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QOutline of the mini-course:

& We will analyse the fluctuations for an exclusion process in
contact with stochastic reservoirs when jumps are:

& Hydrodynamics (Lecture 1);
& Fluctuations (Lecture 2).

Let us start with the simplest case: jumps to

nearest-neighbors.

Now A = [0,1] and Ay = {1,..., N — 1}. The state space of
the Markov process is Qy = {0, 1}~



Zecture 1: Hydrodynamics
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The dynamics:

For N>1let Ay ={1,...,N —1}.

We denote the process by {n; : t > 0} which has state space
Qn = {0, 1}AN.

The infinitesimal generator Ly = Lo + Ly is given on
f:9ny — R, by

N—21
(Lnof)m) = 3 5 (O - £m).
ap=ll
Lnp) = 55 2 e @) (F0") - fm)
ze{1,N—-1}

where for x =1 and z = N — 1,
cr, (n(@)) = r2(1 = n(z)) + (1 = r2)n(z), r1 = « and
rN_1 = B.



Goal: analyse the impact of changing the strength of the

reservoirs (by changing ) on the macroscopic behavior of
the system.




Invariant measures:

If @« = 8 = p the Bernoulli product measures are
invariant (equilibrium measures): v,(n : n(z) =1) = p.

If o # [ the Bernoulli product measure is no longer
invariant, but since we have a finite state irreducible
Markov process there exists a UNIQUE invariant
measure: the stationary measure (non-equilibrium)
denoted by pigs.

By the matrix ansatz method one can get information
about this measure. (Not in the long jumps case.)



Hydrodynamic Limit:

& For n € Qp, let

m (n,dg) = —— Z w2 ()8, /v (dg),

be the empirical measure. (Diffusive time scaling!)

& Assumption: fix g: [0,1] — [0, 1] measurable and a
sequence of probability measures {ux}ny>1 such that for
every H € C([0,1]),

wrt uy. (un is associated with g(-))



Hydrodynamic Limit:

& Assumption: fix g : [0,1] — [0, 1] measurable and a
sequence of probability measures {yx}n>1 such that for
every H € C([0,1]),

wrt uy. (i.e. 70 (n,dq) =N +o0 9(q)dq)

& Then: for any ¢t > 0,

7N (1, dq) =N 100 p(t, q)dg,

wrt uy(t), where p(t,q) evolves according to a PDE, the
hydrodynamic equation.



Hydrodynamic eq. ...

Heat equation:
Bipi(q) = 502p:(q)-

& 0 > 1 Neumann b.c.:
Heat eq. & Robin b.c. Bpe(0) = 9ypy(1) = 0.
& 0 =1 Robin b.c.:

9qp(0) = 1:(pt(0) — ),

9qpt(1) = 1(B — pe(1)).
& 0 <1 Dirichlet b.c.:

pt(o) = &, pt(l) = 5




Hydrostatic Limit:

Theorem: Let uss be the stationary measure for the process
{nt}t>0. Then, puss is associated to p : [0,1] — [0, 1] given
on g€ (0,1) by

(B—a)g+a; 9<1

”(f;a)q +a+5

2+r ’0_1

p(+) is a stationary solution of the hydrodynamic equation.




The proof:

Proof of the results?

Two things to do:
& Tightness of Qn, where Qy is induced by P, and the map

¥ . D([0,T],Qn) — D([0,T], M)

& Characterization of limit points: limit points are concentrated
on trajectories of measures that are absolutely continuous wrt
the Lebesgue measure and the density is a weak solution of
the corresponding PDE:

Q(7r. : m(dq) = p(t,q)dq and pi(q) is solution to the PDE) = 1.

Let us focus on last item.



The notion of weak solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:[0,7] x [0,1] — [0,1] is a weak solution of the HEDBC if:

& pc L2(0,T;HY);
& p satisfies the weak formulation:

/01 pe(a)Hi(q) — 9(a)Ho(q) dg

[ [ pua) (332 + 0. Hta) ds g
0 0 s 2 q S S

+5 [ BOHL() ~ ad,H,(0) ds =0,

for all t € [0, 7] and any function H € Cy*([0,T] x [0,1]).



