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Abstract

In this paper, we are interested in the behaviour of the typical Poisson-Voronoi cell in the
plane when the radius of the largest disk centered at the nucleus and contained in the cell
goes to infinity. We prove a law of large numbers for its number of vertices and the area of
the cell outside the disk. Moreover, for the latter, we establish a central limit theorem as well
as moderate deviation type results. The proofs deeply rely on precise connections between
Poisson-Voronoi tessellations, convex hulls of Poisson samples and germ-grain models in the
unit ball. Besides, we derive analogous facts for the Crofton cell of a stationary Poisson line
process in the plane.

1 Introduction and main results

Consider Φ = {xn; n ≥ 1} a homogeneous Poisson point process in R
2, with the two-dimensional

Lebesgue measure V2 for intensity measure. The set of cells

C(x) = {y ∈ R
2; ||y − x|| ≤ ||y − x′||, x′ ∈ Φ}, x ∈ Φ,

(which are almost surely bounded polygons) is the well-known Poisson-Voronoi tessellation of
R

2. Introduced by Meijering [17] and Gilbert [8] as a model of crystal aggregates, it provides
now models for many natural phenomena such as image analysis [18], molecular biology [7],
thermal conductivity [15] and telecommunications [2], [1]. An extensive list of the areas in
which the tessellation has been used can be found in Stoyan et al. [32] and Okabe et al. [22].

In order to describe the statistical properties of the tessellation, the notion of typical cell C
in the Palm sense is commonly used [20]. Consider the space K of convex compact sets of R

2

endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set B ⊂ R
2 such that

0 < V2(B) < +∞. The distribution of the typical cell C is determined by the identity [20]:

Eh(C) =
1

V2(B)
E
∑

x∈B∩Φ

h(C(x) − x),

where h : K −→ R runs throughout the space of bounded measurable functions.
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†Postal address: Université René Descartes Paris 5, MAP5, UFR Math-Info, 45, rue des Saints-Pères 75270
Paris Cedex 06, France. E-mail : pierre.calka@math-info.univ-paris5.fr

‡Postal address: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina
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Consider now the cell

C(0) = {y ∈ R
2; ||y|| ≤ ||y − x||, x ∈ Φ}

obtained when the origin is added to the point process Φ. It is well known [20] that C(0) and
C are equal in law. From now on, we will use C(0) as a realization of the typical cell C.

Let us denote by Rm (respectively RM ) the radius of the largest (resp. smallest) disk
centered at the origin included in (resp. containing) C(0) and by D(x, r), x ∈ R

2, r > 0, the
closed disk centered at x and of radius r. The boundary of the polygon C(0) then is contained
in the annulus A = D(0, RM ) \ D(0, Rm). In [4], an explicit formula for the joint distribution
of the pair (Rm, RM ) and a characterization of the asymptotic behaviour of the tail of the law
of RM given Rm were obtained. In particular, it was proved that conditioning on the event
{Rm = r}, r > 0, the thickness of the annulus A is a.s. “of order r−1/3” when r goes to infinity
(Result A).

Besides, a recent work by Hug, Reitzner and Schneider [11] has provided a proof (valid for
any dimension) of D. G. Kendall’s conjecture: the shape of the typical Poisson-Voronoi cell,
given that the area of the cell goes to infinity, tends a.s. to a disk (Result B). This last result
is stronger than Result A in the sense that the conditioning only holds on the area and not on
the inradius but it is also weaker because it does not give so precise estimates for the thickness
of the smallest annulus containing the boundary of C.

A natural question arising from Result A is: how to estimate precisely the growth of the
number of vertices of C(0) and the decrease of the area of C(0) outside the indisk when the
inradius goes to infinity?

Let us denote by Cr (resp. Nr) a random variable taking values in the space of compact
convex sets of R

2 endowed with the Hausdorff metric (resp. in N) whose distribution is given
by the law of C(0) (resp. the number of sides of C(0)) conditioned by the event {Rm = r}. It
is well-known [19] that

(Φ|Rm = r)
D
= Φr ∪ {(2r) · X0},

where Φr is a Poisson point process of intensity measure 1D(0,2r)c(x)dx and X0 is a uniform
point on the boundary of D = D(0, 1). The cell Cr is then equal in law up to a uniform random
rotation to the zero cell (i.e. the cell containing the origin) of the line process consisting of
the bisecting lines of the segments between zero and the points of the process Φr ∪ {2r · x0},
where x0 is the deterministic point (1; 0). The processes Φr and related random objects can be
coupled on a common probability space in several natural ways, the coupling which we shall
have in mind without further mentioning whenever stating L1 or a.s. convergence results below
is constructed in (2).

In the present paper we focus our interest on the asymptotic behaviour of Nr and V2(Cr \
D(0, r)) when r → +∞. Explicit formulae for the distributions of the number of sides and the
area of the typical Poisson-Voronoi cell have been recently obtained (see [5], [6]) but it seems
difficult to use them to obtain asymptotic results.

