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1 Subject and main result

Give conditions for the excess heat to vanish at zero temperature for
Markov jump processes.

In particular: Heat capacity tends to zero with temperature for quite
general (but finite state space) interacting particle systems.
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1 Subject and main result

Explain the setup, define heat, excess heat and heat capacity.

Nonequilibrium particle system, driven but in contact with heat bath
at T .
It constantly dissipates in the stationary distribution.

Ask for the excess heat when changing the temperature.

T

Figure: Boundery driven exclusion process
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2 Markov jump process

Connected and finite graph G = (V, E)
▶ Position of random walker at time t is Xt ∈ V.
▶ Transition rate k(x, y) > 0 for the jump from state x to y

⇔ {x, y} ∈ E .

t
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2 Markov jump process

Connected and finite graph G = (V, E)
▶ Position of random walker at time t is Xt ∈ V.
▶ Transition rate k(x, y) > 0 for the jump from state x to y

⇔ {x, y} ∈ E .
Corresponding backward generator L is matrix{

Lx,y = k(x, y) if y ̸= x

Lx,x = −
∑

y k(x, y)

Master equation: d
dtρt = L†ρt.
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2 Stationary distribution and dependence on parameters

▶ Assume irreducibility of the graph:
There is a unique Stationary probability distribution ρs > 0,
solution of L†ρ = 0.

Notations: ⟨f⟩s =
∑

x

f(x)ρs(x)

⟨f(Xt) |X0 = x⟩ = etLf(x)

▶ Parameters λ = (β, α) with α = (α1, α2, . . . , αn) ∈ A ⊂ Rn.
=⇒ transition rates kλ(x, y)

For every λ, stationary distribution ρs
λ.
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2 Nonequilibrium dynamics

For every vertex x, energy E(x, α)

Equilibrium dynamics - Detailed balance:

log kλ(x, y)
kλ(y, x) = 1

kBT
qα(x, y), with qα(x, y) = E(x, α) − E(y, α)

Nonequilibrium dynamics - Local detailed balance:

log kλ(x, y)
kλ(y, x) = 1

kBT
qα(x, y), with qα(x, y) = E(x, α)−E(y, α)+W (x, y)

▶ qα(x, y) is the heat to the environment when x → y
W (x, y) = −W (y, x) is the irreversible work done by the
environment in the transition x → y
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2 Nonequilibrium dynamics

log kλ(x, y)
kλ(y, x) = 1

kBT
qα(x, y), with qα(x, y) = E(x, α)−E(y, α)+W (x, y)
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2 Nonequilibrium dynamics

log kλ(x, y)
kλ(y, x) = 1

kBT
qα(x, y), with qα(x, y) = E(x, α)−E(y, α)+W (x, y)

▶ Expected heat flux when in state x:

Pλ(x) :=
∑

y

kλ(x, y)qα(x, y).

▶ Expected heat flux: ⟨Pλ⟩s
λ ≥ 0.
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3 Time-dependent parameters

Smooth time dependence λ(t), t ∈ [0, τ ] with image Γ in R+ × A

Define λε(t) := λ(εt), t ∈ [0, ε−1τ ].

Let ε ↓ 0 ⇒ quasistatic process.

λ(0) ⇒ ρs
λ(0)

λ(εt) ⇒ ρs
λ(εt)

R+ × A

Γ
λ(τ) ⇒ ρs

λ(τ)
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4 Excess heat

At every time t the time-dependent Master equation

∂

∂t
ρε

t = L†
λ(εt)ρ

ε
t .

Remember 〈
Pλ(εt)(Xt)

〉ε
=

∑
x

Pλ(εt)(x)ρε
t (x)〈

Pλ(εt)
〉s

λ(εt)
=

∑
x

Pλ(εt)(x)ρs
λ(εt)(x)

⟨Pλ(Xt) | X0 = x⟩λ = etLλPλ(x)
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4 Excess heat

〈
Pλ(εt)(Xt)

〉ε
=

∑
x

Pλ(εt)(x)ρε
t (x)〈

Pλ(εt)
〉s

λ(εt)
=

∑
x

Pλ(εt)(x)ρs
λ(εt)(x)

⟨Pλ(Xt) | X0 = x⟩λ = etLλPλ(x)

For given λε, define the excess heat Qε towards thermal bath at β and
the quasipotential Vλ

Qε :=
∫ τ/ε

0
dt

(〈
Pλ(εt)(Xt)

〉ε
−

〈
Pλ(εt)

〉s

λ(εt)

)
Vλ(x) :=

∫ +∞

0
dt (⟨Pλ(Xt) | X0 = x⟩λ − ⟨Pλ⟩s

λ)
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4 Result

Qε :=
∫ τ/ε

0
dt

(〈
Pλ(εt)(Xt)

〉ε
−

〈
Pλ(εt)

〉s

λ(εt)

)
Vλ(x) :=

∫ +∞

0
dt (⟨Pλ(Xt) | X0 = x⟩λ − ⟨Pλ⟩s

λ)

Proposition

lim
ε↓0

Qε = Q(Γ) =
∫

dλ · ⟨∇λVλ⟩λ

This is independent of parametrization of the curve.

Key:
lim
ε↓0

1
ε

∣∣∣ρε
t (x) − ρs

λ(εt)(x)
∣∣∣ = (L†

λ)−1∇λρs
λ(x)
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4 Heat capacity

The heat capacity
C(β) := β2

〈
∂Vλ

∂β

〉
λ

In equilibrium: C(T ) = d⟨Eα⟩s
λ

dT

Theorem
Under some conditions

lim
β↑∞

C(β) = 0

Extension of Nernst heat postulate.
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4 Example - Active particle

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
T

1.0

0.5

0.0

0.5

1.0

C(
T)

 = 0.30
 = 0.34
 = 0.38
 = 0.42
 = 0.46

α ε

ε
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4 Some conditions

▶ “Avoid degeneracy”:
∃ δ > 0 uniform in α and x such that as β ↑ ∞

|ρs
λ(x) − δx,x∗(x)| ≤ e−δβ

▶ “No delay condition”

⇒ Vλ(x) < ∞ uniformly in β ↑ ∞
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4 Counterexample

k(x, y) = 1
1 + e−β(q(x,y)) , q(x, y) = E(x) − E(y) + W (x, y)

ε

E(x) = 4

E(y) = 2 E(z) = 3

E(u) = 10

E(v) = 5
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5 Key in proof of theorem

Vλ(x) :=
∫ +∞

0
dt (⟨Pλ(Xt) | X0 = x⟩λ − ⟨Pλ⟩s

λ)

can be obtained as solution of equations∑
x′

k(x, x′)
(
Vλ(x′) − Vλ(x) + qα(x, x′)

)
= ⟨Pλ⟩s

λ

together with ⟨V ⟩ = 0.
Use this to show that there is a graphical representation for Vλ in
terms of trees and forests in the graph:

Vλ(x) = 1
W

∑
y

w (Fx→y) (−Pλ(y) + ⟨Pλ⟩s
λ).
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5 Spanning forests

y x

zu
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Thank you!
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