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Abstract

In 1973, R. E. Miles obtained an explicit characterization of the typical cell of the planar
Poissonian tessellation, by means of the distributions of the indisc and the triangle circumscribed
to the cell. In this paper, we propose a different proof, using the classical formula of Slivnyak
for Poisson point processes. Not only the method is simple and rigorous, but it also extends
the result of Miles to any dimension d > 2. We deduce from it some other properties of the
geometrical characteristics of the typical cell.

Introduction.

Let ® be a Poisson point process in R¢, d > 2, of intensity measure

(A = /0 e /S La(rw)dva(u)dr, A € BR),

where v, is the area measure of the unit-sphere S41.

Let us consider for all z € RY, H(z) = {y € R¢;(y — z) -z = 0}, (z - y being the usual scalar
product). Then the set H = {H(z);z € ®} divides the space into convex polyhedra that constitute
the so-called d-dimensional Poissonian tessellation. This tessellation is isotropic, i.e. invariant in
law by any isometric transformation of the Euclidean space.

This random object was used for the first time by S. A. Goudsmit [7] and by R. E. Miles ([10],
[11] and [13]). In particular, it provides a model for the fibrous structure of sheets of paper.

Miles introduced in particular the notion of empirical (or typical) cell associated to the tessel-
lation. Recent contributions about the law of the area of the typical cell and the famous D. G.
Kendall conjecture were provided by A. Goldman [5] and I. N. Kovalenko [8]. The fundamental
frequencies of the cells have been studied by A. Goldman [4] and have been useful to obtain in-
formations about the frequencies of the cells of the Poisson-Voronoi tessellation [6]. Central limit
theorems have been provided by K. Paroux [17] in this context. Besides, we have obtained the
explicit distribution of the radius of the smallest disk centered at the origin containing the Crofton
cell in the plane [2].

Miles obtained [13] in the two-dimensional case the explicit distributions of the indisk radius
and the circumscribed triangle of the typical cell, which has provided numerous results concerning
the area, the perimeter and the number of vertices. His method (see [13]) essentially relies on
the concept of convex circuit in R? and the ergodic properties of the tessellation (see also [3]);
Nevertheless, it can not be generalized to any dimension.

In this work, we propose a new approach which is easier and can be extended to any dimension
d > 2. Tt consists to use famous Slivnyak’s formula which is a fundamental tool for the study
of Poisson-Voronoi tessellations [15]. Nevertheless, to use this formula in our context, we need to
describe the typical cell of R. E. Miles with a Palm procedure [16]. In the first section, we actually
obtain such a description via the (stationary) point process of the centers of inballs of the cells
constituting the tessellation. We then prove in the second section the principal result concerning
the construction of the typical cell via the law of the inball radius and the circumscribed simplex. In
the last section, we show how to obtain some new informations about the geometric characteristics
of the typical cell by using Slivnyak’s formula.

All the results presented here were announced in a previous note [1].



1 Preliminaries.

Let ® be a Poisson point process in R? of intensity measure

w(A) =E) 1a().

zed

The process @ is a measurable application which takes values in the space M, of the locally finite
sets of R? endowed with the cylindric o-field 7, generated by the applications

soA:{M" — NU{too} =, gy

v o #(ANy)

For any positive measurable function f on the product space (R?)" x M, n € N*, which is invariant
by permutation of the first n coordinates, we have Slivnyak’s formula (see for example [16]):

E Y f69)= o [Br €20 a) (1)

665(")
where 6(71) denotes the space of sets of ® with cardinal n, and where

dE(€) = dpu(€r) - du(n), €= {61, En} € BT,

Let us now take the measure

+0o0
pa) = [ [ taudn), AeBE), ©)

and consider the associated Poissonian tessellation [12]. We will note Cj the cell of the tessellation
containing the origin. We show [4] that the cell Cy (called the Crofton cell) is a.s. well-defined. Let
us denote by Cg the set of cells included in the open ball B(R) centered at the origin, with radius
R > 0 and Np = #Cpr. Besides, we consider the space K of the convex compact sets of R endowed
with the usual Hausdorff topology and h : K — R a translation-invariant, bounded measurable
function.

