Definition 1.2. (Random convex tessellation) A random convex tessellation is a ran-
dom variable with values in T.

Remark 1.1. We can equivalently identify a tessellation {Ξn}n∈N with its skeleton
∪n∈N∂Ξn which is a random closed set of Rd .

Definition 1.3. (Stationarity, isotropy) A random convex tessellation is stationary
(resp. isotropic) if its skeleton is a translation-invariant (resp. rotation-invariant) ran-
dom closed set.

We describe below the two classical constructions of random convex tessellations,
namely the hyperplane tessellation and the Voronoi tessellation. In the rest of the
section, we shall only consider these two particular examples even though many
more can be found in the literature (Laguerre tessellations [?], iterated tessellations
[?], Johnson-Mehl tessellations [?], crack STIT tessellations [?], etc.).

Definition 1.4. (Hyperplane tessellation) Let X be a point process which does not
contain the origin almost surely. For every x ∈ X , we define its polar hyperplane as
Hx = {y ∈ Rd : 〈y− x,x〉 = 0}. The associated hyperplane tessellation is the set of
the closure of all connected components of Rd \∪x∈X Hx.

We focus on the particular case where X is a Poisson point process. The next propo-
sition provides criteria for stationarity and isotropy.

Proposition 1.1. (Stationarity of Poisson hyperplane tessellations) Let X be a Pois-
son point process of intensity measure µ .

The associated hyperplane tessellation is stationary iff µ can be written in func-
tion of spherical coordinates (u, t) ∈ Sd−1×R+ as



1 Asymptotic methods for random tessellations 3

µ(du,dt) = λ dt ϕ(du) (1.1)

where ϕ is a probability measure on Sd−1.
It is additionally isotropic iff ϕ is the uniform measure σd−1 on Sd−1.

A so-called Poisson hyperplane tessellation (Poisson line tessellation in dimension
two) is a hyperplane tessellation generated by a Poisson point process but it is quite
often implied in the literature that it is also stationary and isotropic. Up to rescaling,
we will assume in the rest of the chapter that its intensity λ is equal to one.

Exercise 1.1. Verify that a stationary and isotropic Poisson hyperplane tessella-
tion satisfies the following property with probability one: for 0 ≤ k ≤ d, each k-
dimensional face of a cell is the intersection of exactly (d − k) hyperplanes Hx,
x ∈ X , and is included in exactly 2d−k cells.

This tessellation has been introduced for studying trajectories in bubble chambers
by S. A. Goudsmit in [?] in 1945. It has been used in numerous applied works
since then. For instance, R. E. Miles describes it as a possible model for the fibrous
structure of sheets of paper [?, ?].

Definition 1.5. (Voronoi tessellation) Let X be a point process. For every x ∈ X , we
define the cell associated with x as

C(x|X) = {y ∈ Rd : ‖y− x‖ ≤ ‖y− x′‖ ∀x′ ∈ X ,x′ 6= x}.

The associated Voronoi tessellation is the set {C(x|X)}x∈X .

(a) (b)

Fig. 1.1 Realizations of the isotropic and stationary Poisson line tessellation (a) and the planar
stationary Poisson-Voronoi tessellation (b) in the unit square

Proposition 1.2. (Stationarity of Voronoi tessellations) The Voronoi tessellation as-
sociated with a point process X is stationary if and only if X is stationary.

A so-called Poisson-Voronoi tessellation is a Voronoi tessellation generated by a
homogeneous Poisson point process. Up to rescaling, we will assume in the rest of
the chapter that its intensity is equal to one.
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Exercise 1.2. Show that a Poisson-Voronoi tessellation is normal with probability
one, i.e. every k-dimensional face of a cell, 0≤ k≤ d, is included in exactly d−k+1
cells.

This tessellation has been introduced in a deterministic context by R. Descartes
in 1644 as a description of the structure of the universe (see also the more recent
work [?]). It has been developed since then for many applications, e.g. in telecom-
munications [?, ?], image analysis [?] and molecular biology [?].

We face the whole population of cells in a random tessellation. How to study
them? One can provide two possible answers:

1. either you isolate one particular cell,
2. or you try conversely to do a statistical study over all the cells by taking means.

An easy way to fix a cell consists in considering the one containing the origin.

Definition 1.6. (Zero-cell) If o 6∈ ∪i∈N∂Ci a.s., then the zero-cell (denoted by C0)
is the cell containing the origin. In the case of an isotropic and stationary Poisson
hyperplane tessellation, it is called the Crofton cell.

The second point above will be developed in the next section. It is intuitively clear
that it will be possible to show the convergence of means over all cells only if the
tessellation is translation-invariant.

1.1.2 Empirical means and typical cell

This section is restricted to the stationary Poisson-Voronoi and Poisson hyperplane
tessellations. We aim at taking means of certain characteristics over all the cells of
the tessellation. But of course, we have to restrict the mean to a finite number of
these cells due to technical reasons. A natural idea is to consider those contained
in or intersecting a fixed window, e.g. the ball BR(o), then take the limit when the
size of the window goes to infinity. Such an argument requires the use of an ergodic
theorem and the first part of the section will be devoted to prepare and show an
ergodic result specialized to our set-up. In the second part of the section, we use it
to define the notion of the typical cell and we investigate several equivalent ways of
defining it.

1.1.2.1 Ergodic theorem for tessellations

The first step is to realize the measurable space (Ω ,F) as (N,N ) where N is the
set of locally finite sets of Rd and N is the σ -algebra generated by the functions
#(· ∩A), where A is any bounded Borel set. We define the shift Sa : N −→ N as
the operation over the points needed to translate the tessellation by a vector a ∈
Rd . In other words, for every locally finite set {xn}n∈N, the underlying tessellation
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generated by Sa({xn}n∈N) is the translate by a of the initial tessellation generated
by {xn}n∈N.

Proposition 1.3. (Explicit shifts) For a Voronoi tessellation, Sa is the function which
associates to every locally finite set {xn}n∈N ∈ N the set {xn +a}n∈N.