Note that for a regular polygon of indisk D(0, r) whose all vertices are located in ∂D(0, r +
r−1/3), the number of sides and the area outside the indisk are asymptotically equivalent to
(π/

√
2)r2/3 and (2π/3)r2/3 respectively. The intution provided by the results of [4] on the

thickness of the annulus A = D(0, RM ) \ D(0, Rm) conditioned on {Rm = r}, as discussed
above, suggests that the conditioned cell Cr should have the number of its sides Nr of the same
asymptotic order r2/3.

Our first main result states that this is indeed the case and the growth rate for Nr is exactly
of the anticipated order r2/3.
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Theorem 1 When r → +∞, we have:

(i) ENr ∼ a1r
2/3,

(ii) lim
r→+∞

Nr(a1r
2/3)−1 = 1 in L1,

where a1 = 4π · 3−1/3Γ(5/3) ≈ 7.86565.

Note that we write αr ∼ βr to indicate that limr→∞ αr/βr = 1.

Remark 1 It should be emphasised that our proof of Theorem 1 relies on an asymptotic equiv-
alence between Nr and the number of vertices of the convex hull generated by a homogeneous
Poisson point process of intensity 4r2, which we establish below.

This equivalence is easily verified to be strong enough to also conclude a central limit theorem
and variance asymptotics of order r2/3 for Nr, should the corresponding results hold for the
convex hulls. Such results are stated in Groeneboom’s work [10] and were also stated in the
previous version of our paper, yet upon its submission we have learnt from several independent
sources that some of the proofs of [10] may contain errors (although we do not know of what
nature). However, we explain more precisely in a remark following the proof of Theorem 1 how
the central limit theorem for Nr can be deduced from Groeneboom’s results.

The second theorem of this paper characterizes the asymptotic behaviour of the area V2(Cr\
D(0, r)) which is proved to be of order r2/3 up to a multiplicative constant. The obtained results
include a central limit theorem and a moderate deviation principle.

Theorem 2 With r → +∞ we have

(A1) lim
r→+∞

V2(Cr \ D(0, r))

2π(4π)−2/3b1r2/3
= 1 in L1 and a.s. for b1 := Γ

(
2
3

) (
π
2

)2/3
3−1/3,

(A2) VarV2(Cr \ D(0, r)) ∼ b2r
2/3 for some constant b2 > 0,

(A3)
V2(Cr \ D(0, r)) −EV2(Cr \ D(0, r))√

VarV2(Cr \ D(0, r))

D−→ N (0, 1),

(A4) For each η > 0 we have

I(η) := − lim sup
r→∞

r−2/3 log P (V2(Cr \ D(0, r)) ≥ (1 + η)EV2(Cr \ D(0, r))) > 0

and, moreover, limη→∞ I(η)/η = (4π)1/3 · b1 with b1 as in (A1),

(A5) For arbitrarily large L > 0 and arbitrarily small η > 0 there exists Q := Q(L, η) such
that

P
(
V2(Cr \ D(0, r + Qr−1/3)) ≥ ηr2/3

)
= O(exp(−Lr2/3)),

(A6) For each η > 0 we have

lim inf
r→∞

1

log r
log (− log P (V2(Cr \ D(0, r)) ≥ (1 − η)EV2(Cr \ D(0, r)))) ≥ 2/3.

We can likewise obtain limit theorems for the Crofton cell of a stationary Poisson line process
(see in particular [12], [9], [13] about the limit shape of the Crofton cell with a large area).
More precisely, let us consider Φ′ a Poisson point process in R

2 of intensity measure (in polar
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coordinates) 1R+(r)drdθ. The line process associated with Φ′ (which is invariant in law by any
translation of the plane) consists of the set of lines

L(x) = {y ∈ R
2; < y − x, x >= 0}, x ∈ Φ′, (1)

where < ·, · > denotes the usual scalar product on R
2. Denoting by H(x) the half-plane

delimited by L(x), x ∈ R
2, and containing the origin, the Crofton cell P0 is given by the

equality

P0 =
⋂

x∈Φ′
t

H(x).

We successively define the radius R′
m of the largest disk centered at the origin included in P0,

Pr a random polygon distributed as the Crofton cell P0 conditioned by {R′
m = r} and N ′

r the
number of vertices of Pr. In [4], we proved (see ibidem, Theorem 10) that when r → +∞, the
boundary of Pr is included with “a great probability” in an annulus centered at the origin of
thickness r1/3. If the polygon Pr were regular, the number N ′

r and the area outside the indisk
would be respectively of order (π/

√
2)r1/3 and (2π/3)r4/3. Up to multiplicative constants, we

are going to show that these orders are correct for both the number of vertices and the area
outside the indisk.

The following two theorems are the equivalents of Theorems 1 and 2 for the Crofton cell P0.

Theorem 3 When r → +∞, we have:

(i) EN ′
r ∼ a′1r

1/3,

(ii) lim
r→+∞

N ′
r(a′1r

1/3)−1 = 1 in L1,

where a′1 = 24/3π · 3−1/3Γ(5/3) ≈ 4.95505.