Another notion of solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:10,T] % [0,1] — [0,1] is a weak solution of the HEDBC if:

& p e L0, T;HY);
& p satisfies the weak formulation:

L 1
/ pe(@)He(q) dg — / 9(a)Ho(q) dq
v 0
t rl
B /0 /0 ps(4) (%aqz S 83>HS(Q) dsdg =0,

for all t € [0, T] and any function H € C>2([0,T] x [0,1]);
& p:(0) =a and p(1) = 3, for t € (0, 7).



The notion of weak solution:

Let g : [0,1] — [0, 1] be a measurable function. We say that
p:[0,7] x [0,1] — [0,1] is a weak solution of the heat equation
with Robin b.c. if:

& pe L*(0,T;HY),

& p satisfies the weak formulation:
1
[ @ Bada ~ [ ota)Ho(a)da
//ps 82—1—8 H(q)dsdq
45 [0 H1) = s (0)0,H,(0)} ds
— 5 [ O @ = pu(0) + H(0)(5 — (1)} ds =0,

for all t € [0, T] and any function H € C%2([0,T] x [0,1]).




Characterizing limit points:

.4

Dynkin's formula: Let {n:};>0 be a Markov process with
generator £ and with countable state space E. Let F :
R* x E — R be a bounded function such that

oVneE F(,n) € CQ(R"‘),
o there exists a finite constant C, such that
SUP (s, |02 F (s,m)| < C, for j =1,2.
For ¢ >0, let

ME =F(t,n) — F(0,m0) — /Ot(as + L)F(s,ns)ds.

Then, { M} }1>0 is a martingale wrt Fs = o(ns;s < t).




Characterizing limit points:

Let us fix a test function H : [0,1] — R and apply Dynkin’s
formula with

;| N-1
B () =Mk SH= N1 D UtN?(ﬂC)H(%)-
=1

Note that F' does not depend on time only through the process
7n.. A simple computation shows that

1
N2Ly(nl, H) = (v, = A H)

NV HH(NT)(ﬁ Nan2(N = 1))



0 0,1):

Take a function H : [0,1] — R such that H(0) = H(1) = 0 and
then we get

M) = (afl B — (ol ) — [ (a3 A s

1
2

If we can replace Nsn2(1) by a and nyn2(N — 1) by S (this will
be made rigorous ahead but only works for § < 1!) then above
we have

g 1
M (H) = (' H) = (' H) = [ (x5 AnH)ds

= ;/Ot VI H(0)a — VyH(1)Bds + O(NY).

Compare with the PDE (note that H does not depend on time).

V+H( Msn2(1) = VyH(D)nsn2(N — 1)ds + O(N

_9)



Still 6 € [0, 1):

Take the expectation above to get

Y HE @ -Aw)- [ 5

E % /ot ViH(0)a — VyH(1)Bds + O(N~%) = 0.

o iy

Z ANH(% N(z)ds

Assume that p () ~ ps(x/N) and take the limit in N to get

[ @t @)~ @i~ [ [ 0 H @ 0)dads

1 i
_ 5/0 8, H(0)a — 8, H(1)Bds = 0

Compare with the PDE (note that H does not depend on time).



Oe=dli

Recall that the previous error blows up when N — co. So now,
we take a function H : [0,1] — R with compact support and
then we get

t 1
MY (H) = (ol H) = () H) = [l S AnH)ds.
0
Again compare with the PDE but note that H does not depend
on time.
In this case we do not see the Dirichlet boundary conditions
and we need extra results to conclude.



=il

Now, we take a function H : [0,1] — R and we get

t 1
MtN(H):<7T£NaH>_<7T(])V7H>_ i <W.£V=§AN-H>d5

1/t 2
—5 || VAEHOnx2(1) = V3 H(Unaws (V = 1)ds
— = [ H(3) @ = navea (D) + H () (8 = nows (N — 1))ds.
o N s s
If we can replace n,y2(1) (resp. n,n2(N — 1)) by its average in a
box around 1 (resp. N — 1) (this works for any 6 > 1):

1+eN N—-1—eN

75]\[2 = Z nSNQ WsNQ(N 1 Z nSNQ
z=N—-1

and noting that WSNQ ~ ps(0) (resp. 7;%2(N —1) ~ ps(1))
we would get the terms in the PDE (compare).



