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Asymmetric simple exclusion process (ASEP)

p

-4 -3 -2 -1 0 1 2 Z
Dynamics:
I There is at most one particle per site, at rate one particles

jump one step to the right or left if possible
I jumps to the right (resp. left) have probability p > 1/2,

(resp. q = 1− p), so there is a drift to the right
I for p = 1 we obtain the totally ASEP (TASEP)
I Markov process (ηt , t ≥ 0) with state space Ω = {0,1}Z



ASEP on the segment

1 2 3 4 5 6 7 8

I put k particles on the segment [1; N] = {1, . . . ,N}
I jumps out of the segment are forbidden
I Markov chain with stationary measure πN,k

I Pη
t = law of the ASEP started from η at time t

Goal: Understand how ASEP mixes to equilibrium w.r.t.

dN,k (t) = max
η
‖Pη

t − πN,k‖TV ∈ [0,1]

as N →∞ and k = αN, α ∈ (0,1).
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Cutoff

I Often dN,αN drops from 1 to 0 abruptly, i.e. cutoff holds: At
time CN ± εN, dN,αN goes to 1 resp. 0 for any ε > 0.

time

dN,αN

CNCN − εN CN + εN

1

0

I simple example of cutoff: ASEP with 1 particle on the
segment

I no cutoff for ASEP with 1 particle on the circle ZN



Precutoff and Cutoff for ASEP

1. [Benjamini et al. ’03, Trans. Math. Soc.] showed there is
precutoff:

2. [Labbé - Lacoin ’16, Ann. Prob.] showed cutoff at
C = (

√
α+
√

1−α)2

p−q

time

dN,αN

CN

?

C1N C2N

1

0
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Both papers show their result also for the multi-color ASEP



Cutoff window and profile

When we zoom in on the cutoff point, we expect to see a
smooth transition in a window wN of size o(N) :

time

dN,αN

CNCN − wN CN + wN

1

0

The function which describes the smooth transition is the cutoff
profile.



Cutoff profile
We prove the following:

Theorem (Bufetov-N. ’22, PTRF ’22)
Let c ∈ R, and let kN = αN, α ∈ (0,1). Then we have

lim
N→∞

dN,αN

(
(
√
α +
√

1− α)2

p − q
N +

cN1/3

p − q

)
= 1−FGUE(cf (α)),

where f (α) = (α(1−α))1/6

(
√
α+
√

1−α)4/3 .

I FGUE asymptotic law of the largest eigenvalue of a random
matrix from the Gaussian Unitary Ensemble

I Cutoff window is N1/3, -profile is 1− FGUE, Cutoff is
reproven

I replace (
√
α+
√

1−α)2

p−q N by (
√

kN+
√

N−kN)
2

p−q when kN
N → α



Notation and bounds

For brevity, we denote the time point

g(k , c) :=
(
√

k +
√

N − k)2 + cN1/3

p − q
.

and always assume the number of particles kN satisfies
kN/N → α ∈ (0,1) .

We will separately show

lim inf
N→∞

dN,kN (g(kN , c)) ≥ 1− FGUE(cf (α)),

and
lim sup
N→∞

dN,kN (g(kN , c)) ≤ 1− FGUE(cf (α)), (1)

As is often the case, it is harder to show the upper bound (1),
so we focus on (1).
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Hitting times I
Consider the configurations for ASEP on the segment

ξ0 = 1[1;kN ], ξ1 = 1[N−kN+1;N].

ξ0 :

kNN − kn1 N

ξ1 :

kNN − kn1 N

ξ(0) is intuitivly the ’worst’ initial configuration.
Let h the first time that ASEP started from ξ0 reaches ξ1 :

h = inf{t : ξ0
t = ξ1}.

Then we have the inequality

dN,kN (t) ≤ P(h > t).



Hitting times II
Consider the configurations for ASEP on Z

ζ0 = 1[1;kN ] + 1Z>N , ζ1 = 1Z>(N−kN )
.

Z
ζ0 :

kN1

Z
ζ1 :

N − kN

Let H the first time that ASEP started from ζ0 reaches ζ1 :

H = inf{t : ζ0
t = ζ1}.

Then we have the inequalities

dN,kN (t) ≤ P(h > t) ≤ P(H > t)



Upper bound using hitting times

I The hitting time H was already studied by [Benjamini et al
’03].