Theorem 4 With r → +∞ we have

(A1’) lim
r→+∞

V2(Pr \ D(0, r))

2ππ−2/3b1r4/3
= 1 in L1 and a.s. with b1 as in Theorem 2,

(A2’) VarV2(Pr \ D(0, r)) ∼ b′2r
7/3 for some constant b′2 > 0,

(A3’)
V2(Pr \ D(0, r)) −EV2(Pr \ D(0, r))√

VarV2(Pr \ D(0, r))

D−→ N (0, 1),

(A4’) For each η > 0 we have

Ĩ(η) := − lim sup
r→∞

r−1/3 log P (V2(Pr \ D(0, r)) ≥ (1 + η)EV2(Pr \ D(0, r))) > 0

and, moreover, limη→∞ Ĩ(η)/η = π1/3b1,

(A5’) For arbitrarily large L > 0 and arbitrarily small η > 0 there exists Q := Q(L, η) such
that

P
(
V2(Pr \ D(0, r + Qr1/3)) ≥ ηr4/3

)
= O(exp(−Lr1/3)),

(A6’) For each η > 0 we have

lim inf
r→∞

1

log r
log (− log P (V2(Pr \ D(0, r)) ≥ (1 − η)EV2(Pr \ D(0, r)))) ≥ 1/3.
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The methods for proving Theorems 1 and 2 on the one hand and Theorems 3 and 4 on the other
one are very similar so from now on we will essentially concentrate on the Poisson-Voronoi typical
cell C.

Instead of taking a limit when the value r of the inradius goes to infinity, we shall rewrite
the number Nr so that the asymptotic results will be obtained as the intensity of the underlying
Poisson point process in the plane goes to infinity. The area V2(Cr \ D(0, r)) will be dealt with
along the same lines.

To this end, let us denote by Λ the Poisson point process on R
2 × R+ of intensity measure

1Dc(x)1R+(t)dxdt and by Ψt, t ≥ 0, the Poisson point process on R
2 defined by

Ψt = {x ∈ R
2 \ D ;∃s ≤ t, (x, s) ∈ Λ}. (2)

Then r−1Cr = h1/r(C) (where h1/r(x) = (1/r) · x, x ∈ R
2) is easily seen to coincide in law with

the zero cell Cr
0 of the line process consisting of the set of lines L(x), x ∈ Ψ4r2 ∪ {x0} (see (1)

and recall that x0 stands for the deterministic point (1;0) as defined above). In other words,
we have

Cr
0 = ∩x∈Ψ4r2H(x) ∩ H(x0). (3)

In particular, Nr coincides with the number of vertices of C r
0 while V2(Cr \D(0, r)) has the same

law as r2V2(Cr
0 \D). Therefore, throughout the paper we will study the asymptotic behaviour of

Cr
0 rather than directly that of Cr. Note also that, as already mentioned above, the relation (2)

provides the coupling of the random objects considered in this paper on a common probability
space, which we have in mind whenever stating a.s. or L1-type results.

As already mentioned above, the proofs of Theorems 1 and 2 strongly rely on a connection,
established via inversion of the complex plane, between the problems of determining the asymp-
totics of Nr and V2(Cr \D(0, r)), and some results on the asymptotic behaviour of convex hulls
of high intensity Poisson point processes inside the disk D, existing in the literature (see [24],
[25], [16], [3], [29], [30]).

An extension of our results to higher dimensions will be given in a future paper.

2 Proofs

In Lemma 1, we first relate Nr to the number of vertices of the convex hull of a certain Poisson
point process in D denoted by Yt, t = 4r2. Moreover, in Lemma 2 we represent the area
V2(Cr

0 \ D) as a defect measure of a certain germ-grain model in D, generated by Yt. Then,
Lemmas 3 and 4 provide us with a comparison method between Yt and some homogeneous
Poisson point processes so that the classical results on convex hulls due to Rényi & Sulanke
[24] and Massé [16] can be applied, yielding a description of the asymptotic behaviour of Nr

as stated in Theorem 1. The assertions of Theorem 2 are then concluded by combining the
comparison Lemma 3 with appropriate results in [3], [28], [29], [30] and [31].

Lemma 1 For every r > 0, Nr coincides in law with the number N̂4r2 of vertices of the convex
hull generated by the process Y4r2 ∪ {x0}, where Yt, t ≥ 0, is a Poisson point process inside the
disk D, of intensity measure (in polar coordinates) t · µ(dρ, dθ) = (t/ρ3)1(0,1)(ρ)dρdθ.

Proof. Let us consider the inversion I on R
2 \ {0} defined by

I(x) =
1

||x2|| · x, x 6= 0.
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I is a well-known involutive application which preserves the boundary of D, transforms the
interior of D into its exterior and conversely. In particular, I transforms any line or circle into
a line or a circle.

