Random convex hull peeling

Gauthier Quilan, Université de Rouen

Joint work with Pierre Calka

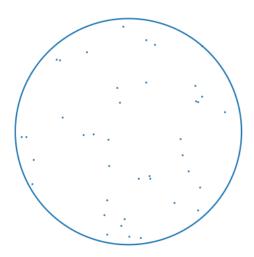
November 25, 2022

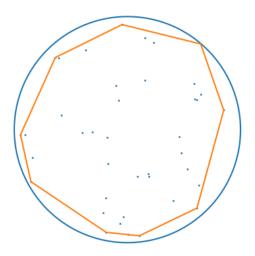
Outline

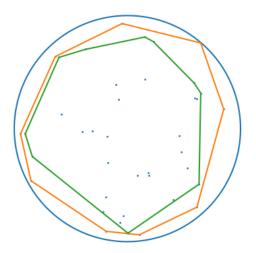
- 2 Earlier results on the convex hull peeling
- 3 k-faces of the convex hull peeling

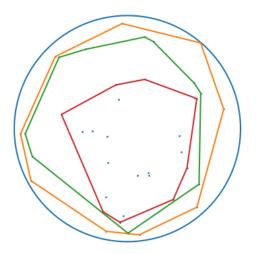
2 Earlier results on the convex hull peeling

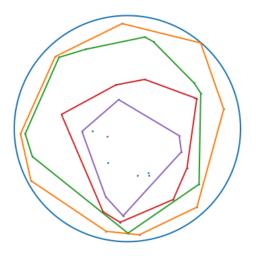
3 k-faces of the convex hull peeling

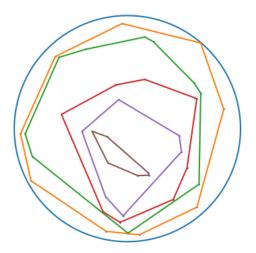












Principle

Convex hull peeling

- Consider a set of points in a convex compact set of \mathbb{R}^d .
- Take the convex hull of these points.
- Remove the extreme points.
- Take the convex hull of the remaining points.
- Iterate until no point remains.

Definition

n-th layer: boundary of the convex hull taken at step n.

Applications:

- Statistics: multivariate data analysis, outlier detection.
- Identification of fingerprints.
- Automatic map labeling.
- Computer vision.

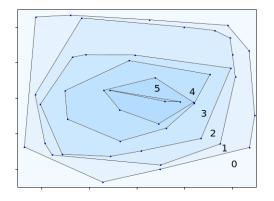
Goal:

Obtaining asymptotic properties on these layers for a random point set whose size goes to infinity.

Earlier results on the convex hull peeling

k-faces of the convex hull peeling

Convex height function



Asymptotics for the number of layers

Definition (Convex height function)

For $X \subseteq K$

$$h_X := \sum_{n \geq 1} \mathbb{1}_{\mathrm{int}(\mathsf{conv}_n(X))}.$$

K: convex body of \mathbb{R}^d ,

 \mathcal{P}_{λ} Poisson p.p. of intensity measure λ times the Lebesgue measure on K, i.e. X_{λ} i.i.d. random points uniformly distributed in K where

 $X_{\lambda} \sim \mathsf{Poisson}(\lambda \mathsf{Vol}(K)).$

Theorem (Dalal 2004)

$$\mathbb{E}[\max h_{\mathcal{P}_{\lambda}}] = \Theta(\lambda^{2/(d+1)}).$$

Asymptotics for the number of layers

 \mathcal{P}_{λ} a Poisson p.p. in K with intensity measure $\lambda f(x)dx$ with f>0 continuous.

Theorem (Calder-Smart 2020)

For any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\mathbb{P}[\sup_{K} |\lambda^{-2/(d+1)} h_{\mathcal{P}_{\lambda}} - \alpha h| > \varepsilon] \le \exp(-\delta \lambda^{\beta}),$$

where $\alpha = \alpha(d) > 0$, $\beta = \beta(d) > 0$ and $h \in C(K)$ is the unique viscosity solution of

$$\begin{cases} \langle Dh, \ ^t com(-D^2h)Dh \rangle = f & \text{in } \mathring{K} \\ h = 0 & \text{on } \partial K. \end{cases}$$

For example in the unit ball $h(x) = C_d \left(1 - |x|^{\frac{2d}{d+1}}\right)$.

