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1  Subject and main result

Give conditions for the excess heat to vanish at zero temperature for
Markov jump processes.

In particular: Heat capacity tends to zero with temperature for quite
general (but finite state space) interacting particle systems.
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1  Subject and main result

Explain the setup, define heat, excess heat and heat capacity.
Nonequilibrium particle system, driven but in contact with heat bath
at T

It constantly dissipates in the stationary distribution.

Ask for the excess heat when changing the temperature.

Figure: Boundery driven exclusion process
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2  Outline

@® Definitions and Notations
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2  Markov jump process

Connected and finite graph G = (V,€)
» Position of random walker at time t is X; € V.

» Transition rate k(z,y) > 0 for the jump from state = to y
< {z,y} €€.
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2  Markov jump process

Connected and finite graph G = (V,€)
» Position of random walker at time t is X; € V.

» Transition rate k(z,y) > 0 for the jump from state = to y
< {z,y} €€.

Corresponding backward generator L is matrix

{Lx,y = k(xay) if y#ua
La:,x = _Zy k(xay)

Master equation: %pt = Lip,.




2  Stationary distribution and dependence on parameters
> Assume irreducibility of the graph:

There is a unique Stationary probability distribution p* > 0,
solution of Lip = 0.

Notations: (f)® = Zf(az)ps(:n)

(f(X0) [ Xo = x) = e f ()
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2  Stationary distribution and dependence on parameters
> Assume irreducibility of the graph:
There is a unique Stationary probability distribution p* > 0,
solution of Lip = 0.
Notations: (f)® = Zf(az)ps(:n)
x

(f(X0) [ Xo = x) = e f ()

» Parameters A = (f, ) with o = (aq, o, ..., a,) € A CR™.
= transition rates kj(z,y)

KU LEUVEN



2  Stationary distribution and dependence on parameters
> Assume irreducibility of the graph:

There is a unique Stationary probability distribution p* > 0,
solution of Lip = 0.

Notations: (f)® = Zf(az)ps(:n)

(f(X0) [ Xo = x) = e f ()

» Parameters A = (f, ) with o = (aq, o, ..., a,) € A CR™.
= transition rates kj(z,y)

For every A, stationary distribution p3.
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2 Nonequilibrium dynamics

For every vertex z, energy E(x, )

8 KU LEUVEN



2 Nonequilibrium dynamics

For every vertex z, energy E(x, )

Equilibrium dynamics - Detailed balance:

kk(l‘ay) 1

log o(z,y), with go(2,y) = E(z,a) — E(y, a)

ka(y,7) kT’




2 Nonequilibrium dynamics

For every vertex z, energy E(x, )

Equilibrium dynamics - Detailed balance:

kA(:an) 1 .
lo = o(x,y), with go(z,y) = E(z,a) — E(y, o
Nk (2,9) da(z,y) = E(z,0) — E(y, a)

Nonequilibrium dynamics - Local detailed balance:

ka(z,y) 1 _
10 = a\T, 5 Wlth o\, = F T, - F ,Q +W x,
Tlga) ~ T de(@9); with galz,y) = Bz, 0)=B(y, )+ W (2,)

» go(x,y) is the heat to the environment when x — y
W(x,y) = —W(y,z) is the irreversible work done by the
environment in the transition + — y
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2 Nonequilibrium dynamics

k})\(I,y) 1

lo = o(z,y), with ¢o(z,y) = F(z,a)—E(y, a)+W(x,
) kBTq( y) Ga(,y) = E(z, 0)=E(y, o)+ W(z,y)




2 Nonequilibrium dynamics

k})\(fl?,y) 1

lo = o(z,y), with ¢o(z,y) = F(z,a)—E(y, a)+W(x,
) kBTq( y) Ga(,y) = E(z, 0)=E(y, o)+ W(z,y)

SN
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2 Nonequilibrium dynamics

IOg kﬁ)\(fl?,y) — 1 q
k})\(y,fﬂ) kBT

o(T,y), with qo(z,y) = E(z,a)—E(y, a)+W (z,y)

> Expected heat flux when in state x:

Pa(x) ==Y ka(z,9)qa(z, y).
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2 Nonequilibrium dynamics

IOg kﬁ)\(fl?,y) — 1 q
k})\(y,fﬂ) kBT

o(T,y), with qo(z,y) = E(z,a)—E(y, a)+W (z,y)

> Expected heat flux when in state x:

Pa(x) ==Y ka(z,9)qa(z, y).

> Expected heat flux: (Py)} > 0.
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3  Outline

© Quasistatic limit
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3 Time-dependent parameters
Smooth time dependence A(t), t € [0, 7] with image I in RT x A
Define A*(t) := A(et), t € [0,e717].

Let € | 0 = quasistatic process.

Rt x A
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4  Qutline

O Excess heat and heat capacity
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4  Excess heat

At every time t the time-dependent Master equation

9 t
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4  Excess heat

At every time t the time-dependent Master equation

_ gt
api = L}\(at)pf

Remember

<7D/\ (e) (Xt > ZPA(at

<P)\(5t)>)\(5t) = Z 73A(st) x)p)\(et) (z)

(PA(X1) | Xo = z), = e Py(2)
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4  Excess heat

<7)/\ ) (Xt > ZPA(at
<P)\(st)> et %: Paety (@) p3 (e (2)
(PA(X1)| Xo = z), = APy (2)

For given A®, define the excess heat (). towards thermal bath at 8 and
the quasipotential V)

Qe = /07/5 dt <<7D/\(€1t)(Xt)>‘E - <P’\(Et)>i(st)>

W)= [ a P Xo = ), — (P3)
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4  Result

Qe :

T/e € s
/0 dt <<77,\(at)(Xt)> - <P/\(Et)>>\(6t))

+oo

Vi(z) : dt ((Px(X1) | Xo = x), — (PA)3)

[
S~

Proposition

lim Q. = QD) = [ dA- (Va1A),

This is independent of parametrization of the curve.

Key:

1
lim —
el0 €

pi(@) = P (@)] = (L) ' Vapi (@)
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4 Heat capacity

The heat capacity

oV,
ci-(32)
(8) 9B /A

In equilibrium: C(T") = d<§;>i
Theorem
Under some conditions

lim C(8) =0

Broo

Extension of Nernst heat postulate.
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4 Example - Active particle
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4 Some conditions

> “Avoid degeneracy:
39 > 0 uniform in « and z such that as 8 1 oo

103(2) = da,+ (2)] < 7%
> “No delay condition”

= Vi(x) < oo uniformly in 81 0o
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4  Counterexample

1

k@ y) = T aea

q(z,y) = E(z) — E(y) + W(z,y)

E(x)=14
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5  Outline

@ Proof
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5 Key in proof of theorem

V@)= [ de (P Xo = o)y = (P3)

can be obtained as solution of equations

D k(x,2') (Va(z') — Valz) + qa(z,2")) = (Pa)3}

together with (V) = 0.
Use this to show that there is a graphical representation for V) in
terms of trees and forests in the graph:

Va@) = 75 3w (FF) (<Paly) + (P)3).
Y
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5 Spanning forests

N
M
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Thank you!
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