An easy calculation shows that the image in I of the process Ψt, t ≥ 0, is an inhomogeneous
but rotation invariant Poisson point process Yt in D, of intensity measure (t/r3)1(0,1)(r)drdθ
to be denoted by t · µ. Any line L(x), x ∈ Ψt, is transformed into a circle having the segment
[0; I(x)] as its diameter. Note also that I(x0) = x0. Let us denote by G(y) := D(y/2, ||y||/2) a
position-dependent grain and by

Y [t] = ∪y∈YtG(y)

the germ-grain model in D associated with the process Yt (see [30]). The image of the comple-
ment of the disk D in the Crofton cell C r

0 is then the set D \ [Y [t] ∪ G(x0)]. Consequently, we
have that

Nr = #
{
y ∈ Y4r2 ∪ {x0}; ∂G(y) ∩ ∂[Y [4r2] ∪ G(x0)] 6= ∅

}
. (4)

Let us notice that the boundary of the grain G(z) associated with a given point z ∈ Yt intersects
the boundary of the union of grains Y [t] ∪G(x0) if and only if the convex hulls of Yt ∪ {x0} and
of (Yt \ {z}) ∪ {x0} have different support functions. This yields the equivalence

∂G(z) ∩ ∂
[
∪y∈Yt∪{x0}G(y)

]
6= ∅ ⇐⇒ ( z is an extremal point of the convex hull of Yt ∪ {x0} ).

The equality (4) implies then that Nr is precisely the number N̂4r2 of points on the boundary
of the convex hull of the process Y4r2 ∪ {x0}.

2

The lemma below is a direct conclusion of the proof of Lemma 1.

Lemma 2 With the notation as in the proof of Lemma 1, for each r > 0 the area V2(Cr
0 \ D)

coincides in distribution with the measure µ(D \ [Y [t] ∪ G(x0)]) for t = 4r2.

Let us consider for every α > 0 and t ≥ 1 the event

At,α =
{
D(0, 1 − 23αt−α) 6⊂ Y [t] ∪ G(x0)

}
. (5)

The following lemma shows that both the vertex process of the convex hull of Yt and the defect
measure µ(D\Y [t]) are concentrated with an overwhelming probability in a close vicinity of the
boundary ∂D.

Lemma 3 There exists a positive constant c > 0 such that for every 0 ≤ α < (2/3),

(i) P(At,α) =
t→+∞

O
(
e−c·t(1−(3/2)α)

)
and limt→∞ 1At,α = 0 a.s.;

(ii) E
(
N̂t1At,α

)
=

t→+∞
o
(
t1/3
)

;

(iii) tE
(
µ(D \ Y [t])1At,α

)
=

t→+∞
o(t1/3).

Proof. (i) Applying the inversion I, we get from the equality I
(
Y [t] ∪ G(x0)

)
=
[
C

√
t/2

0

]
c

that

for every α ≥ 0,

{
D(0, 1 − 23αt−α) 6⊂ Y [t] ∪ G(x0)

}
=

{
D(0, (1 − 23αt−α)−1) 6⊃ C

√
t

2
0

}
. (6)
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The asymptotic result ([4], Theorem 5) on the distribution of the radius RM conditioned by the
value r of the inradius Rm can be rewritten as: for every 0 < c < 8/(3

√
2) and 0 < α′ < 1/3,

P
{

D(0, r + r−α′
) 6⊃ Cr

}
=

r→+∞
O

(
e−c·r

1
2 (1−3α′)

)
. (7)

Since Cr
0 is the scale 1/r homothetic image of the cell Cr, we deduce from (7) that

P
{

D(0, 1 + r−(α′+1)) 6⊃ Cr
0

}
=

r→+∞
O

(
e−c·r

1
2 (1−3α′)

)
. (8)

Replacing r by
√

t/2 in the preceding result and combining the equality of events (6) with the
inequality 1 + 22αt−α ≤ (1 − 23αt−α)−1 for t large enough and α > 0, we get the first assertion
of (i). To obtain the almost sure convergence put

Ãt,α :=
{

D(0, 1 − 23αdte−α) 6⊂ Y [t] ∪ G(x0)
}

with d·e standing for the (upper) integer value. Note that for k ∈ N, t ∈ (k − 1, k], we have

Ãt,α ⊆
{

D(0, 1 − 23αk−α) 6⊂ Y [k−1] ∪ G(x0)
}

,

with the probabilities of the right hand side events easily verified to satisfy the same bound
as that for At,α in the first part of (i). Consequently, applying the Borel-Cantelli lemma we
conclude that limt→∞ 1Ãt,α

= 0. The proof of (i) is now completed by the observation that

At,α ⊆ Ãt,α for all t > 0.

(ii) Use the Hölder-Schwarz inequality to get

E
(
N̂t1At,α

)
≤
√

P(At,α)

√
EN̂2

t . (9)

Thus, in view of the assertion (i) it remains to show that

EN̂2
t = O(t2). (10)

By Lemma 1, the assertion (10) is equivalent to

ENr
2 = O(r4),

which is proved by elementary arguments in the Appendix.

(iii) The proof goes much along the same lines as that of (ii) above. We use the Hölder-Schwarz
inequality to get

E
(
µ(D \ Y [t])1At,α

)
≤
√

Eµ2(D \ Y [t])
√

P(At,α). (11)

We shall show that
Eµ2(D \ Y [t]) = O(t2) (12)

which, in view of (11) and the assertion (i), is more than enough to establish (iii). Using Lemma
2, (12) is equivalent to

E[V2(Cr \ D(0, r))]2 = O(r4).