We have the following result [4]:

Theorem 1 The means

1
N 2 e B>, (3)
CeCgr

converge a.s. to a constant Eh (the empirical mean) satisfying

Bh— 1 ( h(Co) )
E (1/V4(Co)) ~ \Va(Co) )’
where Vg denotes the d-dimensional Lebesgue measure.

Let us define ¥ as the point process constituted with the centers of the inballs of the cells of the
tessellation. The invariance by any translation of the Poissonian tessellation [4] implies that U is



a stationary (locally finite) point process. We fix a Borel set B C R¢ verifying 0 < Vy(B) < +oo.
The typical cell C, in the Palm sense, then is defined by the following formula:

2d
Eh(C) = E h(C 4

where h : K — R runs throughout the set of bounded measurable functions and where wq is the
Lebesgue measure of the unit-ball of R? (the constant wgywq_19/2¢ is the intensity of the process
More generally, the definition of C implies that the following formula, called Campbell’s formula,
is satisfied: .

2
Ef(C y)dy=——E —2,%), )
[ i€y = =B 1(C6) - 2,2) @

2€W

for all measurable function f: K x R — R, .
Repeating word for word the method of J. Mgller described in [16], page 66 (applying to any

stationary point process), we show the identity

B 1 h(Co)
BhO) = B @vac <Vd<oo>) ' (©)

Comparing (6) with Theorem 1, we deduce that:

Theorem 2 For all translation-invariant, bounded measurable function h, we have

Eh = Eh(C).

2 The principal result.

For all z € ¥, we note B(z) the inball of the cell C(z) and S(z) the simplex constructed with the
support hyperplanes of C(z) which are tangent to B(z). Besides, let us consider

={z- (z-2);z € ®,H(z) N B(z) = 0},

||l ||2
the point process associated to the hyperplanes which do not intersect B(z) (taking the point z as
new origin).

Then, denoting by Cy(®,) the Crofton cell associated to the hyperplanes H(y), y € ®,, we have
easily

C(z) = 5(2) N (z + Co(®))- (7)

Let us consider a random couple (S, 6), where S is a (random) simplex and disa point process
such that the joint distribution is given by the formula (analogous to (4)):

E > h(S(2) - 2)1{a,naz0}, (8)

zeVNB

E{h(s)l{i;nA:@}} WaWd— 1dVd

satisfied for every positive measurable function h : K — R, , and every fixed Borel set A € R¢;B C
R? such that 0 < Vy(B) < +oo.



Applying (8) to a function g(S,®) = k(S N Cy(®)), where h is translation-invariant, we obtain
thanks to (7), the equality
Eh(S N Cy(®)) = Eh(C),

which means

¢ SN0y (D). (9)
It then remains to determine the distribution of the couple (S, ZI;)
To this end, let us consider the set A of all the subsets ¢ C R%, #¢ = d+ 1, such that the associated
hyperplanes H(z), z € &, form a (d + 1)-simplex of R?. For all £ € A, let us denote by S(£) (resp.
B(¢) and ¢(€)) the simplex associated to & (resp. the inball of S(£), and the center of this ball).
Besides, we define

As = {6 € 3" N A:BE)NH(z) =0 V1€ d).