I We will eventually show

lim
N→∞

P(H > g(kN , c)) = 1− FGUE(cf (α)).

By the inequality dN,kN (t) ≤ P(H > t), this will imply

lim sup
N→∞

dN,kN (g(kN , c)) ≤ 1− FGUE(cf (α)).



Leftmost particle / rightmost hole
I Recall ζ0 = 1[1;kN ] + 1Z>N

Z
ζ0 :

kN1

L(ζ0
0 ) R(ζ0

0 )

I To understand the hitting time H, we track the leftmost
particle/rightmost hole of ζ0

t :
L(ζ0

t ) = min{i ∈ Z : ζ0
t (i) = 1} R(ζ0

t ) = max{i ∈ Z : ζ0
t (i) = 0}.

Note that deterministically for all t

L(ζ0
t )− 1 ≤ N − kN ≤ R(ζ0

t )

and H is precisely the first time that

L(ζ0
H)− 1 = N − kN = R(ζ0

H)
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Let BN(c) be the event that ζ0
g(kN ,c)

looks like this:

N − kNL(ζ0
g(kN ,c)

) R(ζ0
g(kN ,c)

) N − kN + N
1
10N − kN − N

1
10

I when BN(c) happens, H cannot be much bigger than
g(kN , c), in particular we can show

lim
N→∞

P(BN(c)) = lim
N→∞

P(H < g(kN , c))

We want to prove

lim
N→∞

P(BN(c)) = FGUE(cf (α)).

I This will imply limN→∞ P(H > g(kN , c)) = 1− FGUE(cf (α)),
and thus yield the upper bound for dN,kN (g(kN , c))
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Let BN(c) be the event that ζ0
g(kN ,c)

looks like this:

N − kNL(ζ0
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) R(ζ0
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) N − kN + N
1
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We want to prove

lim
N→∞

P(BN(c)) = FGUE(cf (α)).

Main sources of this convergence are :
I non-standard CLT for ASEP
I algebraic identities for multi-color ASEP
I couplings to compare different ASEPs



Non-standard CLT for ASEP

ZkN1

We start ASEP on Z from 1Z≤kN
, (”step initial data”) and denote

xkN (t) = position at time t of the particle that started in 1.

Theorem (Corollary of Johansson ’00 (for p=1),
Tracy-Widom ’09)
We have for kN with kN/N → α ∈ (0,1) that

lim
N→∞

P
(
xkN (g(kN , c)) ≤ N − kN

)
= 1− FGUE(cf (α)),

where f (α) = (α(1−α))1/6

(
√
α+
√

1−α)4/3 .



Multi-color ASEP

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I we have N particles on [1; N] with colors 1,. . . ,N
I each particle moves as in ASEP, but jumps to sites

occupied by smaller color are impossible
I encoded by a permutation π mapping positions to colors
I invariant measure is the Mallows measure

M(π) =
(p/q)#inv(π)

ZN
,

where inv(π) are the inversions of π, for q = 0,M is the
Dirac measure on π(i) = N − i + 1



Multi-color ASEP

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

I we have N particles on [1; N] with colors 1,. . . ,N
I each particle moves as in ASEP, but jumps to sites

occupied by smaller color are impossible
I encoded by a permutation π mapping positions to colors

I when we project down and only distinguish between
particles of color smaller equal k and greater than k , we
recover ASEP



Multi-color ASEP

1 2 3 4 5 6 7 8

I we have N particles on [1; N] with colors 1,. . . ,N
I each particle moves as in ASEP, but jumps to sites

occupied by smaller color are impossible
I encoded by a permutation π mapping positions to colors
I when we project down and only distinguish between
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Bringing into equilibrium

I Consider a permutation of [a; b] and let [c; d ] ⊆ [a; b] :

I Example : [a; b] = [1; 8] and [c; d ] = [2; 4]

4 3 8 1 6 5 2 7

1 2 3 4 5 6 7 8

I for TASEP to bring into equilibrium [c; d ] means that we
order the colors in [c; d ] in decreasing order

I more generally, it means to distribute the colors in [c; d ]
according to the Mallows measure



Bringing into equilibrium

I Consider a permutation of [a; b] and let [c; d ] ⊆ [a; b] :

I Example : [a; b] = [1; 8] and [c; d ] = [2; 4]
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Color-position symmetry

I we start with the identity permutation

1 82 3 4 5 6 7

4 3 2657

1 2 3 4 5 6 7 8

I bring into equilibrium [c1; d1], then [c2; d2]