For a hyperplane tessellation, Sa is the function which associates to every locally
finite set {xn}n∈N ∈ N (which does not contain the origin) the set
{xn + 〈xn/‖xn‖,a〉xn/‖xn‖}n∈N.

Proof. In the Voronoi case, the translation of the skeleton is equivalent with the
translation of the nuclei which generate the tessellation.

In the case of a hyperplane tessellation, the translation of a fixed hyperplane
preserves its orientation but modifies the distance from the origin. To prove the
proposition, it suffices to notice that a polar hyperplane Hx is sent by a translation
of vector a to Hy with y = x+ 〈u,a〉u where u = x

‖x‖ .

Proposition 1.4. (Ergodicity of the shifts) In both cases, Sa preserves the measure
P (i.e. the distribution of the Poisson point process) and is ergodic.

Sketch of proof. Saying that Sa preserves the measure is another way of expressing
the stationarity of the tessellation.

To show ergodicity, it is sufficient to prove that {Sa : a ∈ Rd} is mixing (cf.
Definition 4.6), i.e. that for any bounded Borel sets A,B and k, l ∈ N, we have as
|a| → ∞

P(#(X ∩A) = k; #(Sa(X)∩B) = l)→ P(#(X ∩A) = k)P(#(X ∩B) = l). (1.2)

In the Voronoi case, for |a| large enough, the two events {#(Φ ∩ A) = k} and
{#(Sa(Φ)∩B) = l} are independent since A∩ (B− a) = /0. Consequently, the two
sides of (??) are equal.

In the hyperplane case, the same occurs as soon as B is included in a set

{x ∈ Rd : |〈x,a〉| ≥ ε‖x‖‖a‖}

for some ε > 0. Otherwise, we approximate B with a sequence of Borel subsets
which satisfy this condition.
In the next theorem, the main application of ergodicity for tessellations is derived.

Theorem 1.1. (Ergodic theorem for tessellations) Let NR be the number of cells
which are included in the ball BR(o). Let h : Kconv→ R be a measurable, bounded
and translation-invariant function over the set Kconv of convex and compact sets of
Rd . Then almost surely,

lim
R→∞

1
NR

∑
C⊂BR(o)

h(C) =
1

E(νd(C0)−1)
E
(

h(C0)
νd(C0)

)
. (1.3)

Proof. The proof is done in three steps: use of Wiener’s continuous ergodic the-
orem, then rewriting the mean of h over cells included in BR(o) as the sum of an



6 Pierre Calka

integral and the rest, finally proving that the rest is negligible.
Step 1. The main ingredient is Wiener’s ergodic theorem applied to the ergodic shifts
{Sx : x ∈ Rd}. We have almost surely

lim
R→∞

1
νd(BR(o))

∫
BR(o)

h(C0(S−xω))
νd(C0(S−xω))

dx = E
(

h(C0)
νd(C0)

)
.

This can be roughly interpreted by saying that the mean in space (in the left-hand
side) for a fixed sample ω is asymptotically close to the mean with respect to the
probability law P.
Step 2. We have for almost every ω ∈Ω that

1
νd(BR(o))

∫
BR(o)

h(C0(S−xω))
νd(C0(S−xω))

dx =
1

νd(BR(o)) ∑
C⊂BR(o)

h(C)+Rest(R) (1.4)

where

Rest(R) =
1

νd(BR(o)) ∑
C:C∩∂BR(o)6= /0

νd(C∩BR(o))
νd(C)

h(C).

In particular, if we define N′R as the number of cells which intersect the boundary of
the ball BR(o), then there is a positive constant K depending only on h such that

|Rest(R)| ≤ K
N′R

νd(BR(o))
.

We observe that in order to get (??), it is enough to prove that the rest goes to 0.
Indeed, when h≡ 1, the equality (??) will provide that

NR

νd(BR(o))
=

1
νd(BR(o))

∫
BR(o)

1
νd(C0(S−xω))

dx−Rest(R)→ E(νd(C0)−1).

Step 3. We have to show that Rest(R) goes to 0, that is what R. Cowan calls the
insignificance of edge effects [?, ?]. In the sequel, we use his argument to show it and
for sake of simplicity, we only consider the particular case of the two-dimensional
Voronoi tessellation. Nevertheless, the method can be extended to any dimension by
showing by induction that the number of k-faces hitting the boundary of the ball is
negligible for every 0≤ k ≤ d.

Here, in the two-dimensional case, let us fix ε > 0 and consider R > ε . Let us
denote by VR the number of vertices of the tessellation in BR(o) and by LR the sum
of the edge lengths inside BR(o). A direct use of Wiener’s theorem applied to the
functionals Vε and Lε on the sets BR−ε(o) and BR+ε(o) shows that the quantities
VR/νd(BR(o)) and LR/νd(BR(o)) tend almost surely to constants.

We recall that a Voronoi tessellation is normal which means in particular that a
fixed edge (resp. vertex) is contained in exactly two (resp. three) cells.

If a cell intersects the boundary of BR(o), then we are in one of the three follow-
ing cases:
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1. no edge of the cell intersects BR+ε(o)\BR(o),
2. some edges but no vertex of the cell intersect BR+ε(o)\BR(o),
3. at least one vertex of the cell is in BR+ε(o)\BR(o).

The first case is satisfied by at most one cell, the second case by at most 2
ε
(LR+ε −

LR) cells and the last one by at most 3(SR+ε − SR). Consequently, we get when
R→ ∞

N′R
V2(BR(o))

≤ 1
V2(BR(o))

+2
LR+ε −LR

V2(BR(o))
+3

VR+ε −VR

V2(BR(o))
−→ 0,

which completes the proof.

Exercise 1.3. Show a similar result for a Johnson-Mehl tessellation (defined in [?]).

Remark 1.2. The statement of Theorem ?? still holds if the condition „h bounded“ is
replaced with E(|h(C0)|p) < ∞ for a fixed p > 1 (see e.g. [?, Lemma 4]).