The set Ag is in one-to-one correspondence with the set of the points of ¥ via the application
& — c(&); it is also in one-to-one correspondence with the set {S(z);z € ¥} via the application S.
Using (8), it implies that

E{h(S)1 5040y} = g ldVd E z(d: )h c(§)1(c(§))1as (€)1, na=0}-
€€q> +1

Applying now Slivnyak’s formula (1), we get from the preceding equality

d
T T M — O )14©)

P{H(z) N B(¢) = 0, Y € &; B¢ N A = 0}dp+ (¢)(10)

E{h(8)1{<f>mA:0}} =

It remains to explicit this integral via appropriated change of variables, and we deduce the principal
result:

Theorem 3 (1) Let us consider a ball of center zero and (random) radius Ry of law
P{R; >t} = exp{—og4t}, t>0,

where 04 = vg(S471).
(2) Let us construct a simplex S circumscribed to this ball such that the (d + 1) directions
Up, - ,Uys € S from the center to the intersecting points are independent from R; and have a
joint distribution given by:

d2¢
(d+ 1)os?wi—1*

where dvg@tY) (u) = dug(ug)...dvg(ug), u = (ug, ..., uq) € (ST 141,

(o, -+, Ua)l(P)(u) = Ao, s Ua)La(w)dzg ™+ (u), (11)

A= {(ug, - ,ug) € (S¥1)¥*1:no half-sphere contains ug, - , uq}, (12)

and A(zg, ..., Tq), o, ...,zq € R, denotes the d-dimensional Lebesque measure of the simplex with
vertices at xg,: -+ ,Xq- R

(3) Let us take a point process @ independent from Up, - - ,Uq such that conditionally to Rr =,
r >0, @ is distributed as a Poisson point process of intensity measure 1p(ycdpu.

Then we have the following equality in law:

C'Y SN Cy(D).



Proof. The following lemma provides a formula of change of variables of Blaschke-Petkantschin
type (see for example [14]):

Lemma 1 We have:
14(8)da (&) = dIA(u)1 4(u)dzd Rdrg 4t (u).

Proof of Lemma 1. We first remark that A is in bijection with R? x R* x A (where A is defined
n (12)) by associating to each & = {&p,--- ,&3} € A, z = ¢(£), the radius R of B({) and the
unit-directions ug, - - - ,uq from c(¢) to &, - - - , &4 respectively.

Let us define for all 0 <4 < d, p; = ||&]| and v; = & /p; € S¢! such that

dp(&i) = 1p;>0dpidva(vi)-
It is easy to prove that

—u; else
So the jacobian of the one-to-one correspondence
(Z,R,U(),"' ,’U,d) — (p()a' ** 5 Pd> V05" "t 7Ud)
is
A B
=& bl
where C =0, D = Iy441) is the unit-matrix,
280 0
ugt 1 0 2t
A= - ], and B=
udt 1 .0
0 0 2

Consequently, J = det A = d!A(ug, - ,ug).0
Let us go back to the proof of Theorem 3. Applying the preceding change of variables to the
calculation of the integral in the equality (10), we obtain

d
B gos0)) = 5o BT [ T A LW w), (13)

where
Z(u) = /0+00 h(S(Rug,- - , Rug))

/BP {H(m) N (z+ B(R)) = 0; (:c - ﬁ(:c : z)) ¢ AVz € (I)}dzdR.



Let us notice that

{(H(x) —2)NB(R) = 0; (:1: - ﬁ(x : z)) ¢ AVz € @}

:{H(x—ﬁ(x-z))ﬂB(R)zm; (w—ﬁ@v%)) ¢AV$€‘1)}- (14)

Besides, the set {ac - ﬁ(w cZ);T € @} is distributed as ® (see for example [5]). Consequently,
we deduce from (14) and the Poissonian property of ® that for all z € RY,

P{(H(w) —z)N B(R) = 0 (a:— ﬁ(mz)) ¢ AVz € (b}
=P{®N(B(R)UA) =0} = exp{—u(A\ B(R))} exp{—04R}.(15)

Inserting (15) in the equation (13), we get that:
_ the inball radius of S is exponentially distributed with parameter o .
_the directions from the origin to the points of tangency of S with its inball have a joint distribution
given by (11) and are independent from the inball radius.
_ Conditionally to the fact that the inball radius of § is equal to r, r > 0, d is distributed as a
Poisson point process of intensity measure 1p(;)cdp.