The proof of this last result is postponed to the Appendix.
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Remark 2 It is clear that removing the extra deterministic grain G(x0) does not affect the
validity of the above results. Indeed, recalling the equality (3) and using a similar argument as
for [4], Theorem 5, we obtain a result analogous to (8): for every 0 < α < 1/3,

P
{

D(0, 1 + r−(α′+1)) 6⊃ ∩x∈Ψ4r2H(x)
}

=
r→+∞

O

(
e−c·r

1
2 (1−3α′)

)
.

It remains to adapt the proof of Lemma 3 in order to get from the preceding result that for
every 0 ≤ α < (2/3),

P
{

D(0, 1 − 23αt−α) 6⊂ Y [t]
}

=
t→+∞

O

(
e−c·t

1
2 (2−3α)

)
. (13)

Near the boundary of D, the intensity measure of the process Yt is “not far” from a multiple
of the Lebesgue measure. Let us denote by Xt a homogeneous Poisson point process in D of
intensity measure t1(0,1)(ρ)ρdρdθ, t ≥ 0.

In the next lemma, we prove by a coupling method (in the spirit of [30], Lemma 2) that the
trace of Yt in any annulus D \ D(0, 1 − ε), 0 < ε < 1, can be seen as a superset of the trace of
Xt and a subset of the trace of X t

(1−ε)4
.

Lemma 4 For every ε > 0, there exists a coupling of the point processes Xt, Yt and X t
(1−ε)4

such that almost surely,

Xt ∩ [D \ D(0, 1 − ε)] ⊆ Yt ∩ [D \ D(0, 1 − ε)] ⊆ X t
(1−ε)4

∩ [D \ D(0, 1 − ε)].

Proof. Consider a Poisson point process Π on D×R+ with intensity measure 1D(y)1R+(t)dydt.
It is then easily verified that Xt coincides in distribution with the set of points
{y ∈ D ; ∃s ≤ t, (y, s) ∈ Π} and X t

(1−ε)4
with {y ∈ D ; ∃s ≤ t/((1 − ε)4, (y, s) ∈ Π}. Likewise,

Yt coincides in law with {y ∈ D ; ∃s ≤ t/||y||4, (y, s) ∈ Π}. Since every y ∈ D \ D(0, 1 − ε)
satisfies

t ≤ t

||y||4 ≤ t

(1 − ε)4
,

these representations of the point processes Xt, Yt and X t
(1−ε)4

are easily seen to provide the

required coupling.

2

Proof of Theorem 1. By Lemma 3 (i), (ii), we have that E(N̂t1At,α) = o(t1/3) for every

0 < α < 2/3. Consequently, it suffices to study the asymptotic behaviour of the number N̂t,
t = 4r2, of vertices of the convex hull of Yt ∪{x0} outside the event At,α. We have on the event
Ac

t,α that the vertices of the convex hull of Yt∪{x0} are located in the annulus D\D(0, 1−23αt−α).

Let us denote by Mt (resp. M̃t) the number of vertices of the convex hull of Xt (resp.
Xt ∪ {x0}). Applying Lemma 4 to ε = 23αt−α, we obtain on the event Ac

t,α that any vertex of
the convex hull of Yt∪{x0} (resp. X t

(1−23αt−α)4
) either is a vertex of the convex hull of Xt∪{x0}

(resp. Yt ∪ {x0}) or is a point of (Yt \ Xt) ∩ [D \ D(0, 1 − 23αt−α)] (resp. (X t
(1−23αt−α)4

\ Yt) ∩
[D \ D(0, 1 − 23αt−α)]).
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Denoting by Rt (resp. St) the number of points in (Yt \ Xt) ∩ [D \ D(0, 1 − 23αt−α)] (resp.
in (X t

(1−23αt−α)4
\Yt)∩ [D \D(0, 1− 23αt−α)]), we then deduce the following inequalities (on the

event Ac

t,α):

Nt ≤ M̃t + Rt (14)

and

Nt ≥ M̃ t
(1−t−α)4

− St. (15)

It now comes from the coupling construction of the point processes in the annulus D\D(0, 1−t−α)
that Rt and St are Poisson variables of respective means

E(Rt) = tµ(D \ D(0, 1 − 23αt−α)) − tV2(D \ D(0, 1 − 23αt−α))

= tπ
(23α+1t−α − 26αt−2α)2

(1 − 23αt−α)2

and

E(St) =
t

(1 − 23αt−α)4
V2(D \ D(0, 1 − 23αt−α)) − tµ(D \ D(0, 1 − 23αt−α))

= tπ
(23α+1t−α − 26αt−2α)2

(1 − 23αt−α)4
.

For α ∈ (1/2, 2/3), we get that

Rt and St −→
t→+∞

0 in mean. (16)

Consequently, using (14) and (15), it only remains to obtain the law of large numbers for M̃t.

To this end, let us now compare the two quantities Mt and M̃t, t ≥ 0. Any vertex distinct from
x0 of the convex hull of Xt ∪{x0} is obviously a vertex of the convex hull of Xt. Conversely, let
us denote by pt (resp. qt) the point of Xt located in the upper (resp. lower) half-disk of D such
that there is no point of the point process Xt above (resp. under) the line through pt (resp. qt)
and x0. If such a point does not exist, we take pt = −x0 (resp. qt = −x0). Then any vertex of
the convex hull of Xt is either a vertex of the convex hull of Xt ∪ {x0} or is discarded when we
add {x0} to the set of points, i.e. is a vertex of the convex hull of the points of Xt located in
the corner corresponding to x0 of the quadrilateral Qt with vertices x0, pt, qt, 0.