Remark 1.3. When using this ergodic theorem for tessellations in practice, it is
needed to have also an associated central limit theorem. Such second-order results
have been proved for some particular functionals in the Voronoi case [?] and for the
Poisson line tessellation [?] in dimension two. Recently, a more general central limit
result for hyperplane tessellations has been derived from the use of U-statistics in
[?].

The limit in the convergence (??) suggests the next definition for the typical cell,
i.e. a cell which represents an „average individual“ from the whole population.

Definition 1.7. (Typical cell 1) The typical cell C is defined as a random variable
with values in Kconv and such that for every translation-invariant measurable and
bounded function h :Kconv→ R, we have

E(h(C)) =
1

E(νd(C0)−1)
E
(

h(C0)
νd(C0)

)
.

Remark 1.4. Taking for h any indicator function of geometric events (e.g. {the cell
is a triangle}, {the area of the cell is greater than 2}, etc.), we can define via the
equality above the distribution of any geometric characteristic of the typical cell.

Remark 1.5. One should keep in mind that the typical cell C is not distributed as
the zero-cell C0. Indeed, the distribution of C has a density proportional to ν

−1
2 with

respect to the distribution of C0. In particular, since it has to contain the origin, C0
is larger than C. This is a d-dimensional generalization of the famous bus paradox
in renewal theory which states that at your arrival at a bus stop, the time interval
between the last bus you missed and the first bus you’ll get is actually bigger than
the typical waiting time between two buses. Moreover, it has been proved in the case
of a Poisson hyperplane tessellation that C and C0 can be coupled in such a way that
C ⊂C0 almost surely (see [?] and Proposition ?? below).
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Looking at Definition ??, we observe that it requires to know either the distribution
of C0 or the limit of the ergodic means in order to get the typical cell. The next
definition is an alternative way of seeing the typical cell without the use of any
convergence result. It is based on the theory of Palm measures [?, ?]. For sake of
simplicity, it is only written in the case of the Poisson-Voronoi tessellation but it can
be extended easily to any stationary Poisson hyperplane tessellation.

Definition 1.8. (Typical cell 2 (Poisson-Voronoi tessellation)) The typical cell C is
defined as a random variable with values in Kconv such that for every bounded and
measurable function h : Kconv→ R and every Borel set B with 0 < νd(B) < ∞, we
have

E(h(C)) =
1

νd(B)
E

(
∑

x∈B∩X
h(C(x|X)− x)

)
. (1.5)

This second definition is still an intermediary and rather unsatisfying one but via
the use of Slivnyak-Mecke formula for Poisson point processes (see Theorem ??),
it provides a way of realizing the typical cell C.

Exercise 1.4. Verify that the relation (??) does not depend on B.

Proposition 1.5. (Typical cell 3 (Poisson-Voronoi tessellation)) The typical cell C is
equal in distribution to the set C(o) = C(o|X ∪{o}), i.e. the Voronoi cell associated
with a nucleus at the origin when this nucleus is added to the original Poisson point
process.

(a) (b)

Fig. 1.2 Realizations of the typical cells of the stationary and isotropic Poisson line tessellation
(a) and the homogeneous planar Poisson-Voronoi tessellation (b)

Remark 1.6. The cell C(o) defined above is not a particular cell isolated from the
original tessellation. It is a cell extracted from a different Voronoi tessellation but
which has the right properties of a cell „picked at random“ in the original tessella-
tion. For any x ∈ X , we define the bisecting hyperplane of [o,x] as the hyperplane
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containing the midpoint x/2 and orthogonal to x. Since C(o) is bounded by por-
tions of bisecting hyperplanes of segments [o,x], x ∈ X , we remark that C(o) can be
alternatively seen as the zero-cell of a (non-stationary) Poisson hyperplane tessella-
tion associated with the homogeneous Poisson point process up to a multiplicative
constant.

The Poisson-Voronoi tessellation is not the only tessellation such that the associated
typical cell can be realized in an elementary way. There exist indeed several ways
of realizing the typical cell of a stationary and isotropic Poisson hyperplane tessel-
lation. We present below one of the possible constructions of C, which offers the
advantage of satisfying C ⊂C0 almost surely. It is based on a work [?] which is is an
extension in any dimension of an original idea in dimension two due to R. E. Miles
[?].

Proposition 1.6. (Typical cell 3 (Poisson hyperplane tessellation)) The radius Rm of
the largest ball included in the typical cell C is an exponential variable of parameter
the area of the unit sphere. Moreover, conditionally on Rm, the typical cell C is equal
in distribution to the intersection of the two independent following random sets:
(i) a random simplex with inscribed ball BRm(o) such that the vector (u0, . . . ,ud) of
the d + 1 normal unit-vectors is independent of Rm and has a density proportional
to the volume of the simplex spanned by u0, . . . ,ud .
(ii) the zero-cell of an isotropic Poisson hyperplane tessellation outside BRm(o) of
intensity measure µ(du,dt) = 1(BRm(o)c)dt dσd−1(u) (in spherical coordinates).

Exercise 1.5. When d = 2, let us denote by α,β ,γ the angles between u0 and u1, u1
and u2, u2 and u0 respectively. Write the explicit density in (i) in function of α , β

and γ .

Exercise 1.6. We replace each hyperplane Hx from a Poisson hyperplane tessella-
tion by a ε-thickened hyperplane H(ε)

x = {y ∈ Rd : d(y,Hx) ≤ ε} where ε > 0 is
fixed. Show that the distribution of the typical cell remains unchanged, i.e. is the
same as for ε = 0.

We conclude this subsection with a very basic example of calculation of a mean
value: it is well-known that in dimension two, the mean number of vertices of the
typical cell is 4 for an isotropic Poisson line tessellation and 6 for a Poisson-Voronoi
tessellation. We give below a small heuristic justification of this fact: for a Poisson
line tessellation, each vertex is in 4 cells exactly and there are as many cells as
vertices (each vertex is the highest point of exactly one cell) whereas in the Voronoi
case, each vertex is in 3 cells exactly and there are twice more vertices than cells
(each vertex is either the highest point or the lowest point of exactly one cell).