Asymptotics for the number of layers

Corollary (Calder-Smart 2020)

$$\lambda^{-2/(d+1)} \max h_{\mathcal{P}_{\lambda}} \xrightarrow[\lambda \to \infty]{\text{a.s.}} \alpha \max h.$$

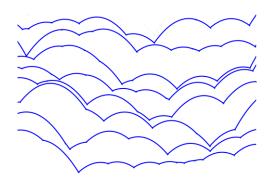
 $(\max h_{\mathcal{P}_{\lambda}}/\lambda^{2/(d+1)})_{\lambda\geq 1}$ is uniformly integrable, it implies

Corollary

$$\lambda^{-2/(d+1)}\mathbb{E}[\max h_{\mathcal{P}_{\lambda}}] \xrightarrow[\lambda \to \infty]{} \alpha \max h.$$

Some ideas in Calder-Smart

- Game interpretation: $h_X(x) = \inf_{p \in \mathbb{R}^d \setminus \{0\}} \sup_{y \in p \cdot (y-x) > 0} (h_X(y) + \mathbb{1}_X(y))$. It leads to the PDE.
- They study a parabolic model of peeling.



Earlier results on the convex hull peeling

3 k-faces of the convex hull peeling

Asymptotics for the number of k-faces of the first layer

 \mathcal{P}_{λ} : Poisson point process of intensity $\lambda \mathit{dx}$ on K .

$$N_{n,k,\lambda}$$
:= number of k -faces of the n -th layer of the peeling of \mathcal{P}_{λ} .

Case $K = \mathbb{B}^d$.

Case K simple polytope.

Theorem (Rényi-Sulanke 1963, Reitzner 2005)

$$\mathbb{E}[N_{1,k,\lambda}] \sim_{\lambda \to \infty} C_{1,k,d} \lambda^{\frac{d-1}{d+1}}.$$

Theorem (Rényi-Sulanke 1963, Reitzner 2005)

$$\mathbb{E}[N_{1,k,\lambda}] \sim_{\lambda \to \infty} C''_{1,k,d} \log^{d-1}(\lambda).$$

Theorem (Calka, Schreiber, Yukich 2013)

$$Var[N_{1,k,\lambda}] \sim_{\lambda o \infty} C'_{1,k,d} \lambda^{rac{d-1}{d+1}}$$

$$+$$
 CLT.

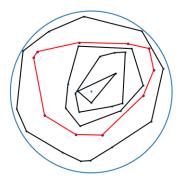
Theorem (Reitzner 2005, Calka, Yukich 2017)

$$Var[N_{1,k,\lambda}] \sim_{\lambda o \infty} C_{1,k,d}^{\prime\prime\prime} \log^{d-1}(\lambda)$$

$$+$$
 CLT.

k-faces of the convex hull peeling

 $N_{n,k,\lambda}$:= number of k-faces of the n-th layer of the peeling of \mathcal{P}_{λ} . n is a fixed integer and does not vary with λ .



 $N_{2,0,\lambda}$: number of vertices of the red layer, $N_{2,1,\lambda}$: number of edges.

k-faces of the convex hull peeling in the unit ball

Case
$$K = \mathbb{B}^d$$
.

Theorem (Calka, Quilan)

$$\mathbb{E}[N_{n,k,\lambda}] \sim_{\lambda \to \infty} C_{n,k,d} \lambda^{\frac{d-1}{d+1}},$$

$$Var[N_{n,k,\lambda}]\sim_{\lambda o\infty} C'_{n,k,d}\lambda^{rac{d-1}{d+1}}$$

+ CLT where $C_{n,k,d}$, $C'_{n,k,d} > 0$.

Case K simple polytope.