Let us denote by Vt the number of “discarded” vertices. Then we have

Mt + 1 − Vt ≤ M̃t ≤ Mt + 1. (17)

Conditionally to the positions of pt and qt, the distribution of the points of Xt inside the
quadrilateral Qt constituted by x0, pt, qt, 0 is the law of a homogeneous Poisson point process of
intensity measure t1Qt(x)dx. Consequently, after making an affine transformation, the number
Vt is the number of vertices in the left-lower corner of the convex hull of a homogeneous Poisson
point process of intensity t in a square.

Using (5.1) in [25] (or equivalently Section 3 in [21]) and Corollary 1 in [16], we deduce that

lim
t→+∞

3E(Vt)(2 ln t)−1 = 1, lim
t→+∞

3Vt(2 ln t)−1 = 1 in probability. (18)
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It remains to apply (5.2) in [25] and Corollary 2 in [16] in order to get that for
c1 = (3π/2)−1/3Γ(5/3)

lim
t→+∞

EMt(2π4/3c1t
1/3)−1 = 1, lim

t→+∞
Mt(2π4/3c1t

1/3)−1 = 1 in probability, (19)

Combining (17) with (18) and (19) and we deduce an L1-law of large numbers (a consequence of

the convergence in probability combined with the convergence of the means) for M̃t when t →
+∞. Putting these conclusions together with the inequalities (14) and (15) and the convergence
stated in (16) we obtain the required results of Theorem 1 for Nt, t = 4r2 (with a1 = 25/3π4/3c1).
Note that even though some of the cited results were originally established for the binomial
rather than Poisson samples, they admit straightforward modifications for the Poisson case as
well, due to the fact that the asymptotic properties of Mt as t → ∞ are only affected by the
behaviour of the underlying sample in infinitesimally close neighbourhoods of the boundary
∂D, see e.g. the Poisson approximation argument in Section 3, Lemma 3.2 of [10]. The proof
is complete.

2

Remark 3 In this remark we discuss a method of obtaining an asymptotic variance estimates
and the central limit theorem for the number of vertices Nr, provided Groeneboom’s paper [10]
is correct.

Using ([10], relations (1.1) and (1.2)) we get, with the same notation as in the proof of
Theorem 1, that

lim
t→+∞

27Var(Vt)(10 ln t)−1 = 1. (20)

Besides, applying ([10], Equality (1.3), Theorem 3.4.), we obtain that there exists a positive
constant c2 such that

lim
t→+∞

Var(Mt)(2π4/3c2)−1 = 1 (21)

and
Mt − 2π4/3c1t

1/3

√
2π4/3c2t1/3

D−→ N (0, 1). (22)

Combining (17) with (20), (21) and (22), we deduce a central limit theorem for M̃t when
t → +∞. As for the law of large numbers, it remains to use the inequalities (14) and (15) and
the convergence (16) to have that

VarNr ∼ a2
2r

2/3,

and
Nr −ENr√

VarNr

D−→ N (0, 1),

where a2 =
√

25/3π4/3c2.

Remark 4 Reitzner has recently proved an almost-sure convergence for the number of vertices
of the convex hull of Xt when t → +∞ [23]. However, his result is valid for unit-balls of
dimension d ≥ 4 so it cannot be applied in our context to obtain the almost-sure convergence
when r → +∞ for the number Nr. This last property requires some additional work on extreme
points of homogeneous Poisson point processes that will take place in a future paper.
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Proof of Theorem 2. The proof uses the representation of V2(Cr
0 \ D), and hence of V2(Cr \

D(0, r))
d
= r2V2(Cr

0 \D) in terms of the defect measure of a high density germ-grain model in D,
as stated in Lemma 2. The area V2(Cr \D(0, r)) coincides in distribution with r2µ(D \ [Y [4r2] ∪
G(x0)]). Since the assertions of Theorem 2 are to be concluded from general results for high
density germ-grain models as stated in [28], [29] and [30], the deterministic grain G(x0) stands
as a nuisance and the first step of our proof is aimed at getting rid of this grain. To this end, we
denote by ρt the (random) radius of the largest disk D(0, ρt) centred in 0, which is completely
contained in Y [t], and we observe that, by standard geometry,

µ
(
D \ Y [t]

)
− µ

(
D \ [Y [t] ∪ G(x0)]

)
= O

(
(1 − ρt)

3/2
)

. (23)

Moreover, using the result (13) with α := 1/2, we get

P
(
ρt < 1 −

√
t
−1
)

= O
(

exp(−ct1/4)
)

, c > 0. (24)

Putting (23) and (24) together we conclude that

P
(
µ(D \ Y [t]) − µ(D \ [Y [t] ∪ G(x0)]) > t−3/4

)
= O

(
exp(−Ct1/4)

)
(25)

for some positive constant C. Recalling that we set t := 4r2, it is easily seen that (25) is more
than enough to safely replace µ(D \ [Y [t] ∪G(x0)]) by µ(D \ Y [t]) when proving the assertions of
Theorem 2 below.