In the next subsection, we estimate the distribution tails of some geometric char-
acteristics of the typical cell.
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1.1.3 Examples of distribution tail estimates

Example 1.1. (Poisson hyperplane tessellation, Crofton cell, inradius) We consider
a stationary and isotropic Poisson hyperplane tessellation, i.e. with an intensity mea-
sure equal to µ(du,dt) = dt dσd−1(u) in spherical coordinates (note that the con-
stant λ appearing in (1.1) is chosen equal to one).

Let us denote by Rm the radius of the largest ball included in the Crofton cell and
centered at the origin. Since it has to be centered at the origin, the ball BRm(o) is not
the real inball of the Crofton cell. Nevertheless, we shall omit that fact and call Rm
the inradius in the rest of the chapter.

For every r > 0, we have

P(Rm ≥ r) = P(X ∩Br(o) = /0)

= exp
{
−
∫ r

0

∫
Sd−1

dt dσd−1(u)
}

= e−dκdr

where κd is the Lebesgue measure of the d-dimensional unit-ball. We can remark
that it is the same distribution as the real inradius of the typical cell, i.e. the radius
of the largest ball included in the typical cell with unfixed center (see [?, ?] and
Proposition ?? above).

This result can be extended by showing that for every deterministic convex set
C containing the origin, the probability P(C ⊂ C0) is equal to exp{− d

2 κdV1(C)}
where V1(C) is the mean width of C. In dimension two, the probability reduces to
exp{−P(C)} where P(C) is the perimeter of C.

Example 1.2. (Poisson-Voronoi tessellation, typical cell, inradius) We consider a
homogeneous Poisson-Voronoi tessellation of intensity one in the rest of the section.

We realize its typical cell as C(o) = C(o|X ∪{o}) (see Proposition ??). We con-
sider the radius Rm of the largest ball included in C(o) and centered at the origin.
We call it inradius with the same abuse of language as in the previous example. The
radius Rm is larger than r iff for every x, ‖x‖ = r, x is in C(o), i.e. Br(x) does not
intersect the Poisson point process X . In other words, for every r > 0, we have

P(Rm ≥ r) = P

X ∩
⋃

x:‖x‖=r

Br(x) = /0


= P(X ∩B2r(o) = /0) = e−2dκdrd

. (1.6)

In general, for a deterministic convex set C containing the origin, we define the
Voronoi flower F(C) =

⋃
x∈C B‖x‖(x). We can show the following equality:

P(C ⊂C(o)) = exp{−νd(F(C))}.

Exercise 1.7. Verify that for any compact subset A of Rd , the Voronoi flowers of A
and of its convex hull coincide.
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Fig. 1.3 Example of the Voronoi flower of a convex polygon

Example 1.3. (Poisson-Voronoi tessellation, typical cell, volume) The next propo-
sition comes from a work due to E. N. Gilbert [?].

Proposition 1.7. (E. N. Gilbert, 1962) For every t > 0, we have

e−2d t ≤ P(νd(C)≥ t)≤ t−1
et−1−1

.

Proof. Lower bound: it suffices to notice that νd(C)≥ νd(BRm(o)) and apply (??).
Upper bound: using Markov’s inequality, we get for every α, t ≥ 0

P(νd(C)≥ t)≤ (eαt −1)−1(E(eανd(C))−1). (1.7)

Let us consider now the quantity f (α) = E
(∫

C(o) eακd‖x‖d dx
)

. On one hand, we
can show by Fubini’s theorem that for every α < 1,

f (α) =
∫

Rd
eακd‖x‖d P(x ∈C(o))dx =

∫
Rd

e(α−1)κd‖x‖d dx =
1

1−α
. (1.8)

On the other hand, when comparing C(o) with the ball centered at the origin and of
same volume, we use an isoperimetric inequality to get a lower bound for the same
quantity:

f (α)≥ E

(∫
B

(νd (C(o))/κd )1/d (o)
eακd‖x‖d dx

)
=

1
α

E(eανd(C)). (1.9)

Combining (??), (??) with (??), we obtain that for every t > 0,

P(νd(C)≥ t)≤ (eαt −1)−1 α

1−α

and it remains to optimize the inequality in α by taking α = t−1
t .

Exercise 1.8. Show the isoperimetric inequality used above.
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Remark 1.7. It has been proved since then (see Theorem ?? and [?]) that the lower
bound provides the right logarithmic equivalent, i.e.

lim
t→∞

1
t

logP(νd(C)≥ t) =−2d .

In other words, distribution tails of the volumes of both the typical cell C and its
inball have an analogous asymptotic behaviour. This is due to D. G. Kendall’s con-
jecture (see the foreword of the book [?]) which was historically written for the
two-dimensional Crofton cell. Indeed, it roughly states that cells with a large vol-
ume must be approximately spherical. After a first proof by I. N. Kovalenko [?], this
conjecture has been rigorously reformulated and extended in many directions by D.
Hug, M. Reitzner and R. Schneider (see Theorems ?? and ?? as well as [?, ?]).

Example 1.4. (Poisson-Voronoi tessellation, typical cell, fundamental frequency in
dimension two) This last more exotic example is motivated by the famous question
due to Kac [?] back in 1966: „Can one hear the shape of a drum?“. In other words,
let us consider the Laplacian equation on C(o) with a Dirichlet condition on the
boundary, that is {

∆ f (x) =−λ f (x), if x ∈C(o),
f (x) = 0, if x ∈ ∂C(o).

It has been proved that the eigenvalues satisfy

0 < λ1 ≤ λ2 ≤ ·· · ≤ λn ≤ ·· ·< ∞.

Is it possible to recover the shape of C(o) by knowing only its spectrum? In partic-
ular, λ1 is called the fundamental frequency of C(o). It is a decreasing function of
the convex set considered. When the volume of the domain is fixed, Faber-Krahn’s
inequality [?] says that it is minimal iff the domain is a ball. In such a case, we have
λ1 = j2

0/r2 where r is the radius of the ball and j0 is the first positive zero of the
Bessel function J0 [?].

