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Asymmetric simple exclusion process (ASEP)
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Dynamics:

» There is at most one particle per site, at rate one particles
jump one step to the right or left if possible

» jumps to the right (resp. left) have probability p > 1/2,
(resp. g =1 — p), so there is a drift to the right

» for p = 1 we obtain the totally ASEP (TASEP)
» Markov process (1, t > 0) with state space Q = {0, 1}#



ASEP on the segment
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> put k particles on the segment [1; N] = {1,... . N}
» jumps out of the segment are forbidden
» Markov chain with stationary measure my x
> P/ = law of the ASEP started from ) at time t
Goal: Understand how ASEP mixes to equilibrium w.r.t.

dNK(t) = max ||P] — mn kv € [0, 1]
n

as N - coand k = aN,a € (0,1).
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Cutoff

» Often dN-2N drops from 1 to 0 abruptly, i.e. cutoff holds: At
time CN + eN, dV*N goes to 1 resp. 0 for any ¢ > 0.
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» simple example of cutoff: ASEP with 1 particle on the
segment

» no cutoff for ASEP with 1 particle on the circle Zy



Precutoff and Cutoff for ASEP

1. [Benjamini et al. '03, Trans. Math. Soc.] showed there is
precutoff:
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Precutoff and Cutoff for ASEP

1. [Benjamini et al. '03, Trans. Math. Soc.] showed there is
precutoff:

2. [Labbé - Lacoin '16, Ann. Prob.] showed cutoff at
C = Waetvi—a)?
p—q
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Both papers show their result also for the multi-color ASEP
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Cutoff window and profile

When we zoom in on the cutoff point, we expect to see a
smooth transition in a window wy of size o(N) :

1

dN,aN

0 | | |
CN — wy CN CN + wy

The function which describes the smooth transition is the cutoff
profile.

time



Cutoff profile

We prove the following:

Theorem (Bufetov-N. '22, PTRF '22)
Let c € R, and let ky = aN,a € (0,1). Then we have

A= 4)2 N1/3
NlinOO NN ((\ﬂ—;_ 7 @) N + ; q> = 1—Fgue(cf(a)),
_ _(a(1=a))'/®

> Fsue asymptotic law of the largest eigenvalue of a random
matrix from the Gaussian Unitary Ensemble

» Cutoff window is N'/3, -profile is 1 — Fgug, Cutoff is
reproven

> replace W;f ”q_"‘)zN by W;fq'v_k“)z when & ¢



Notation and bounds

For brevity, we denote the time point
(Vk + N —k)?+ cN'/3
p—q

and always assume the number of particles ky satisfies
kny/N — a € (0,1).

ag(k,c) =



Notation and bounds

For brevity, we denote the time point

(Vk + N = k)2 + cN'/3
pP—q

and always assume the number of particles ky satisfies

kny/N — a € (0,1).

We will separately show

ag(k,c) =

lim inf dVAV (g(ky, €)) > 1 — Foug(cf(e)),

N—o0

and
lim sup dN4v (g(kn, €)) < 1 — Four(cf()), (1)
N— oo
As is often the case, it is harder to show the upper bound (1),
so we focus on (1).



Hitting times |

Consider the configurations for ASEP on the segment

&= 1(1:k015 ¢ = 1 [N—ky+1:N]-

& 00000000000000000000
1 N — kn Kn N
3 0000000 0000000000000
1 N — ky Kn N

¢ is intuitivly the 'worst’ initial configuration.
Let h the first time that ASEP started from £° reaches ¢! :

h=inf{t: ¢ =¢'}
Then we have the inequality

dVkv(t) < P(h > t).



Hitting times
Consider the configurations for ASEP on Z

CO = 1[1;kN] + 1Z>N’ <1 = 1Z>(N—’W)'

CO : OOOQ0.0.0.0.000QOOOOOOO...
1 Ky Z

(1 0000000000 0000000000000000
N — ky Z

Let $ the first time that ASEP started from ¢° reaches ¢ :
H=inf{t: 2 =¢".
Then we have the inequalities

dVRN () <P(h > t) <P(H > 1)



Upper bound using hitting times

» The hitting time $ was already studied by [Benjamini et al
'03].
» We will eventually show

Nli_njwoolP)(ﬁ > g(kn, c)) =1 — Fgue(cf(a)).
By the inequality adN-4v(t) < P($ > t), this will imply

lim sup dN* (g(kn, €)) < 1 — Fgue(cf(a)).