To proceed with our proof, we observe that our germ-grain model Y [t] in close neighbour-
hoods of the boundary ∂D ’differs only negligibly’ from the germ-grain model X [πt] as con-
sidered in Section 3 of [30], defined by X [πt] :=

⋃
x∈Xt

G(x), where Xt is the homogeneous
Poisson point process of intensity t, restricted to D (see the notation introduced in the discus-
sion preceding Lemma 4). Indeed, it follows by Lemma 4 that for arbitrarily small δ > 0, taking
ε := 1 − (1 + δ)−1/4, we can find a coupling of versions of Xt, Xt(1+δ) and Yt such that almost
surely ⋃

y∈Xt∩[D\D(0,1−ε)]

G(y) ⊂
⋃

y∈Yt∩[D\D(0,1−ε)]

G(y) ⊂
⋃

y∈X(1+δ)t∩[D\D(0,1−ε)]

G(y).

Moreover, in view of Lemma 3, (iii), applied with α := 1/2 (see also (24)), for the purpose of
the proof of Theorem 2 we can safely ignore the behaviour of Y [t] inside D(0, 1 − t−1/2).

A further observation in the same spirit is that in close neighbourhoods of the boundary
∂D, the measure µ here differs only negligibly from 2πµ as considered in Section 3 of [30], to be
denoted here by 2πµ∗ here to avoid confusion and defined there by 2πµ∗(dr, dθ) = 1(0,1)(r)drdθ
in polar coordinates.

It is proved in Section 3 ibidem, see (18) there, that on the event that the convex hull
of Xt does contain the origin, the random variables 2πµ∗(D \ X [πt]) and π(2 − bπt) coincide,
with bπt standing for the mean width of the convex hull generated by Xt. The probability
of {0 6∈ conv(Xt)} decays exponentially with t in that there exists a constant c > 0 with
P(0 6∈ conv(Xt)) = O(exp(−ct)), which is negligible in our setting, see e.g. Theorem 2 in [27]
or (3.2) in [14].

This shows that when proving the assertions (A1-A6) of our theorem we can safely replace
µ(D \ Y [t]) by π(2 − bπt), t := 4r2 and, consequently, V2(Cr \ D(0, r)) by πr2(2 − b4πr2) since
V2(Cr \ D(0, r)) coincides in law with r2µ(D \ [Y [4πr2] ∪ G(x0)]) and the effect of adding the
extra deterministic grain G(x0) is negligible as discussed above. It puts us in a position to
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apply Theorem 2 in [30] combined with (20) ibidem (see also Theorem 6 in [28]), stating that
limt→∞ t2/3

E(2 − bπt) = 2b1 with b1 as in (A1), to conclude that

lim
r→∞

EV2(Cr \ D(0, r))

2π(4π)−2/3b1r2/3
= 1.

The strong law of large numbers as stated in Corollary 2 in [29] and Corollary 3 ibidem allow
us to conclude the assertion (A1) of our theorem (technically speaking, we get the conver-
gence of means and the a.s. convergence, but these together yield immediately the required L1

convergence).
The central limit theorem in (A3) follows now from Theorem 6 in [29]. Since for compact

convex K ⊆ R
2 we have the relation b(K) = L(K)/π, with b standing for the mean width and

L for the perimeter, see p.210 in [26], we could alternatively have used the results in Section 5
in [3], which yield also our assertion (A2) (see also Theorem 5 in [29]).

The assertions (A4) and (A5) are now direct consequences of Theorems 8 and 3 in [30]. The
remaining assertion (A6) follows by Theorems 1 and 2 in [31].

Note that even though some of the cited results were originally established for the binomial
rather than Poisson samples, they admit straightforward modifications for the Poisson case as
well, due to the fact that the asymptotic properties of µ(D \ Y [t]) as t → ∞ are only affected
by the behaviour of the underlying germ point process in infinitesimally close neighbourhoods
of the boundary ∂D, see e.g. the comparison formulae (5), (6) and (9), (10) in [29]. The proof
is complete.

2

Proof of Theorems 3 and 4. The image of a Poisson point process of intensity measure
1(r,+∞)(ρ)dρdθ, r > 0, by I ◦ h1/r is a Poisson point process in the disk D of intensity measure
(in polar coordinates) r · ν(dρ, dθ) = (r/ρ2)1(0,1)(ρ)dρdθ. Replacing the measure µ by ν in the
preceding arguments, we easily obtain the results of Theorems 3 and 4.

2

Remark 5 In the same way as for the Poisson-Voronoi typical cell, we could prove a central
limit theorem for the number N ′

r, provided Groeneboom’s results [10] are correct, i.e.

VarN ′
r ∼ a′22 r1/3

and
N ′

r −EN ′
r√

VarN ′
r

D−→ N (0, 1).