The next theorem which comes from a collaboration with A. Goldman [?] pro-
vides an estimate for the distribution function of λ1 in the two-dimensional case.

Theorem 1.2. (Fundamental frequency of the typical Poisson-Voronoi cell) Let µ1
denote the fundamental frequency of the inball of C(o). Then when d = 2, we have

lim
t→0

t · logP(λ1 ≤ t) = lim
t→0

t · logP(µ1 ≤ t) =−4π j2
0.

Remark 1.8. The larger C(o) is, the smaller is λ1. When evaluating the probability
of the event {λ1 ≤ t} for small t, the contribution comes from the largest cells C(o).
Consequently, the fact that the distribution functions for small λ1 and small µ1 have
roughly the same behaviour is a new contribution for justifying D. G. Kendall’s
conjecture.

Remark 1.9. An analogous result holds for the Crofton cell of a Poisson line tessel-
lation in the plane [?].
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Sketch of proof.
Step 1. By a Tauberian argument (see [?], Vol. 2, Ch. 13, pages 442-448), we only
have to investigate the behaviour of the Laplace transform E(e−tλ1) when t goes to
infinity.
Step 2. We get a lower bound by using the monotonicity of the fundamental fre-
quency (λ1 ≤ µ1) and the explicit distribution of µ1 = j2

0/R2
m.

Step 3. In order to get an upper bound, we observe that almost surely

e−tλ1 ≤ ϕ(t) = ∑
n≥1

e−tλn

where ϕ is called the spectral function of C(o). It is known that the spectral function
of a domain is connected to the probability that a two-dimensional Brownian bridge
stays in that domain (see e.g. [?]). More precisely, we denote by W the trajectory of a
standard two-dimensional Brownian bridge between 0 and 1 (i.e. a planar Brownian
motion starting at 0 and conditioned on being at 0 at time 1) and independent from
the point process. We have

ϕ(t) =
1

4πt

∫
C(o)

PW (x+
√

2tW ⊂C(o))dx

where PW denotes the probability with respect to the Brownian bridge W . We then
take the expectation of the equality above with respect to the point process and we
get the Laplace transform of the area of the Voronoi flower of the convex hull of
W . We conclude by using results related to the geometry of the two-dimensional
Brownian bridge [?].

Exercise 1.9. In the case of the Crofton cell, express ϕ(t) in function of the Laplace
transform of the mean width of W .

1.2 Asymptotic results for zero-cells with large inradius

In this section, we shall focus on the example of the Poisson-Voronoi typical cell,
but the reader should keep in mind that the results discussed below can be extended
to the Crofton cell and more generally to zero-cells of certain isotropic hyperplane
tessellations (see [?, Sec. 3]). This section is devoted to the asymptotic behaviour of
the typical cell, under the condition that it has large inradius. Though it may seem at
first sight a very artificial and restrictive choice, we shall see that it falls in the more
general context of D. G. Kendall’s conjecture and that this particular conditioning
allows us to obtain very precise estimations for the geometry of the cell.

In the first subsection, we are interested in the distribution tail of a particular ge-
ometric characteristic that we did not consider before, the so-called circumscribed
radius. We deduce from the general techniques involved an asymptotic result for
the joint distribution of the two radii. In the second subsection, we make the con-
vergence of the cell to the spherical shape more precise by showing limit theorems
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for some of its characteristics when the inradius goes to infinity. In this section, two
fundamental models from stochastic geometry will be introduced as tools for under-
standing the geometry of the typical cell: random coverings of the circle/sphere and
random polytopes generated as convex hulls of Poisson point processes in the ball.

1.2.1 Circumscribed radius

We consider a homogeneous Poisson-Voronoi tessellation of intensity one and we
realize its typical cell as C(o) according to Proposition ??. With the same misuse of
language as for the inradius, we define the circumscribed radius RM of the typical
cell C(o) as the radius of the smallest ball containing C(o) and centered at the origin.
We first propose a basic way of estimating its distribution and we proceed with
a more precise calculation through a technique based on coverings of the sphere
which provides satisfying results essentially in dimension two.

1.2.1.1 Estimation of the distribution tail

For the sake of simplicity, the following argument is written only in dimension two
and comes from an intermediary result of a work due to S. Foss and S. Zuyev [?].
We observe that RM is larger than r > 0 iff there exists x, ‖x‖= r, which is in C(o),
i.e. such that B‖x‖(x) does not intersect the Poisson point process X . Compared to
the event {Rm ≥ r}, the only difference is that „there exists x“ is replacing „for every
x“ (see Example 2 of Section ??).

In order to evaluate this probability, the idea is to discretize the boundary of the
circle and consider a deterministic sequence of balls B‖zk‖(zk), 0 ≤ k ≤ (n− 1),
n ∈ N \ {0} with zk = r(cos(2πk/n),sin(2πk/n)). We call the intersection of two
consecutive such disks a petal. If RM ≥ r, then one of these n petals has to be empty.
We can calculate the area of a petal and conclude that for every r > 0, we have

P(RM ≥ r)≤ nexp{−r2(π− sin(2π/n)− (2π/n))}. (1.10)

In particular, when we look at the chord length in one fixed direction, i.e. the length
lu of the largest segment emanating from the origin in the direction u and contained
in C(o), we have directly for every r > 0,

P(lu ≥ r) = exp{−πr2},

which seems to provide the same logarithmic equivalent as the estimation (??) when
n goes to infinity. This statement will be reinforced in the next section.
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1.2.1.2 Calculation and new estimation

This section and the next one present ideas and results contained in [?, ?]. The dis-
tribution of RM can be calculated explicitly: let us recall that C(o) can be seen as
the intersection of half-spaces delimited by random bisecting hyperplanes and con-
taining the origin. We then have RM ≥ r (r > 0) if and only if the half-spaces do not
cover the sphere ∂Br(o). Of course, only the hyperplanes which are at a distance
less than r are necessary and their number is finite and Poisson distributed. The
trace of a half-space on the sphere is a spherical cap with a (normalized) angular
diameter α which is obviously less than 1/2 and which has an explicit distribution.
Indeed, α can be written in function of the distance L from the origin to the hyper-
plane via the formula α = arccos(L/r)/π . Moreover, the obtained spherical caps
are independent. For any probability measure ν on [0,1/2] and n ∈N, we denote by
P(ν ,n) the probability to cover the unit-sphere with n i.i.d. isotropic spherical caps
such that their normalized angular diameters are ν distributed. Following this rea-
soning, the next proposition connects the distribution tail of RM with some covering
probabilities P(ν ,n).

