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The model

We study a one-dimensional system of inhomogeneous hard rods
interacting inertially between collisions.

@ A rod is a three dimensional point (y, v, r) with a certain position
y € R, traveling speed v € R and length r € R

e The state space is R? x R or R? if we allow negative size
o Configuration denoted by Y C R3
@ 9) set of hard rod configurations such that

o rods do not intersect, i.e. (y1,y1 +n)N(y2,y2+1n)=10
o finite number of rods, i.e. §{(y,v,r)eY : a<y<b}<x

Given the initial condition, hard rods evolve deterministically: what happen
when they collide?
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The model

Hard rods evolution

Consider the two rods (y1,v1, r1) and (yz, va, r2).
If at time t~ they have positions that satisfy y» = y; + r1 then at time t

they exchange their order by a shift in the direction of the other rod.
Namely,

Before collision at time t™ After collision at time t

(y1,v1, ) and (y2, v2, ) (y1 + r,vi,n) and (y2 — rn,vo, 1)

In other words, two rods next to each other swap their positions and keep
their original speeds.
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The model

Collision rule

>
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Incomplete backgrounds for hard rods

Jepsen 1964

Sinai 1972

Aizemann Goldstein and Lebowitz 1975
Boldrighini, Dobrushin and Sukhov 1982
Spohn 1991

Boldrighini and Sukhov 1997

Doyon, Yoshimura and Caux 2017
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|deal gas evolution

A particle of ideal gas is a three dimensional point (x, v, r).
We denote X C R3 a free gas configuration.
The dynamics is described by the operator T;

T: (X) := {(XJrvt, v,r)eR3: (x,v,r) EX}

’

X
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Length flow and mass of X

The mass and the signed mass between a, b € R are

m((x,v,r)e X) ifa<x<b
m(X) = Z r mi(X):={ —m((x,v,r) € X) ifb<x<a
(v.r)ex 0 ifa=b
The length flow is
j(x, v, t) := m(particles with velocity < v) — m(particles with velocity > v)
=jt(x,v,t) = (x,v,t)

~

j=r+r—r

We will consider configurations X with finite flows:

X = iX c R3: '|+‘xi vi t) < oo, j(x,v,t) < oo, forx,v,t e R}
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The key ingredients to show the results is to describe the hard rods

evolution via the free gas evolution. This is done using two maps.

Dilation map Contraction map

D, describes the dilation of a free C, describes the contraction of a
gas configuration X around a hard rod configuration Y to a
point a € R point a € R

Da X .

a a
The dilation and contraction maps are one the inverse of the other.
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The dilation and the contraction maps for configurations

Consider the hard rod configuration space with no rod containing a € R:
V.:={YeY:a¢(y,y+r, (y,v,r)eY}
@ The dilation map for the configuration X is defined as
Dy: X — 9.,
X — Dy(X) :={(Da(x),v,r) (x,v,r) e X}
where D,(x) := x + m3(X)
@ The contraction map for the configuration Y is defined as
C:9,— X%
Y — G(Y) ={(Cy),v,r) (y,v,r) €Y}

where G,(y) :=y — m3(Y)
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Hard rod position vs free gas position

The position of the hard rod associated to the ideal particle (x, v, r) is

Yv.t(x) : = Do(x) + vt + j(x, v, t)

The hard rod evolution is given by the configuration at time t

UeY == {(yvt(x),v,r) : (x,v,r) € X}

with UpY =Y
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Hard rods dynamics via a tagged rod
The position at time t of a single hard rod inserted at t =0 in y is

u (y) =y +vt+jly, v, t)[CY] for Ye,
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Starting with the configuration Y, the configuration at time t is

UY = {(uvt(y),v,r): (y,v,r) € Y}
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Hard rods dynamics via dilation and contraction

The shift operator is S, Y := {(y +a,v,r) : (y,v,r) € Y} then the hard
rod configuration at time t is

Uy = SotDO T:GQY for Y € 2)0

where the point o; denotes the position at time t of the rod (0, 0,0)
namely,

O = uo7t(0) = j(0,0, t)[Co Y]
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Poisson line processes

Poisson line process with marks

We interpret the free particle (x, v, r) as the line (x, v) with mark r.
Let 1 be a space locally finite measure on R3 with the Borel sigma algebra.
We denote by X the Poisson process with mean measure p and intensity

f(x,v,r):
w(A) = ///A f(x, v, r)dxdvdr

then the configuration at time t, T:X is also a Poisson process with
T = uT_; and with the same distribution of the initial configuration.