Theorem (Calka, Quilan)

$$\mathbb{E}[N_{n,k,\lambda}] \sim_{\lambda \to \infty} C''_{n,k,d} \log^{d-1}(\lambda),$$

$$Var[N_{n,k,\lambda}] \sim_{\lambda \to \infty} C'''_{n,k,d} \log^{d-1}(\lambda).$$

Elements of proof: criterion layer n

We focus on d = 2 and k = 0.

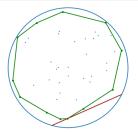
Lemma

x is extreme \iff there exists a cap whose boundary contains x that contains no point of \mathcal{P}_{λ} .

Lemma

x on the n-th layer \iff it verifies both conditions:

- \exists a cap C with $x \in \partial C$ that only contains points of layer (n-1) at most.
- Any cap C with $x \in \partial C$ contains at least one point on layer $\geq (n-1)$.





Elements of proof: rescaling

Case
$$K = \mathbb{B}^2$$
.

Definition

$$T^{(\lambda)}: \mathbb{B}^2 \to \lambda^{\frac{1}{3}}[-\pi, \pi] \times [0, \lambda^{\frac{2}{3}})$$

 $(r, \theta) \mapsto \left(\lambda^{\frac{1}{3}}\theta, \lambda^{\frac{2}{3}}(1-r)\right).$



Case K simple polytope.

 $V:=\{(x,y)\in\mathbb{R}^2:x=-y\}$ and p_V the orthogonal projection on V.

Definition

$$T^{(\lambda)}: [0,\infty)^2 \to V \times \mathbb{R}$$
 $(x,y) \mapsto (p_V(\log(x),\log(y)),$ $\frac{1}{2}(\log(\lambda) + \log(x) + \log(y))).$

Elements of proof: stabilization

 $C_x(r)$: vertical rectangle around x of half-width r in \mathbb{R}^2 .

 $\mathcal{P}^{(\lambda)}$: image of \mathcal{P}_{λ} by $T^{(\lambda)}$.

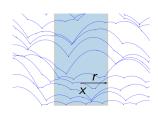
 $\Phi_n(\mathcal{P}^{(\lambda)})$: image of the *n*-th convex hull by $T^{(\lambda)}$.

$$\xi_n(x, \mathcal{P}^{(\lambda)}) = \mathbb{1}_{\partial \Phi_n(\mathcal{P}^{(\lambda)})}(x).$$

Theorem (Stabilization)

There exist $c_1, c_2, \alpha > 0$ such that

$$\mathbb{P}(\xi_n(x,\mathcal{P}^{(\lambda)}) \neq \xi_n(x,\mathcal{P}^{(\lambda)} \cap C_x(r))) \leq c_1 \exp(-c_2 r^{\alpha}).$$



Elements of proof : Sandwiching

Problem : In the case where K is a simple polytope, the rescaling only works in a neighbourhood of a vertex of K.

 $v: x \mapsto \min\{\operatorname{Vol}(H \cap K) : H \text{ halfspace containing } x\}.$ $K(v \ge t) := \{x \in \mathbb{R}^2 : v(x) \ge t\} \text{ the floating body of order } t.$ $s:=c_1 \frac{1}{\lambda \log(\lambda)^{\alpha}} \text{ and } T^* := c_2 \frac{\log\log(\lambda)}{\lambda}.$

Theorem (Sandwiching)

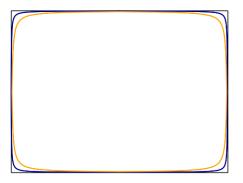
When K is a simple polytope, for λ large enough with probability higher than $1 - \log(\lambda)$:

$$\partial \mathsf{conv}_m(\mathcal{P}_{\lambda}) \subset K(v \geq s) \setminus K(v \geq T^*)$$

for all 1 < m < n.

Generalization of Barany-Reitzner 2010.

Elements of proof: Sandwiching 2



Boundaries of two floating bodies in a square.

We prove that the contribution of points far from the vertices of ${\cal K}$ is negligible and that the contributions of points near different vertices are independent.

Open problems

- Evolution of $(C_{n,k,d})_n$?
- Other regimes for the layer number?
- Phase transition in the polytope case?
- Position of the layers as a function of the height in the rescaled model?
- More general Poisson point processes?

Thank you for your attention!