Fig. 1.4 Covering of the circle of radius r when RM ≥ r

Proposition 1.8. (Rewriting of the distribution tail of RM) For every r > 0, we have

P(RM ≥ r) = e−2dκdrd
∞

∑
n=0

(2dκdrd)n

n!
(1−P(ν ,n)) (1.11)

where ν is a probability measure on [0,1/2] with the density

fν(θ) = dπ sin(πθ)cosd−1(πθ), θ ∈ [0,1/2].
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Exercise 1.10. Verify the calculation of ν and do the same when the Poisson-
Voronoi typical cell is replaced by the Crofton cell of a Poisson hyperplane tes-
sellation.

The main question is now to evaluate the covering probability P(ν ,n). In the two-
dimensional case, it is known explicitly [?] so the preceding proposition provides in
fact the exact calculation of the distribution tail of RM . Unfortunately, the formula
for P(ν ,n) when ν is a continuous measure is not easy to handle but in the particular
case where ν is simply a Dirac measure at a∈ [0,1] (i.e. all circular arcs have a fixed
length equal to a), then it has been proved by W. L. Stevens [?] with very elementary
arguments that for every n ∈ N∗, we have

P(δa,n) =
n

∑
k=0

(−1)k
(

n
k

)
(1− ka)n−1

+ (1.12)

where x+ = max(x,0) for every x∈R. In particular, it implies the following relation
for every a ∈ [0,1]

lim
n→∞

1−P(δa,n)
n(1−a)n−1 = 1.

Exercise 1.11. Calculate P((1− p)δ0 + pδa,n) for a, p ∈ [0,1],n ∈ N∗

In higher dimensions, no closed formula is currently available for P(ν ,n). The case
where ν = δa with a > 1/2 has been solved recently [?], otherwise bounds do exist
in the particular case of a deterministic radius of the spherical caps [?, ?].

In dimension two, we can use Proposition ?? in order to derive an estimation of
the distribution tail which is better than (??).

Theorem 1.3. (Distribution tail estimate of RM in dimension two) For a sufficiently
large r, we have

2πr2e−πr2 ≤ P(RM ≥ r)≤ 4πr2e−πr2
. (1.13)

Sketch of proof. When using (??), we have to estimate P(ν ,n), with ν chosen
as in Proposition ??, but possibly without considering a too complicated explicit
formula. In particular, since the asymptotic equivalent (??) for P(δa,n) seems to be
quite simple, we aim at replacing the covering probability P(ν ,n) with a covering
probability P(δa,n) where a is equal to 1/4, i.e. the mean of ν .

The problem is reduced to the investigation under which conditions we can com-
pare two different covering probabilities P(µ1,n) and P(µ2,n) where µ1,µ2 are two
probability measures on [0,1]. We recall that µ1 and µ2 are said to be ordered ac-
cording to the convex order, i.e. µ1 ≺conv µ2, if 〈 f ,µ1〉 ≤ 〈 f ,µ2〉 for every convex
function f : [0,1]→R [?] (where 〈 f ,µ1〉=

∫
f dµ1). In particular, Jensen’s inequal-

ity says that δa ≺conv ν and we can easily prove that ν ≺conv
1
2 (δ0 +δ2a). The next

proposition shows how the convex ordering of distributions implies the ordering of
the underlying covering probabilities.

Proposition 1.9. (Ordering of covering probabilities) If ν1 ≺convν2 , then for every
n ∈ N, P(ν1,n)≤ P(ν2,n).
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Exercise 1.12. Find a heuristic proof of Proposition ??.

Thanks to this proposition and the remark above, we can write

P(δ1/4,n)≤ P(ν ,n)≤ P((δ0 +δ1/2)/2,n),

then insert the two bounds in the equality (??) and evaluate them with Stevens’
formula (??).

Remark 1.10. Numerical estimates of P(RM ≥ r) with the formula (??) indicate
that P(RM ≥ r) should be asymptotically equivalent to the upper bound of (??).

1.2.1.3 Distribution conditionally on the inradius

Why should we be interested in the behaviour of the typical cell when conditioned
on the value of its inradius?

First, it is one of the rare examples of conditioning of the typical cell which can
be made completely explicit. Indeed, conditionally on {Rm ≥ r}, any point x of the
Poisson point process is at distance larger than 2r from o so the typical cell C(o)
is equal in distribution to the zero-cell associated with the bisecting hyperplanes of
the segments [o,x] where x is any point of a homogeneous Poisson point process in
B2r(o)c.

Conditionally on {Rm = r}, the distribution of C(o) is obtained as previously, but
with an extra-bisecting hyperplane generated by a deterministic point x0 at distance
2r.

The second reason for investigating this particular conditioning is that a large
inradius implies a large typical cell. In other words, having Rm large is a particular
case of the general setting of D. G. Kendall’s conjecture (see Remark ??). But we
can be more precise about how the typical cell is converging to the spherical shape.
Indeed, the boundary of the polyhedron is included in an annulus between the two
radii Rm and RM and so the order of decreasing of the difference RM − Rm will
provide a satisfying way of measuring the closeness of C(o) to a sphere. The next
theorem provides a result in this direction.

Theorem 1.4. (Asymptotic joint distribution of (Rm,RM)) There exists a constant
c > 0 such that for every d−1

d+1 < δ < 1, we have

P(RM ≥ r + rδ | Rm = r) =O(exp{−crβ}), r→ ∞, (1.14)

where β = 1
2 [(d−1)+δ (d +1)].