I here: [c1; d1] = [2; 4] and [c2; d2] = [4; 7]

I run the process up to time t
I this results in a permutation πt
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Color-position symmetry

I we start with the identity permutation

1 2 3 4 5 6 7 8

5 68 7 134

1 2 3 4 5 6 7 8

I run the process up to time t
I bring into equilibrium [c2; d2] = [4; 7]

I bring into equilibrium [c1; d1] = [2; 4]

I this results in a permutation π̂t
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Color-position symmetry

We have the following unintuitive identity:

Proposition (Bufetov-N. ’22)
The permutations π−1

t and π̂t are equal in law.

I source of this identity is purely algebraic (using Hecke
algebras, cf. [Bufetov ’21+], also [Borodin-Bufetov ’20])

I since πt maps positions to colors, whereas π̂−1
t maps

colors to positions, this is a color-position symmetry

Main application:
I (πt , t ≥ 0) starts from a ’complicated’ permutation, which

can be projected down to (a perturbation of)
ζ0 = 1[1;kN ] + 1Z>N

I (π̂t , t ≥ 0) starts from the identity, which can be projected
down to step initial data (CLT available)
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The permutation π0

Consider ASEP on a very large segment with this step initial
data:

kN−NN − kN NN + N

We bring into equilibrium [−NN ; NN + N]:

kN−NN − kN NN + N

We bring into equilibrium [−NN − kN ; 0]:

kN0−NN − kN NN + N

This is very close to a shift of ζ0, we call it ζ̂0



The permutation π̂0

I x,y free parameters
I in the identity, we project down on colors ≤ x (black),

colors in (x , y ] (grey) and colors > y (white)
Our initial configuration thus is

D0 :

−NN − kN NN + Nyx

After time t , the process may look like this:

Dt :

−NN − kN NN + N0



Bringing into equilibrium

Dt :

−NN − kN NN + N0

In Dt we bring into equilibrium [−NN − kN ; 0] :

D̃t :

0−NN−NN − kN NN + N

Afterwards, we bring into equilibrium [−NN ; NN + N] :

D̂t :

0−NN−NN − kN NN + N



Reminders

x := N − kN − N1/10 y := N − kN + N1/10

Recall BN(c) be the event that ζ0
g(kN ,c)

looks like this:

N − kNL(ζ0
g(kN ,c)

) R(ζ0
g(kN ,c)

) yx

We call B̂N(c) be the event that ζ̂0
g(kN ,c)

looks the same:

N − kNL(ζ̂0
g(kN ,c)

) R(ζ̂0
g(kN ,c)

) yx

Recall D̂t from the previous slide:

D̂t :

0−NN−NN − kN NN + N



Reminders

x := N − kN − N1/10 y := N − kN + N1/10

Recall BN(c) be the event that ζ0
g(kN ,c)

looks like this:

N − kNL(ζ0
g(kN ,c)

) R(ζ0
g(kN ,c)

) yx

We call B̂N(c) be the event that ζ̂0
g(kN ,c)

looks the same:

N − kNL(ζ̂0
g(kN ,c)

) R(ζ̂0
g(kN ,c)

) yx

Recall D̂t from the previous slide:

D̂t :

0−NN−NN − kN NN + N



Reminders

x := N − kN − N1/10 y := N − kN + N1/10

Recall BN(c) be the event that ζ0
g(kN ,c)

looks like this:

N − kNL(ζ0
g(kN ,c)

) R(ζ0
g(kN ,c)

) yx

We call B̂N(c) be the event that ζ̂0
g(kN ,c)

looks the same:

N − kNL(ζ̂0
g(kN ,c)

) R(ζ̂0
g(kN ,c)

) yx

Recall D̂t from the previous slide:

D̂t :

0−NN−NN − kN NN + N



As corollary of the color-position symmetry, we have:

Proposition (Bufetov -N.)
We have

P(B̂N(c)) = P
(

all black particles in D̂t are at positions > 0,

all holes in D̂t are at positions ≤ 0
)
. (2)

I the l.h.s. of (2) is very close to P(H < g(kN , c))

I the r.h.s. of (2) concerns two events involving only
particles/holes

I using couplings, we can eventually compute the r.h.s. with
the CLT for ASEP: It converges to FGUE(cf (α))



Thank you for your attention !




