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We construct weak physical solutions to a nonlinear system of conservation laws from the
microscopic dynamics.

� What kind of weak solutions?

� What are the �physical� boundary conditions and how to incorporate in a weak sense?

� What about uniqueness? Maybe use entropy solutions?

Answer: we shall focus on L2-valued theremodynamic entropy solutions, i.e. weak solutions
with the boundary conditions intended in a weak sense, which obey the second law of thermo-
dynamics.
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Considered the following system of N anharmonic oscillators in d=1.

Where qi(t)2R is the position of the particle i at time t and pi(t)2R is its momentum. Particle
0 is kept fixed at the orgin (q0= p0=0) and at particle N is applied an external force ��
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We take all the masses equal to 1 and let the particles i and i¡1 interact via a potential energy
V (ri), where ri := qi¡ qi¡1.Thus the dynamics is governed by the Hamiltonian
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We perturb the Hamiltonian dynamics with a stochastic noise in such a way that

1. The total length and momentum of the chain are conserved (away from the boundary);

2. The energy is not conserved and the temperature of the chain is kept to the constant �¡1.

3. Mixed Dirichlet-Neumann boundary conditions are enforced.

We also rescale time by the same �space scale� N (hyperbolic space-time scaling) so that the
stochastic dynamics of fri(Nt); pi(Nt)gi=1N is generated by

LN
��(t) :=NAN +N�N(SN +SN

b )

where AN is the generator of the Hamiltonian dynamics (Liouville generator), SN is the generator
of the noise in the bulk, SN

b generate the noise at the boundary and �N tunes the strength of
the noise. �N blows up as N!1, so we have �a lot� of noise, also at the boundaries.
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The case �N=N", for ">0 fixed has been treated in [M. '21], where we show that the limiting
system is the following viscous system of conservation laws�

@tr
"¡ @xp"= "@xx�(�; r")

@tp
"¡ @x�(�; r")= "@xxp

" (1)

with boundary conditions

p"(t; 0)= 0; �(�; r"(t; 1))= ��(t); @xp
"(t; 1)=0; @xr

"(t; 0)= 0:

Here and below � will denote the macroscopic tension (i.e. the pressure) and it will depend in
a non-trivial way from the interaction V (r), namely � is the expectation of V 0 w.r.t. a certain
Gibbs measure.

The proof is done via the relative entropy method, which requires existence of smooth solutions
of (1). Such existence has been proven in [M., Alasio '19] globally in time.
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The boundary conditions are inherited by the microscopic model and are such that the macro-
scopic Clausius inequality holds. Define the local free energy as

F(t; x; �) :=
Z
0

r(t;x)

�(�; �)d�+ 1
2
p(t; x)2:

Then, assuming ��(0)= �0, ��(+1)= �1, the total free energy F =
R
0

1Fdx satisfies the Clausius
inequality

F (�; �1)¡F (�; �0)6W ; (2)

where W is the total work done by the external force ��(t).

For an isothermal transformation (2) is equivalent to the second law of thermodynamics

S(�; �1)¡S(�; �0)> 0: (3)



Vanishing viscosity macroscopic limit - 1 7/12

In [M., Olla '20] we work entirely at the macroscopic level and we perform the limit "!0 on the
solutions (r"; p") of the viscous system. We obtain L2-valued thermodynamic entropy solutions
to the p-system �

@tr¡ @xp=0
@tp¡ @x�(r)= 0

(4)

with boundary conditions

p(t; 0)= 0; �(r(t; 1))= ��(t): (5)

Both the (4) and (5) must be intended in a weak sense.

Clausius inequality is also inherited from the viscous equation and it also holds in a weak sense.
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The essential steps to perform the limit "! 0 for the system�
@tr

"¡ @xp"= "@xx�(�; r")
@tp

"¡ @x�(�; r")= "@xxp
"

are the following. Fix T > 0

! Prove that r" and p" are bounded in L2([0; T ]� [0; 1]). This implies that r" and p" admit
(up to a subsequence) L2-weak limits r?; p?.

! Prove that "
p

@xr
" and "

p
@xp

" are bounded in L2([0; T ]� [0; 1]).

! Pass to a weak form of the above system

! Prove that �(�; r")*�(�; r?)

The last step is highly non-trivial due to the nonlinearity of � . This is achieved via compensated
compactness, and it only further requires regularity/decay properties of � .
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In [M., Olla '20] we perform the HDL directly with vanishing but strong viscosity. Namley we
take

lim
N!1

�N
N
= lim
N!1

N

�N
2 =0:

and obtain L2-valued weak solution for the p-system.

We also the macroscopic boundary conditions and deriving the Clausius inequality. The latter is
obtained directly from the microscopic dynamics using the microscopic production of the relative
entropy together with its variational formulation.
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The idea here is to build two �empirical processes� rN(t;x) and pN(t; x) from mesoscopic blocks
of size K =K(N) and replicate the compensated compactness argument. This in turn means
deriving the following properties

! L2 bounds for rN, pN (for free from the microscopic dynamics)

! L2 bounds for the �gradients� of rN, pN (two-block estimate with explicit bounds)

! One-block estimate with explicit bounds

In order to obtain the desired one and two-block estimates we make a crucial use of a log-Sobolev
inequality.
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Thank you for your attention!


