Exclusion in contact with
infinitely many reservoirs
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The finite variance cade




If jumps are arbitrarily large?

Let p(-) be a translation invariant transition probability given at
z € Z by

where ¢, is a normalizing constant. Since p(-) is symmetric it is
mean zero, that is:

and take v > 2 so that its variance is finite

ai = Z 22p(2) < oo.
Z2€Z




The infinitesimal generator:

Ly = ﬁN,o aF ﬁN,r aF ['N,Z where

(Lxof)(n) =3 Z p(z = y)[f (™) = ()],
:EyEAN
(‘CNEf 9 Z px— C:E 777 )[f(ﬁ ) f(n)]v
TEAN
y<0

(Lnrf)0) =375 22 Pl = Y)ealm B (1) — £(n)]

where



& Heat equation:
2
Api(q) = % 97p:(q)
& 0 =1 Robin b.c.:
9qpt(0) = 2(7;12 (pt(0) — ),
Heat eq. & Robin b.c. 94p(1) = =5 (B — pe(1)),

& Reaction-diffusion eq.:

Qipi(q) = %02 pi(q)
+ 1+ (Vo(g) — Vi(@)pe(q))
& Reaction equation:

opi(q) =+ (Volg) — Vi(g)pe(q))
Above




Stationary solutions:




Characterizing limit points:

A simple computation shows that

(M) Ln((rd H) =2 S py ) [H() ~ H(Z)] mele)
z,YEAN
+% 5 () (e
e X GG -6,

where for all z € Ay
&(N):Zp(y% TN (%) = Z p(y
y>x y<z—N

Extend H to R in such a way that it remains two times
continuously differentiable, and the first term at the RHS is



Let H € C%(R), we have

o2
lim sup sup ‘NQKNH<%) — 7AH(%) =0.

N—oo zEAN

For O(N) = N7 and § < 2 — v the first term above
vanishes as N — oo.




The infinite variance cade




What about v € (0,2)?

Let (—A)Y/2 be the fractional Laplacian of exponent /2 which is
defined on the set of functions H : R — R such that

/°° |H (q)] T
(

—oo (1+]gl)*
by (provided the limit exists)

o H(Q) > H(u)
» :
(—A)W () —cN 21_% - 1jy—g>e W

Let IL be the regional fractional Laplacian on [0, 1], whose action
on functions H € C2°(0, 1) is given by

(LH)(q) = —(-A)"H (g )+V1( )H(q)

) — H(q)
=Cy &l%/ 1|u q\>5 q’1+,y e S (07 1)



Fractional Sobolev space:

.4

The Sobolev space H7/? consists of all square integrable
functions g : (0,1) — R such that ||g]|, /2 < oo, with

lgllay2 = (g, )2 = jj ‘U_ |1+v G =6l 5, 7,

[0 12

The space L2(0,T;H"/?) is the set of measurable functions
f :[0,T) — H? such that fOT | £:l12,,/2dt < oo where

H;«.n/2
1ellz /2 = NFel® + 1L£elI3 o




Hy. Eq. <0 and v € (0, 2)

Reaction equation with Dirichlet b.c.

Bupu(w) = —rp(WVi(u) + Vo(w), (t,w) € [0,T] x (0,1),
pe(0) = o, pi(1) = B t € (0,7
po(u) = g(u), ue (0,1),
if:
& p e L20,T; H/?).
& For t € [0,T] and G € CL>([0,T] x (0,1)) we have

(pt, Gt) — (9, Go) — /Ot (ps, 0sGs) ds

o t
+/€/O <pS,G5>V1ds—/<a/O (Gs, Vo) ds =



Hy. Eq. 0 =0 and v € (0, 2)
Regional fractional reaction-diffusion equation with
Dirichlet b.c.
Oepr(u) = Lpi(u) — spe(w)Vi(u) + £Vo(u), (t,u) € [0,T] x (0,1),
pe(0) =a, p(1)=p t€ (0,7
pO(u) :g(u)’ u € (07 1)7
if :
& pc L20,T;H/?).
& For t € [0,T] and G € CL>°([0,T] x (0,1)) we have that

(01:G) — (5. Gob — [ (pus (0. + 1)) s

t ¢
+ /{/ (ps, V1Gs) ds — /@/ (Gs, Vo)ds = 0.
0 0




Hy Eq v—1) and ~ € (1,2)

Regional fractional diffusion equation with Dirichlet

b.c.