So the property (9) provides us the required construction of C.O

3 Some consequences of the method concerning geometric char-
acteristics of the Poissonian tessellation.

In this section, we show how to use the same method to obtain new (or not) informations about
the typical cell.

As an example, let us denote by Ni(C) (resp. Vi(C)) the number of k-dimensional faces (resp.
the k-dimensional Hausdorff measure) of the typical cell C, 0 < k < d.

Theorem 4 We hdave:

(1) BY(C) = s,
(2) ENi(C) = 2¢7(9)
(8) P{Ny1(C)=d+1} = d+12i1+tud . A b(u) () d7gt+L (u),

where b(u), u € A, denotes the mean width of the szmple;v which admits u as the set of its contact
points with its inball.

Proof. (1) Let us first recall a well-known result due to R. E. Miles [12]:

Lemma 2 (Miles, 1969) The intersection of a Poisson hyperplane process of R? of intensity
measure given by (2) with a affine sub-space of R¢ of dimension k, 0 < k < d, is equal in law to a
Poisson hyperplane process of RF of intensity measure Mk,d given by:

wd 1 +oo f
prd(A) = / / (r,u)dvg(u)dr, A € B(RY). (16)
Sh-1

We—1

Let us show the following intermediary lemma:



Lemma 3 Let us consider for all 0 < k < d, the measure Ay defined by

A(B)=E Y Wi(BNF), BeB®RY,
FeFy,

where Fy, denotes the set of all k-dimensional faces of the tessellation and Vj, is the k-dimensional
Hausdorff measure.
Then the equality

A =crq- Vg (17)
is satisfied, c 4 being the mean k-dimensional measure of the tessellation per unit of volume such
that ik

d\ wewqg—1*"
Chd = _— . 18
k,d (k) wk2d_k ( )

Proof of Lemma 3. The result (17) comes from the fact that the measure Ay is invariant by any
translation in R?, so is proportional to the Lebesgue measure of R%.

Let us show the result (18) by a reasoning of induction: it is clearly verified for k = d.
Let 0 < k < d — 1. Taking B equal to the unit-ball of R?, we have

Ak (B) = ck,dwd

= E Y  VBnH(@)N- NH(z4-)).
{z1, g1 }EP

Applying Slivnyak’s formula (1), we obtain

Ak(B) = ﬁ / Vi(BN H(z1) NN H(zg_g))dp ") (z) (19)

1
- T / / Vid[B N H(z1) N+ 0 H(zg-1-4)] 0 H(zg) p(@a) da®'=H) ().
Applying Lemma 2 to the section of the tessellation with the (k + 1)-dimensional space
H(z1)N---H(xg—k—1), we obtain:

1 Wd—1
Ap(B) = . 20
k(B) d— k)wdck—i—l,d o Ck k+1 (20)
Besides, applying (19) to k =d — 1, we get that
1
Ci—1,4 = — [ Va—1(BN H(tu))dtdvg(u)
Wa JB
1
Wd—1 9y d=1 o)
= 1-1 dt = —.
wd Od/o ( ) 2

Consequently, inserting the equality ¢k 11 = 0k+1/2 in (20), we deduce the following relation of

induction:
c . k + ]. w UJk+1 c
k,d 20d—F) d—1 ik k+1,d>

which, after iteration, gives us the formula

A -
hd = \k) w2 F



Let us go back to the determination of EVi(C), 0 < k < d: repeating an argument of Mgller (see
[16], page 62), we consider for all convex polyhedron P, & (P) the set of all k-dimensional faces of
P. If B C R? is a fixed Borel set such that 0 < Vy(B) < 400, we then have