N—oo



Leftmost particle / rightmost hole
> Recall (% =11 + 12

CO : OOOQOQQ.O...OOOQOOOOOOQOOO
1 Ky Z



Leftmost particle / rightmost hole
> Recall CO = 1[1;kN] + 1Z>N

CO : OOOQ0.0.00000QQ?OOOOOO(POOO
£(Q) kn R() ~

» To understand the hitting time $), we track the leftmost
particle/rightmost hole of ¢?:

L) =min{i e Z: () =1} R(¢P) = max{i € Z: ¢?(i) = 0}.
Note that deterministically for all ¢

L) —1<N—ky <R(()
and $) is precisely the first time that

L) —1=N—ky=m7R()



Let By(c) be the event that ¢J,, . looks like this:

OOO000000® O.........
N — ky — N6 £(Cc)) Nk R(C"(,Wc) N — Ky + N

» when By(c) happens, $ cannot be much bigger than
9(kn, c), in particular we can show

I|m P(Bn(c)) = NITOO]P’(Q < g(kn, ©))

N—o0



Let By(c) be the event that ¢J,, . looks like this:

OOO000000® O.........
N — ky — N6 £(Cc)) Nk R(CO(,WC) N — Ky + N

» when By(c) happens, $ cannot be much bigger than
9(kn, c), in particular we can show

I|m P(Bn(c)) = NITOO]P’(Q < g(kn, ©))

N—o0

We want to prove

Nlinoo P(Bn(c)) = Foue(cf(a)).

» This will imply limy_. P($ > g(kn, €)) = 1 — Feue(cf(a)),
and thus yield the upper bound for dV-*v(g(ky, ¢))



Let Bn(c) be the event that CO ¢) looks like this:

00000000 ___Oeeeeeeeee
Nk N5 £ Que) NV RSy e) N ky + N

We want to prove
lim P(Bn(c)) = Fgue(cf(a)).
N—oo

Main sources of this convergence are :
» non-standard CLT for ASEP
» algebraic identities for multi-color ASEP
» couplings to compare different ASEPs



Non-standard CLT for ASEP
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1 Ky Z

We start ASEP on Z from 1Z§,W, ("step initial data”) and denote

X, (t) = position at time f of the particle that started in 1.

Theorem (Corollary of Johansson '00 (for p=1),
Tracy-Widom '09)

We have for ky with ky/N — o € (0,1) that
NlinooP (XkN(g(kN, C)) < N — kN) =1- FGUE(Cf(a)),
(a(1-a))'/®



Multi-color ASEP
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we have N particles on [1; N] with colors 1,...,N

each particle moves as in ASEP, but jumps to sites
occupied by smaller color are impossible

encoded by a permutation = mapping positions to colors
invariant measure is the Mallows measure

#inv()
M(r) = P/ q;N 7

where inv(7) are the inversions of =, for ¢ = 0, M is the
Dirac measureon 7(i) = N —i+1



Multi-color ASEP
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» we have N particles on [1; N] with colors 1,...,N

» each particle moves as in ASEP, but jumps to sites
occupied by smaller color are impossible

» encoded by a permutation 7 mapping positions to colors



Multi-color ASEP
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we have N particles on [1; N] with colors 1,...,N

each particle moves as in ASEP, but jumps to sites
occupied by smaller color are impossible

encoded by a permutation 7 mapping positions to colors
when we project down and only distinguish between
particles of color smaller equal k and greater than k, we
recover ASEP



Bringing into equilibrium

» Consider a permutation of [g; b] and let [c; d] C [a; b] :
» Example : [a; b] = [1;8] and [c; d] = [2; 4]

® 9 © 0 © ® @ o
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» for TASEP to bring into equilibrium [c; d] means that we
order the colors in [c; d] in decreasing order

» more generally, it means to distribute the colors in [c; d]
according to the Mallows measure



Bringing into equilibrium

» Consider a permutation of [g; b] and let [c; d] C [a; b] :
» Example : [a; b] = [1;8] and [c; d] = [2; 4]
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» for TASEP to bring into equilibrium [c; d] means that we
order the colors in [c; d] in decreasing order

» more generally, it means to distribute the colors in [c; d]
according to the Mallows measure



Color-position symmetry

» we start with the identity permutation
® ® @ &6 6 O
| | | | | | | |
1 2 3 4 5 6 7 8

» bring into equilibrium [cy; di], then [cy; db]
» here: [c1; di] = [2;4] and [c2; db] = [4; 7]



Color-position symmetry

» we start with the identity permutation
® ® ®© &6 & O
| | | | | | | |
1 2 3 4 5 6 7 8

» bring into equilibrium [cy; di], then [cy; db]
» here: [c1; di] = [2;4] and [c2; db] = [4; 7]



Color-position symmetry

» we start with the identity permutation
® ® ®©® &6 6 O
| | | | | | | |
1 2 3 4 5 6 7 8

» bring into equilibrium [cy; di], then [cy; db]
» here: [c1; di] = [2;4] and [c2; db] = [4; 7]