Sketch of proof in dimension two. The joint distribution of the couple (Rm,RM)
can be obtained explicitly via the same method as in Proposition ??. Indeed, the
quantity P(RM ≥ r + s | Rm = r) can be rewritten as the probability of not covering
the unit-sphere with random i.i.d. and uniform spherical caps. The only difference
lies in the common distribution of the angular diameters of the caps which will now
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depend upon r since bisecting hyperplanes have to be at least at distance r from the
origin. In dimension two, the covering probability can be estimated with an upper-
bound due to L. Shepp [?], which implies the estimation (??).

Unfortunately, the method does not hold in higher dimensions because of the
lack of information about random coverings of the sphere. Nevertheless, a different
approach will be explained in the next section in order to extend (??) to d ≥ 3.

Exercise 1.13. For d = 2, estimate the minimal number of sides of the Poisson-
Voronoi typical cell conditioned on {Rm = r}.

Remark 1.11. This roughly means that the boundary of the cell is included in an
annulus centered at the origin and of thickness of order R−(d−1)/(d+1)

m . The next
problem would be to describe the shape of the polyhedron inside this annulus. For
instance, in dimension two, a regular polygon which would be exactly „inscribed“ in
an annulus of thickness R−1/3

m would have about R2/3
m sides. Is it the same growth

rate as the number of sides of the typical cell? The next section will be devoted to
this problem. In particular, we shall see that indeed, this quantity behaves roughly
as if the typical cell would be a deterministic regular polygon.

1.2.2 Limit theorems for the number of hyperfaces

This section is based on arguments and results which come from a collaboration
with T. Schreiber and are developed in [?, ?, ?]. When the inradius goes to infinity,
the shape of the typical Poisson-Voronoi cell becomes spherical. In particular its
boundary is contained in an annulus with a thickness going to zero and thus we aim
at being more specific about the evolution of the geometry of the cell when Rm is
large. For the sake of simplicity, we focus essentially on a particular quantity, which
is the number of hyperfaces, but our methods can be generalized to investigate other
characteristics, as emphasized in the final remarks.

1.2.2.1 Connection with random convex hulls in the ball

We start with the following observation: in the literature, there are more limit theo-
rems available for random polytopes constructed as convex hulls of a Poisson point
process than for typical cells of stationary tessellations (cf. Sections ?? and ??).
Models of random convex hulls have been probably considered as more natural ob-
jects to be constructed and studied. Our aim is first to connect our model of typical
Poisson-Voronoi cell with a classical model of a random convex hull in the ball and
then work on this possible link between the two in order to extend what is known
about random polytopes and solve our current problem.

Conditionally on {Rm≥ r}, the rescaled typical cell 1
r C(o) is equal in distribution

to the zero-cell of a hyperplane tessellation generated by a Poisson point process of
intensity measure (2r)d1(x ∈ B1(o)c)νd(dx) [?]. In other words, via this scaling we
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fix the inradius of the polyhedron whereas the intensity of the underlying hyperplane
process outside of the inball is now the quantity which goes to infinity.

The key idea is then to apply a geometric transformation to 1
r C(o) in order to get

a random convex hull inside the unit-ball B1(o). Let us indeed consider the inversion
I defined by

I(x) =
x
‖x‖2 , x ∈ Rd \{o}.

In the following lines, we investigate the action of I on points, hyperplanes
and the cell itself. The Poisson point process of intensity measure (2r)d1(x /∈
B1(o))νd(dx) is sent by I to a new Poisson point process Yr of intensity measure
(2r)d1(x ∈ B1(o)) 1

‖x‖2d νd(dx). The hyperplanes are sent to spheres containing the
origin and included in the unit ball, i.e. spheres ∂B‖x‖/2(x/2) where x belongs to
the new Poisson point process Yr in B1(o). The boundary of the rescaled typical cell
1
r C(o) is sent to the boundary of a certain Voronoi flower, i.e. the union of balls
B‖x‖/2(x/2) where x belongs to Yr. In particular, the number of hyperfaces of the
typical cell C(o) remains unchanged after rescaling and can also be seen through
the action of the inversion I as the number of portions of spheres on the boundary
of the Voronoi flower in B1(o), that is the number of extreme points of the convex
hull of the process Yr. Indeed, it can be verified that the ball B‖x‖/2(x/2) intersects
the boundary of the Voronoi flower of Yr iff there exists a support hyperplane of the
convex hull of Yr which contains x.

1.2.2.2 Results

Let Nr be a random variable distributed as the number of hyperfaces of the typical
cell C(o) conditioned on {Rm = r}.

We are now ready to derive limit theorems for the behaviour of Nr when r goes
to infinity:

Theorem 1.5. (Limit theorems for the number of hyperfaces) There exists a con-
stant a > 0 (known explicitly) depending only on d such that

ar−
d(d−1)

d+1 Nr→ 1 in L1 and a.s. as r→ ∞.

Moreover, the number Nr satisfies a central limit theorem when r→ ∞ as well as a
moderate-deviation result: for every ε > 0,

liminf
r→∞

1
log(r)

log
(
− log

(
P
{∣∣∣∣ Nr

ENr
−1
∣∣∣∣≥ ε

}))
≥ d−1

3d +5
.