Oypr(u) = Lipy(u), (t,u) €[0,T] x (0,1),
( ) =, ( ) B, te (07T]7
po(u) = g(u), u € (0,1),

if :
& pc L0, T; H/?).
& For t € [0,T] and G € CL>([0,T] x (0,1)) we have that

<pt7Gt> B <97 GO> i /Ot <,05, (88 +L>G5> ds = 0.



Hy- Eq-: 0>~—1and ye (1,2) or § >0 and v € (0,1).

Regional fractional diff. equation with frac.
Robin/Neumann b.c.
Oypr(u) = Lipy(u), (t,u) € 0,T] x (0,1),
Xy(D7pe)(0) = Am(a — p(0)), ¢ € (0,T],
Xy(D7pe)(1) = &m(B — pe(1)), ¢t € (0,T],
po(u) = g(u), u € (0,1),

if:
N = TR i
& For t € [0,T] and G € CH>°([0,T] x (0,1)) we have that

{1, Gt) = (9, Go) — /t (pss (05 +L)Gs>ds

—mn/ {G5(0)(a — ps(0)) + Gs(1)(B — ps(1))}ds = 0.



Integration by parts formula:

For f:[0,1] — R, let

(D7)(0) = lim f(wu?7, (DY) = lim f'(u)(1-u)>"".

u—0~* u—1—

Let v € (0,2) and g € C?([0,1]). Let f :[0,1] — R be
such that u — f(u)u'™ and u — f(u)(1 — u)!=7 are in

C?([0,1]). Then,

(=Lg, f) = X+ [9(1)D7 f(1) = g(0) D7 f(0)] + (=L, 9)

where X is a constant.



Characterizing limit points:

N Ly (N H)) = 5 S ply - ) [HH) - HE) (@)
T,YyEAN
N7 ' N7
b 3 EHR)E) e~ m(@) + 5 X HE(E)E — n(@))
TEAN TEAN

For H with compact support in [a,1 — a] for a € (0,1) we have

Jm [NV Y ply - 2) [H(E) - HE)] - LE)E)| =0
yEAN

Iim [NGR)() - ()] =0,
Jim (NG (F) = (F)| =0

uniformly in [a, 1 — a].



Characterizing limit points:

Thus, the first term on the right hand side above can be
replaced by

(¥, LH) — /OI(LH)(Q)Pt(Q)dqa

as N goes to oco.
The other terms can be replaced by
k(o — ¥, Hr™) + {8 — w}¥, Hr*) which converges to

[ #@r @~ pdada+ [ Hart @@ - pia)dg
0 0

_ /Olmq)vo(q)dq— [ HVi(@pi(a)da

as N goes to oco.



Uniqueness of weak solution:

To prove it we do the following. Let p = p' — p?, where p' and
p? are two weak solutions starting from g. We have
71(0) = p(1) = 0. Then,

t t
(pe, Hy) — /O (s, (as T ]L)Hs>ds at /0 (ViH,, ps)ds = 0.
Take now Hy(s,q) = [/ Gn(r,q) dr where (Gn)n>o is a

sequence of functions in CL>°([0, 7] x (0, 1)) converging to p.
Plug Hy in the equation and take N — oo to get

t rl il t 2 t
/O/Oﬁg(Q)dqd8+5H/0 pstHV/QngH/O psds

From this we conclude the uniqueness.

=0

2
%1



Final picture:

g(ﬁteumann b.c.

Frac. Diﬂé.

Heat & Rob. b.c.

E it Dll)ﬁc Eeﬂfir b.c.

R(%action & Dir. b.c.




Fecture 2: Fluctuations




4

.4

The space of test functions: Let Sy denote the set of func-

tions H € C*°([0,1]) such that for any k € NU {0} it holds
that

for 6 < 1: 92*H(0) = 92*H(1) = 0;

for 0 = 1: 92F+1H(0) = 92*H (0) and
ORFHU(1) = —ORFH (1)

for 0 > 1: 92F1H(0) = 92F+1H(1) = 0.

The density fluctuation field %" is the time-trajectory of
linear functionals acting on functions H € 8y as

YN (H) = H(%) (mix2 (@) = By o2 2)]) -




Operators:

For 6 > 0, let —Ay be the positive self-adjoint operator on
L?[0,1], defined on H € 8y by

O2H (u), if ue(0,1),
NgH(u) = { 92H(0Y), if u=0,
10 T BT

Let Vg : Sg — C*°([0, 1]) be the operator given by
OuH(u), if ue(0,1),

VoH (u) = < on BB = 0,

O HORI v = 1.