X¢:= rescaled Poisson process with intensity e 1f.
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Chentsov Lantuéjoul field induced by the marked lined

Starting from the marked line (x, v, r) we construct the surface
Hixv,r) R2 -+ R x
-

0 if(x,v) ¢ oa
a— H(x,v,r)(a) =4 +r if(X, V) €oay

r-c 0

—r if(x,v) € 0a_ r N

Given a line configuration X € X, define the CL filed as
H(a) == Z Hix,v,n(a) for acR?

(x,v,r)exX
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LLN for Chentsov Lantuéjoul field

The rescaled Chentsov Lantuéjoul field associated to X€ is

H(a) :==¢ Z Hixv,r)(a) for aeR?
(x,v,r)exe

Then

lim H(a) = pa(0a-) — pa(oay)

e—0

since from Campbell’s theorem
IE[ Z ri{(x,v) € @_}} = /// ri{(x, v) € oa_}pu(dx, dv, dr)
(x,v,r)eX;

and pi(dx, dv, dr) := ru(dx, dv, dr).
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Scaling limits

LLN for empirical length measure

The empirical length measure for the hard rod process is

Kip:=ec > ro(y,v,r)
(}/7‘/7")6(12‘»/6

For t = 0 assume that

lim Ko = koy = /// ¢y, v,r)rg(y,v, r)dydvdr
e—

then for all t € R

im 5o = ke i= [ [ [l vy, vy
€E—r

where g; can be characterized.
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Scaling limits

Macroscopic evolution

For a system of inhomogeneous hard rods, the equation satisfied by the
hard rod evolution g; is described by the hydrodynamic equation, i.e.
g+ ‘= g is the unique solution of the Cauchy problem:

0:8t(y, v, r) + Oy (&e(y, v, )ve(y, v, 1)) =0
gO(yvvvr) :g(}’avﬂ)
where

v (y, v, t) = v + ff gt(y,w r)dwdr
- 1- ff rge(y, w, r)dwdr
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Macroscopic evolution
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Macroscopic evolution

Let f be the density of u such that the corresponding mass and
momentum functions are

of(x) = / / rf(x, v, r)dvdr Cr(x) == / / vrf(x, v, r)dvdr

The macroscopic counterpart of contraction, dilation, free time evolution
and shift operators are

b b
D a(b) == b+/ or(x)dx Cg,a(b) == b—/ og(y)dy
L f(‘@Ez];(y)ava r) L g(%fl(x),v, r)
R T ) B A P =)

S.f(x,v,r):=f(x—a,v,r) Tef(x,v,r) = (x—vt,v,r)
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Macroscopic evolution

Macroscopic dynamics

The hard rod evolution of g as seen from the origin is
U : & = U8 = S50, Z0T1'08
An alternative formulation of the density evolution formula is
-1 d
%g = guye(v),vor) e (y)

where uy t(y) =y + vt + jg,g(y, v, t)
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Hydrodynamics for the tagged rod

Recall that u, +(y)[Y] is the position of a tagged rod initially in y for the

configuration Y € 9),. Let uj ,(y) := euy «(y)[ Y] the rescaled position in
the configuration Y€, then a.s.

lim uf .(y) = uvt(y)

e—0
where
Oeuyt(y) = v (uye(y), v 1)
uvo(y) =y
Follows from the fact that we can write E)tu;}(y) = —0:uy ()
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Macroscopic evolution

Collision theorem

The effective velocity can be written in terms of mass and momentum as

V= Ca(¥)
v (y,v,t) = &
1 Ugt(y)
vV—w
and in particular v¥¥(y, v, t) — vef(y, w,t) = —————.
1 —0g(y)

Moreover v satisfies the following

Vv t) = v+ / / O(v,w, 1) | v (y, v, 8) — v (y, w, 1) | gely, w, r)dwdlr

where the collision rule is given by

—r if v<w

if
CD(V,W,r): {+r I vV > w
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Next

Stochastic redistribution of length after collision
Particles with acceleration

External force in the system

Fluctuations

Large deviation

Box Ball System

Other models with similar framework? KdV soliton gas, Lieb-Liniger

THANKS FOR THE ATTENTION
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