Va(B)era = E Y Vi(BNF)
FE]:k

EZ Z Vi(BNF),

2€V¥ Fe&L(C(2))

the last equality being due to the fact that any k-dimensional face of the tessellation is in the
boundary of exactly 2¢~% different cells.
Using formula (5) we obtain that

wWqw
Va(B)cka = d; 1 e k/ Y. V(BNF)dz

Fe&p(C+x)
wdwd—l
= T o k/ Y V(BN (F +x))ds
Feé‘k(c)
d
WqWd—1
= ~r EVaBE ) Vi(F
Fe&L(C)

the last equality being deduced from Fubini’s theorem. Consequently, we deduce that

- 24
EVk(C) == 2d ka’dW
_ 20
wy—1*wg’

(2) We consider the proces ¥y, 0 < k < d, of the centers of the inballs of the k-dimensional faces
of the tessellation. Uy is stationary and we will note Ay its intensity. Besides, we define for any
z € Uy, F(z) as the unique k-dimensional face associated to z.

Then the typical k-dimensional face Cj, 4 associated to the tessellation is well-defined by the following
formula:

Bh(Cra) = 5B S h(F(2) )

for all bounded measurable function h and any fixed Borel set B C R, satisfying 0 < V(B) < +o0.
Let us notice in particular that the typical d-face Cqq4, is the classical typical cell C associated to
the tessellation. The following lemma gives a characterization of the law of the typical k-face and
can be easily deduced from a joint use of Slivnyak’s formula and Lemma, 2:

Lemma 4 Cj 4 is equal in law to the typical cell of a Poissonian tessellation in RE with intensity
measure given by the formula (16).

A direct consequence of the preceding lemma and the point (1) of Theorem 4 is that

2k Wg—1 k
EVi(Cra) = L X (wd 1)
2k
= . 21
WrWq 1’c ( )



Following the same method as Mgller [16] (prop. 3.2.2) for Voronoi tessellations, we can show that:
EVi(Cr,a) = EVi(C)/EN,(C). (22)

Consequently, from (21) and (22), we obtain:

EN,(C) = 2¢°F (Z)

(3) Counsidering the construction of C obtained in Theorem 3, and denoting by ®,., r > 0, a Poisson
point process of intensity measure 1p(,)cdu, we have

2d
(d+ 1wiwg—1

P{Ny1(C)=d+1} = ¥ / P{#(®, N S(Ru)) = 0}e %7 A(u)1 4 (u)dRdrg! ™) (u).

Let us then notice that it is well-known (see for example [4]) that

P{#(2, N S(Ru)) = 0} = exp {~R (Tb(u) — 0a) }

where b(u) denotes the mean width of the simplex S(u). Consequently, after an integration with
respect to R, we deduce

2d+1

P{Ny1(C) =d+1} = ad+ 1)&}(21&}(1_1(1 / ?((’:)) 1A(u)dy—dd+1(u).lj

Remark 1. Let us remark that it is possible to use the point (1) of Theorem 4 to obtain the
expression of the intensity Ay of the process ¥ of the centers of the inballs of the cells, and more
precisely to show that A\; has the same value as the intensity cp g of the process of the vertices of
the tessellation: actually, we could define the typical cell by associating to each cell constituting
the tessellation its lowest vertex (which exists a.s.) and by replacing the process ¥ of the centers
of the inballs by the process A of the lowest vertices. It is easy to notice that any vertex of the
tessellation is the lowest vertex of exactly one cell, which means that A can be exactly identified
to the process of the vertices of the tessellation, of intensity ¢y 4. We can also remark that the two
definitions of the typical cell provide the same law because in the two cases, the equality (6) is
satisfied.
Repeating the argument of Mgller [16] (page 62), we obtain that:

EVy,C) =X =coa

Remark 2. The formula (1) of Theorem 4 was previously obtained by Matheron [9]. The equalities
(2) and (3) were given by R. E. Miles [12] when d = 2, 3; for any d > 3, they are new.
Aknowledgement. I thank Professor A. Goldman for having suggested me the idea of using
Slivnyak’s formula in order to generalize the theorem of Miles to any dimension.
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