Let Tte : 8y — Sy be the semigroup associated to the PDE with
the corresponding boundary conditions with a = g = 0.



Fluctuations: 6 =1




{he 1nitral dtate?

® For each N € N, the measure py is associated to a
measurable profile pg : [0,1] — [0, 1] (This is the same
condition for hydrodynamics!).

e For plY (z) = E,, [no(z)]

N . z\|l <
361%>;|p0(x) po(F)| <

® For
@) (x,y) = Euy In(@)n(y)] — 08 ()00 (y)
it holds that

N <
aE |0 (z,9)] S o



Examples - initial measures:

¢ If for a given measurable profile py : [0,1] — [0, 1], we take
pn as the Bernoulli product measure given by

T

pn{n :n(x) =1} = po(F)
then all the conditions above are true.
® If ugs is the stationary measure, then all the conditions

above are true, by choosing the profile pg as the stationary
profile p given above.



=il

For each NV > 1, let Qn be the probability measure on
D([0,T),84) induced by Y~ and puy.

The sequence of measures {Q x } nen is tight on D([0, T, Sp)
and all limit points @ are p.m. concentrated on paths Y.
satisfying

Y(H) = Yo(T; H) + Wy(H),

for any H € 8. Above W;(H) is a mean zero Gaussian
variable of variance [J ||V17},1,TH||%2,1(plﬂ)dr, where p(t,u)
is the solution of the hydrodynamic equation. Moreover,

Eq [Yo(H) Wi(G)| = 0 for all H,G € S,.




4

If {G%N}NGN converges, as N — oo, to a mean-zero Gaussian
field Yy with covariance given on H, G € Sy by

E [%(H)%(G)| == o(H,G),

then, the sequence {Qy}nen converges, as N — oo, to a
generalized Ornstein-Uhlenbeck process, which is the formal
solution of: O, Y = A1 Ydt + /2x(pt) V1iW;, where T is a
space-time white noise of unit variance. As a consequence,
the covariance of the limit field Y, is given on H,G € 8y by

E [%(H)Ys(G)] = o(T; H, T, G)

+/ <v1Tt1—rH’ VlTsl—rG>L2’1(Pr)dr'
0



From Bernoulli (6 = 1):

Fix a Lipschitz profile pg : [0,1] — [0,1] and suppose to
start the process from a Bernoulli product measure given by
pn{n : n(x) = 1} = po(%). Then, the previous theorem
remains in force and the covariance in this case is given on
H,G € § by

1
EHHH(G) = [ xlpo(w) H@)G(w) du
+ /0 (ViTLLH,V\ TG 121 (ppydr,

where p(t,u) is the solution of the hydrodynamic equation
with initial condition given by po(:).




Stationary (0 = 1):

.4

Suppose to start the process from iz with a # 3. Then, YN
converges to the centered Gaussian field Y with covariance
given on H,G € §y by:

By YY) = [ X(P@)H@G) du
- (55%)" [ 1A H@IGE du

where p(+) is the stationary solution of the PDE.



Associated martingales:

Let H : [0,1] — R be a test function and note that

M (H) = YN )~ Y )~ [ Ny (h) ds

is a martingale where

N2ENYMH Z ANH (% )nsn2()
+ VN [vaHw) — H(§)|fan2(1)

+ VN [H(EZ) + VR H(1)| oy (N - 1),

Note that the second term at the right hand side of the previous
expression is YN (AxH). Above, we have used the notation

ViH(z) = N |HESL-H(%)|, VyH() = N [HE)-H(E).



9 he correlation estimate:

For each z,y € Viy = {(z,y); z,y e N0 <z <y < N} and
t € 10,7, let

or (z,y) = Euylnne(@)nnve)] — of (@)pF ()

and set ¢} (z,y) =0, for =0 or y = N, we set

1
Ny, <
z}y?‘}/(zvltpo (17?/)| SN

1
N <

sup max 4 NIt

t>g (z.y)eVNn et (@9)] N




Fluctuations : 0 # 1




0 4 1:

N2y YN (H ZANH( ) (nan2 (@) = oY (@)
w_vN (0)7sn2(1) = VNV H(1)7n2(N — 1)

Apply last result with C% = \/Nl{kl} + N3/2_91{9>1}-



9 he tnitial measures:

We fix an initial profile pg : [0,1] — [0, 1] which is measurable
and of class C%, and we assume that