Color-position symmetry

» we start with the identity permutation
® ® ®©® &6 6 O
| | | | | | | |
1 2 3 4 5 6 7 8

» bring into equilibrium [cy; di], then [cy; db]
» here: [cy; di] = [2;4] and [cp; db] = [4;7]
> run the process up to time ¢

> this results in a permutation ;



Color-position symmetry

» we start with the identity permutation
@ ® @ & 6 @
—t——t—F—+
1 2 3 4 5 6 7



Color-position symmetry

» we start with the identity permutation
® @ © ©® @
I | | | | | |
1 2 3 4 5 6 7

> run the process up to time ¢



Color-position symmetry

» we start with the identity permutation
® @ @ ©® @
I | | | | | |
1 2 3 4 5 6 7

> run the process up to time ¢
» bring into equilibrium [cy; db] = [4; 7]



Color-position symmetry

we start with the identity permutation

>
® @ @ @ 6
I | | | | |
1 2 3 4 5 6
> run the process up to time ¢
» bring into equilibrium [cy; db] = [4; 7]
» bring into equilibrium [cy; di] = [2; 4]
> this results in a permutation 7;



Color-position symmetry

We have the following unintuitive identity:

Proposition (Bufetov-N. '22)
The permutations =, ' and # are equal in law.
» source of this identity is purely algebraic (using Hecke
algebras, cf. [Bufetov '21+], also [Borodin-Bufetov ’20])

» since m; maps positions to colors, whereas 7?[1 maps
colors to positions, this is a color-position symmetry



Color-position symmetry

We have the following unintuitive identity:

Proposition (Bufetov-N. '22)
The permutations =, ' and # are equal in law.

» source of this identity is purely algebraic (using Hecke
algebras, cf. [Bufetov '21+], also [Borodin-Bufetov ’20])
» since m; maps positions to colors, whereas 7?[1 maps
colors to positions, this is a color-position symmetry
Main application:
» (m,t > 0) starts from a ‘complicated” permutation, which

can be projected down to (a perturbation of)
O =11 + 1220

» (@, t > 0) starts from the identity, which can be projected
down to step initial data (CLT available)



The permutation g

Consider ASEP on a very large segment with this step initial
data:

00000000000000000000
“NN — ky Kn NN+ N

We bring into equilibrium [-NN; NN + N]:
00000000000000000000
—NN — ky kn NN+ N

We bring into equilibrium [-NN — ky; 0]:
0000000000000 0000000
—NN — ky 0 kn NN+ N

This is very close to a shift of ¢°, we call it {°



The permutation 7

> X,y free parameters

» in the identity, we project down on colors < x (black),
colors in (x, y] (grey) and colors > y (white)

Our initial configuration thus is

Do : 000000000000 0060600C0C0O0Q
“NN — ky X y NN + N

After time t, the process may look like this:

D¢ Q@O0O000000000000000000
NN _ ky, 0 NN+ N




Bringing into equilibrium

Dy 00000000 000000000000
NN — Ky 0 NN+ N

In ©; we bring into equilibrium [-NN — ky; 0] :

Dy 0000000 0000000000000
NN _ gy —NN 0 NN+ N

Afterwards, we bring into equilibrium [-NN; NN + N] :

A

D : 00000000000000000000
—NN — Ky —NN 0 NN + N




Reminders

X:=N—ky— N/ y.—N_ky+N/1°
Recall By(c) be the event that CO ¢) looks like this:
OO000O00® . O .........
X (e NN R o)




Reminders

X:=N—ky— N/ y.—N_ky+N/1°
Recall By(c) be the event that CO ¢) looks like this:
OO000O00® . O .........
X (e NN R o)

We call By(c) be the event that fg(kN 0) looks the same:

OOOOOOOO. . O .........

% £,y N—ky Ry

0
9(kn,c) CQ(k/\/ C))



Reminders

X:=N—ky— N/ y.—N_ky+N/1°
Recall By(c) be the event that CO ¢) looks like this:
OO000O00® . O .........
X (e NN R o)

We call By(c) be the event that fg(kN 0) looks the same:

OOOOOOOO. . O .........

% £,y N—ky Ry

0
9(kn,c) CQ(k/\/ C))

Recall ©; from the previous slide:

A

Dt 00000000 000000000000
—NN — ky —NN 0 NN+ N




As corollary of the color-position symmetry, we have:

Proposition (Bufetov -N.)
We have

A

P(Bn(c)) =P (a// black particles in ©; are at positions > 0,

all holes in ®; are at positions < O) . (2

» the L.h.s. of (2) is very close to P($) < g(kn, C))

» the r.h.s. of (2) concerns two events involving only
particles/holes

» using couplings, we can eventually compute the r.h.s. with
the CLT for ASEP: It converges to Fgue(cf(«))



Thank you for your attention !