Ol

Again we take a function H : [0,1] — R and in this case the
terms from the boundary vanish. So we get

MY (H) = (¥ H) = (!, H) = [ Y, S AwH)ds

1

e V+H( Jsnz(1) = VyH(Lnsnz(N — 1)ds + O(N'~?)
As above, if we can replace nyn2(1) (resp. nan2(IN — 1)) by its
average in a box around 1 (resp. N — 1) and noting that

e, (1) ~ ps(0) (resp. 751\,2 — 1) ~ ps(1)) we would get the

sn2

terms in the PDE (compare).



Keystone ingredients: ...

Recall that we need to prove that

4

For any t > 0, we have that:
o forf <1

limsup E, U /Ot(nsNz(l) —a) ds”

N—o0

o ford>1

limsup E, U /Ot(nsN2(1) — 7

N—oo

and a similar result for N — 1.



The empirical profile:

Fix an initial measure py in Qy. For z € Ay and t > 0, let

() = Epy [nen2 ()] -
We extend this definition to the boundary by setting
pN(0) = aand pN(N) = 8, forallt>0.
A simple computation shows that p{¥(-) is a solution of
8ip; (z) = N*(Bnpi')(z), € AN, t20

where the operator By acts on functions f: Ay U{0, N} — R as

N2(Byf)(z) = ANf(x), forx € {2,--- ,N — 2},

N2(Byf)(1) = N2(£(2) — f(1)) + D2 (f <o> F(D)),

N2(By f)(N-1)=N?(f(N-2) — f(N-1))+ & (f(N) — F(N-1)).




Stationary empirical profile:

The stationary solution of the previous equation is given by

pé\g(x) = ]EIJ/SS [77th (m)] = anN=T + bN

where ay = % and by = aN(N—o —1) + a, so that

N max |phs() — ()| =0

where

B-—a)g+a;0<1,

*(2/3:'_’ )q+a+ 24n 76—1

Bra. g1,

is a stationary solution of the hydrodynamic equation.



Stationary correlations:

Let Viy = {(z,y) € {0,--- ,N}?:0 <z <y < N}, and its
boundary OV = {(z,y) € {0,--- ,N}?>:z=0ory = N}.

N® & @ .
N—1% & & & #»

0|.00
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Stationary correlations:

For x < y € Vi, let ¢} (2,%) the two point correlation function
between the occupation sites at z < y € Viy is defined by
N
01 (,9) = Euy [z () — o (2)) vz () — o1 (9)))-

Doing some simple, but long, computations we see that o} is a
solution of

{Ossos(x,y) = Aps(z,y) + 9 (2,9) + N (2,y), (z,y) € Vv,

ps(z,y) =0, (z,y) € OVN,

where the discrete laplacian A%’ : Vv UOVy — R is defined by

(A‘]\/[f)(xay) — N2(f(a:—|—1,y)+f(a:—l,y)—i—f(:v,y—l)
—|—f(1:,y+1)—4f($,y)), for |x_y|>1a

(AY ) (z,z+1) = N2(f(z = Lz + 1) + f(z, 2 + 2) — 2f(z,z + 1))

(AN f)(z,y) =0, if (z,y) € V.



Stationary correlations:

Above

giv(m,y) i —(VE[)%N(IE))25ZJ:$+1,
Ve (z) = N(py (z + 1) — pf (z))

N2
f;v('r7 y) ;- (N2 — W)‘pi\[(x7 y)5{|y7:1:\:1, z=1 or y=N—1}-

From simple, but long, computations we conclude that

s )__(a—B)Q(w+N9—1)(N—y+N9—1)
et (2N° + N —2)2(2N° + N -3) °

from where it follows that

(1)