Ly
max [pg (¢) = po(F)] S -

Moreover, we also assume that

0<1,
N < N2> o
max a8 < forx =1,N — 1,
yEAN|(pO( y)| {1{7’921
and that

1
max Z ENa
(x,y)EVN ’900 ( y)| il



I he correlation estimate:

NG
N < N2>
max [y (2, y)| S {%7

max T
o (ol (@) S

then,

, 0<1,
sup max |¢ (z, )| ,S{ forr=1,N—1

>0 YEAN L oo>1,

1
sup max T =
t>0 (z,9)€EVN ‘(’Ot @93 N




Ingredients for correlations

Show that ¢} (z,v) is solution of

Aol (z,y) = N2AL ol (z,y) — (VE oY (2))28y=211, (z, 1) € Vv,
gp{v(:c,y) — 07 (SC,y) € aVN,
o (z,y) = By no(@)no )] — pb ()pd (1), (z,y) € Vv U OV,

where A% acts on f: Viy UV — R as
(AN = D cn(u,v)[f(v) - F(u)],
IS%

and it is the infinitesimal generator of the RW in Vi U0V
which is absorbed at V. Above,

it! if lu—v|=1and u,ve Vy,
A(u,w) = N0 if lu—v||=1and ue Vy, vedVy,

0, otherwise.



Ingredients for correlations

Show that p¥(-) is a solution of

Ao (z) = (N?B40))(z), z€ Ay, t>0,
PR(0) = o, p(N) = B, t=0,

where 8%, acts on f: Ay U{0,N} — R as
N
(BYN)(@) = D& (fy) - f(2)), forz €Ay
y=0

and it is the infinitesimal generator of the RW in Ay which is
absorbed at the points {0, N}. Above

1, if ly—xz|=1and z,y € Apn,

i\’]i’@: N_e’ lfl‘:]_,y:oa/Ild‘,j[,‘:_Z\ffl’y:j\f7

0, otherwise.



Ingredients for correlations

The stationary solutions of the equations above are given by

¥y = (0= BV + N~ DV =y 4 N0 - 1)
Paai U (2N? + N — 2)2(2N? + N — 3)
and pY(z) = E,.. [nn2(2)] = anyz + by, where

an = W&_m and by =any(N?—1) +a.

The time spent by the 1-d lQRVV at the points x = 1 and
z =N —1is of order O(§z) (good bound when 6 < 1 but not
when 6 > 1). When 6 > 1 we compare with the reflected RW

and we prove that the time now is of order O(%) We need the
same estimates in the 2-d setting for the time spent by the RW
on the diagonal.




Equilibrium Fluctuations €ong vange




Equilibrium fluctuations

The Bernoulli product measure on 2y
yév(neQN:n(x) SS=Speevia c Ny,

with p = a = (8 is reversible.

The density fluctuation field %" is the time-trajectory of
linear functionals acting on functions H € 8y as

YN (H ZH%(W )= p).




Space of test functions

) if 0 <2—n;

Spir f2—y<0<1;
Sp =

Srepy if0=1;

SNew if 60> 1;

S ::{H e Cc=([0,1]) : HD(0) = HP(1) =0, Vi e N}

Spir i={H € C=([0,1]) : H®)(0) = H®)(1) = 0, ¥i € N}

2mk

21
—H)(0),

Srop ={ H € C([0,1]) : HE*D(0) =

2mK oo, .
= = HC)(1), vi e N}

g

g

H(2i+1)(1)

SNeu ::{H e C*([0,1]) : H®+D(0) = HZ*D(1) =0, Vi e N}



Result:
o

For v > 2, the probability measure Q%N on D([0,T], M)
associated to Y converges as N — oo to a probability
measure concentrated on the formal solution of the SPDE

OV = Ayt + BydWr,
associated to the two continuous martingales
Mi(H) = Yi(H) = Yo(H) — [ Du(AoF)ds;
Ny(H) = My(H)* = t||H]| 3 ,

where Ay := 1922—7§A + Lg<oyk(rt +1r7),

Kk(r=—+rt
By = \/W{IOZQ—WV +1p<o—y (—2;7)}




On the proof:

®

Tightness, which implies the existence of limit points.

Characterize the limit point by the use of Dynkin’s
martingale.

®

® Prove uniqueness of the solution of the martingale
problems. (tricky part).

®

For 6 > 1 the proof is similar to the nearest-neighbour case.
Demanding: Other regimes.
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