3 Appendix

In this section, we give some technical results about the variables Nr and V2(Cr \D(0, r)) which
are useful in the proof of Lemma 3. The proofs here only use elementary facts on the Poisson-
Voronoi tessellation. In particular we do not need to use the analogy provided by Lemma 1 and
Lemma 2 with the convex hulls of the point processes inside the unit disk.

Fact 1 There exist positive constants K and λ such that when r → +∞,

(i) E
(
eλV2(Cr\D(0,r)

)
= O(eKr2

);

(ii) E
(
eλNr

)
= O(eKr2

).

(iii) In particular, when r → +∞, we have E(Nr
2) = O(r4) and E

[
(V2(Cr \ D(0, r)))2

]
= O(r4).
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Proof. (i) Let us apply the method provided by Gilbert [8] in order to estimate the expectation
E (exp{V2(Cr \ D(0, r))}), r > 0.

We first define Rr,V as the radius of the ball centered at the origin which has the same area
as Cr \ D(0, r), r > 0. Then Rr,V satisfies the following inequality for any s ∈ (0, 1):

E

(∫

D(0,Rr,V )
exp(sπ||x||2)dx

)
≤ E

(∫

Cr\D(0,r)
exp(sπ||x||2)dx

)
. (26)

Moreover,

E

(∫

D(0,Rr,V )
exp(sπ||x||2)dx

)
=

1

s
E(exp{sV2(Cr \ D(0, r))}) − 1. (27)

Recalling that Cr is up to a rotation equal in law to the zero cell delimited by the bisecting lines
of the segments between the origin and the points of the process Φr ∪ {2r · x0}, we obtain

E

(∫

Cr\D(0,r)
exp(sπ||x||2)dx

)
=

∫
P{x ∈ Cr \ D(0, r)} exp(sπ||x||2)dx

≤
∫

P{Φr ∩ D(x, ||x||) = ∅} exp(sπ||x||2)dx

≤ 2πe4πr2

∫ +∞

r
exp((s − 1)πr2)rdr

= e4πr2 · 1

1 − s
e(s−1)πr2

. (28)

Combining (26) with (27) and (28), we obtain the point (i) of Fact 1.

(ii) We apply the method due to Zuyev [33] to estimate the expectation E (exp(sNr)),r > 0.
Let F (resp. I) be the union of the four open disks of radius 1 centered at the points (±1, 0),
(0,±1) so that the origin lies on their boundary (resp. the set of points of F belonging to
exactly two of these disks). Besides, we denote by I1, · · · , I4 the connected components of I.

As previously seen, Nr coincides with the number of sides of the Crofton cell C r
0 delimited by

the lines L(x) associated with the points x ∈ Ψ4r2∪{x0} (see the introductory section). Suppose
now that there exists α > 1 such that Ψ4r2 intersects every connected component of αI. In that
case, the number of edges of Cr

0 is at most equal to the number of points of (Ψ4r2 ∪{x0})∩αF .
Consequently, writing E [α] for the event that there exists at least one connected component of
αI which is not hit by Ψ4r2 , we have that for any α > 1 there exists δ,K > 0 such that

E (exp(sNr − s)) ≤ E (exp(s#[Ψ4r2 ∩ F ])) +

+∞∑

n=1

E
(
exp(s#[Ψ4r2 ∩ αnF ])1E [αn−1 ]\E [αn]

)

≤ e4r2(es−1)V2(F)

+4
+∞∑

n=1

+∞∑

k=0

eskP{#[Ψ4r2 ∩ αnF ∩ (αn−1I1)c] = k} ·P(Ψ4r2 ∩ αn−1I1 = ∅)

≤ e4r2(es−1)V2(F) + 4

+∞∑

n=1

+∞∑

k=0

esk

k!
{4r2V2[(αnF) \ (αn−1I1))]}k · e−4r2V2(αn−1I1\D)

≤ e4r2(es−1)V2(F) + 4e4πr2
+∞∑

n=1

exp{4r2α2n−2[(es − 1)(α2v − w) − w]} (29)
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where v (resp. w) denotes the area of F (resp. I1).
When [(es − 1)(α2v −w) − w] < 0 (i.e. s < − ln(1 −w/(α2v))) and r > 1, the series in (30)

is convergent and bounded by a constant independent of r. Consequently, since α is arbitrarily
chosen in (1, +∞), we have that for every s < − ln(1 − w/v) and r > 1, there exists δ,K > 0
such that

E (exp(sNr − s)) ≤ δeKr2
. (30)

(iii) Applying Jensen’s inequality to the convex function a(x) = exp(s
√

x), s > 0, x ∈ [1/s2, +∞)
and to the variable max(1/s2, [V2(Cr \ D(0, r))]2), we get

exp
{

s
√

E[(V2(Cr \ D(0, r))2])
}
≤ E(es(V2(Cr\D(0,r))) + e. (31)

Combining (31) with the point (i), we deduce that when r → +∞

E[(V2(Cr \ D(0, r))2] = O(r4).

The same proof holds for E(N 2
r ) as well.

2

Remark 6 For the Crofton cell of a stationary Poisson line process, it is equally possible to
use the same type of arguments to obtain that the second moments of the number of vertices
and of the area of the complementary of the indisk are at most of order r2 when the inradius r
goes to infinity.
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