Sketch of proof. The first two steps are devoted to proving the results for the number
Ñr of hyperfaces of C(o) conditioned on {Rm ≥ r}. In the last step, we explain how
to adapt the arguments for the number Nr.
Step 1. We use the action of the inversion I to rewrite Nr as the number of vertices
of the convex hull of the Poisson point process Yr of intensity measure (2r)d1(x ∈
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B1(o)) 1
‖x‖2d νd(dx) in the unit ball. Limit theorems for the number of extreme points

of a homogeneous set of points in the ball are classically known in the literature:
indeed, a first law of large numbers has been established in [?] and generalized
in [?]. A central limit theorem has been proved in [?] and extended by a precise
variance estimate in [?]. Finally, a moderate deviations-type result has been provided
in [?] and [?] (see also Sections ?? and ?? for more details).
Step 2. The only problem here is that we are not in the classical setting of all these
previous works since the process Yr is not homogeneous. Nevertheless, it can be
overcome by emphasizing two points: first, when ‖x‖ is close to one, the intensity
measure of Yr is close to (2r)d νd(dx) and secondly, with high probability, only the
points near the boundary of the unit sphere will be useful to construct the convex
hull. Indeed, for any Poisson point process of intensity measure λ f (‖x‖)νd(dx)
with f : (0,1)→ R+ a function such that limt→1 f (t) = 1, it can be stated that the
associated convex hull Kλ satisfies the following: there exist constants c,c′ > 0 such
that for every α ∈ (0, 2

d+1 ), we have

P(B1−cλ−α (o) 6⊆ Kλ ) =O(exp{−c′λ 1−α(d+1)/2}). (1.15)

The asymptotic result (??) roughly means that all extreme points are near Sd−1 and
included in an annulus of thickness λ−2/(d+1). It can be shown in the following
way: we consider a deterministic covering of an annulus B1(o) \B1−λ−α (o) with a
polynomial number of full spherical caps. When the Poisson point process intersects
each of these caps, its convex hull contains B1−cλ−α (o) where c > 0 is a constant.
Moreover, an estimation of the probability that at least one of the caps fails to meet
the point process provides the right-hand side of (??).

To conclude, the estimation (??) allows us to apply the classical limit theory of
random convex hulls in the ball even if the point process Yr is not homogeneous.
Step 3. We recall that the difference between the constructions of C(o) conditioned
either on {Rm ≥ r} or on {Rm = r} is only an extra deterministic hyperplane at
distance r from the origin. After the use of a rescaling and of the inversion I, we
obtain that Ñr (obtained with conditioning on {Rm ≥ r}) is the number of extreme
points of Yr whereas Nr (obtained with conditioning on {Rm = r}) is the number
of extreme points of Yr ∪{x0} where x0 is a deterministic point on Sd−1. A supple-
mentary extreme point on Sd−1 can „erase“ some of the extreme points of Yr but it
can be verified that it will not subtract more than the number of extreme points con-
tained in a d-dimensional polyhedron. Now the growth of extreme points of random
convex hulls in a polytope has been shown to be logarithmic so we can consider that
the effect of the extra point x0 is negligible (see in particular [?], [?], and [?] about
limit theorems for random convex hulls in a fixed polytope). Consequently, results
proved for Ñr in Steps 1-2 hold for Nr as well.

Remark 1.12. Up to now, the bounds on the conditional distribution of the circum-
scribed radius (??) was only proved in dimension two through techniques involving
covering probabilities of the circle. Now applying the action of the inversion I once
again, we deduce from (??) the generalization of the asymptotic result (??) to higher
dimensions.
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Remark 1.13. The same type of limit theorems occurs for the Lebesgue measure
of the region between the typical cell and its inball. Indeed, after application of I,
this volume is equal to the µ-measure of the complementary of the Voronoi flower
of the Poisson point process in the unit ball, where µ is the image of the Lebesgue
measure under I. Limit theorems for this quantity have been obtained in [?, ?].

In a recent paper [?], this work is extended in several directions, including vari-
ance estimates and a functional central limit result for the volume of the typical cell.
Moreover [?] contains an extreme value-type convergence for RM which adds to
(??) by providing a three-terms expansion of (RM− r) conditionally on {Rm ≥ r},
when r goes to infinity. More precisely, it is proved that there exist explicit con-
stants c1,c2,c3 > 0 (depending only on the dimension) such that conditionally on
{Rm ≥ r}, the quantity

2
3d+1

2 κd−1

d +1
r

d−1
2 (RM− r)

d+1
2 − c1 log(r)− c2 log(log(r))− c3

converges in distribution to the Gumbel law when r→ ∞.
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409. Račkauskas, A., Suquet, C., Zemlys, V.: Hölderian functional central limit theorem for multi–
indexed summation process. Stochastic Process. Appl. 117(8), 1137–1164 (2007)

410. Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab.
Th. Rel. Fields 82, 451–487 (1989)

411. Raynaud, H.: Sur l’enveloppe convexe des nuages de points aléatoires dans Rn. I. J. Appl.
Probab. 7, 35–48 (1970)

412. Redmond, C.: Boundary rooted graphs and Euclidean matching algorithms. Ph.D. thesis,
Department of Mathematics, Lehigh University, Bethlehem, PA (1993)

413. Redmond, C., Yukich, J.E.: Limit theorems and rates of convergence for subadditive Eu-
clidean functionals. Ann. Appl. Probab. 4, 1057–1073 (1994)

414. Redmond, C., Yukich, J.E.: Limit theorems for Euclidean functionals with power-weighted
edges. Stochastic Process. Appl. 61, 289–304 (1996)

415. Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31,
2136–2166 (2003)

416. Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31,
2136–2166 (2003)

417. Reitzner, M.: Central limit theorems for random polytopes. Probab. Theory Related Fields
133, 483–507 (2005)

418. Reitzner, M.: Random polytopes, in: Kendall, W. S., Molchanov, I. (eds.) New Perspectives
in Stochastic Geometry. Oxford Univ. Press. (2010)

419. Rényi, A.: On a one-dimensional random space-filling problem. MTA Mat Kut. Int. K’̈ol.
(Publications of the Math. Res. Inst. of the Hungarian Academy of Sciences) 3, 109–127
(1958)

420. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahr-
scheinlichkeitstheorie und verw. Gebiete 2, 75–84 (1963)

421. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. II. Z.
Wahrscheinlichkeitstheorie und verw. Gebiete 3, 138–147 (1964)

422. Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer, New York
(2008)

423. Ripley, B.D.: The second-order analysis of stationary point processes. J. Appl. Probab. 13,
255–266 (1976)

424. Rosalsky, A.: On the converse to the iterated logarithm law. Sankhyā 42, 103–108 (1980)
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