Precise formulas for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson-Voronoi tessellation and a Poisson line process. \*

Pierre Calka<sup>†</sup>

12th December 2002

#### Abstract

In this paper, we give an explicit integral expression for the joint distribution of the number and the respective positions of the sides of the typical cell  $\mathcal{C}$  of a two-dimensional Poisson-Voronoi tessellation. We deduce from it precise formulas for the distributions of the principal geometric characteristics of  $\mathcal{C}$  (area, perimeter, area of the fundamental domain). We also adapt the method to the Crofton cell and the empirical (or typical) cell of a Poisson line process.

## 1 Introduction and principal results.

## 1.1 The typical cell of a two-dimensional Poisson-Voronoi tessellation.

Consider  $\Phi$  a homogeneous Poisson point process in  $\mathbb{R}^2$ , with the two-dimensional Lebesgue measure  $V_2$  for intensity measure. The set of cells

$$C(x) = \{ y \in \mathbb{R}^2; ||y - x|| \le ||y - x'||, x' \in \Phi \}, \quad x \in \Phi,$$

(which are almost surely bounded polygons) is the well-known *Poisson-Voronoi tessellation* of  $\mathbb{R}^2$ . Introduced by Meijering [13] and Gilbert [6] as a model of crystal aggregates, it provides now models for many natural phenomena such as thermal conductivity [9], telecommunications [3], astrophysics [22] and ecology [19]. An extensive list of the areas in which the tessellation has been used can be found in Stoyan et al. [20] and Okabe et al. [18].

In order to describe the statistical properties of the tessellation, the notion of typical cell  $\mathcal{C}$  in the Palm sense is commonly used [17]. Consider the space  $\mathcal{K}$  of convex compact sets of  $\mathbb{R}^2$  endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set  $B \subset \mathbb{R}^2$  such that  $0 < V_2(B) < +\infty$ . The typical cell  $\mathcal{C}$  is defined by means of the identity [17]:

$$\mathbf{E}h(\mathcal{C}) = \frac{1}{V_2(B)} \mathbf{E} \sum_{x \in B \cap \Phi} h(C(x) - x),$$

where  $h: \mathcal{K} \longrightarrow \mathbb{R}$  runs throughout the space of bounded measurable functions.

<sup>\*</sup>American Mathematical Society 2000 subject classifications. Primary 60D05; secondary 60G55. Key words and phrases. Crofton cell, empirical cell, fundamental domain, Palm distribution, Poisson-Voronoi tessellation, stochastic geometry, typical cell.

<sup>&</sup>lt;sup>†</sup> Postal address: Université Claude Bernard Lyon 1, LaPCS, Bât. B, Domaine de Gerland, 50, avenue Tony-Garnier F-69366 Lyon Cedex 07, France. E-mail: Pierre.Calka@univ-lyon1.fr

$$C(0) = \{ y \in \mathbb{R}^2; ||y|| \le ||y - x||, x \in \Phi \}$$

obtained when the origin is added to the point process  $\Phi$ . It is well known [17] that C(0) and  $\mathcal{C}$  are equal in law. From now on, we will use C(0) as a realization of the typical cell  $\mathcal{C}$ . We will call a point y of  $\Phi$  a neighbor of the origin if the bisecting line of the segment [0, y] intersects the boundary of C(0). Let us denote by  $N_0(\mathcal{C})$  the number of sides (or equivalently vertices) of the typical cell  $\mathcal{C}$ . In [5], we provided an integral formula for the distribution function of  $N_0(\mathcal{C})$ . We extend the method to obtain the joint distribution of the respective positions of the k lines bounding C(0) conditionally to the event  $\{N_0(C(0)) = k\}, k \geq 3$ .

**Theorem 1** (i) For every  $k \geq 3$ , we have

$$\mathbf{P}\{N_0(\mathcal{C}) = k\} = \frac{(2\pi)^k}{k!} \int d\sigma_k(\delta_1, \dots, \delta_k) \int \prod_{i=1}^k e^{-H(\delta_i, p_i, p_{i+1})} \mathbf{1}_B(p_{i-1}, p_i, p_{i+1}, \delta_{i-1}, \delta_i) p_i dp_i, \quad (1)$$

where  $\sigma_k$  is the (normalized) uniform measure on the simplex

$$S_k = \{(\delta_1, \dots, \delta_k) \in [0, 2\pi]; \sum_{i=1}^k \delta_i = 2\pi\},$$
 (2)

with

$$B = \{ (p, q, r, \alpha, \beta) \in (\mathbb{R}_+)^3 \times (0, \pi)^2; p \sin(\beta) + r \sin(\alpha) \ge q \sin(\alpha + \beta) \},$$
 (3)

with for every  $\delta \in (0, \pi)$ ,  $p, q \geq 0$ ,

$$H(\delta, p, q) = \frac{1}{2\sin^2(\delta)} \left\{ (p^2 + q^2 - 2pq\cos(\delta))\frac{\delta}{2} + pq\sin(\delta) - \frac{p^2}{4}\sin(2\delta) - \frac{q^2}{4}\sin(2\delta) \right\}, \quad (4)$$

and with the conventions  $p_0 = p_k$ ,  $p_{k+1} = p_1$ , and  $\delta_0 = \delta_k$ ;

(ii) conditionally to  $\{N_0(C(0)) = k\}$ , let us denote by  $(P_1, \Theta_1), \dots, (P_k, \Theta_k)$  the polar coordinates of the consecutive neighbors of the origin in the trigonometric order.

The joint distribution of the vector

$$(P_1, \cdots, P_k, \Theta_2 - \Theta_1, \cdots, \Theta_k - \Theta_{k-1}, 2\pi + \Theta_1 - \Theta_k)$$

then has a density with respect to the measure

$$d\nu_k(p_1,\dots,p_k,\delta_1,\dots,\delta_k) = dp_1\dots dp_k d\sigma_k(\delta_1,\dots,\delta_k), \tag{5}$$

and its density  $\varphi_k$  is given by the following equality for every  $p_1, \dots, p_k \geq 0$ ,  $(\delta_1, \dots, \delta_k) \in \mathcal{S}_k$ ,

$$\varphi_k(p_1, \dots, p_k, \delta_1, \dots, \delta_k) = \frac{1}{\mathbf{P}\{N_0(\mathcal{C}) = k\}} \frac{(2\pi)^k}{k!} \prod_{i=1}^k p_i e^{-H(\delta_i, p_i, p_{i+1})} \mathbf{1}_B(p_{i-1}, p_i, p_{i+1}, \delta_{i-1}, \delta_i).$$

A table of numerical values for the distribution function of  $N_0(\mathcal{C})$  has already been provided (see [5], table 1).

Let us denote by  $\mathcal{F}(C(0))$  the fundamental domain associated to C(0), i.e.

$$\mathcal{F}(C(0)) = \bigcup_{x \in C(0)} D(x, ||x||),$$

where D(y,r) is the disk centered at  $y \in \mathbb{R}^2$  and of radius  $r \geq 0$ .

Theorem 1 provides an easy way to obtain the distribution of the area of  $\mathcal{F}(C(0))$  conditionally to  $\{N_0(C(0)) = k\}, k \geq 3$ , and explicit integral formulas for the distribution of the area  $V_2(\mathcal{C})$  and the perimeter  $V_1(\mathcal{C})$  of  $\mathcal{C}$ .

Corollary 1 Conditionally to the event  $\{N_0(\mathcal{C}) = k\}, k \geq 3$ ,

- (i) the area  $V_2(\mathcal{F}(C(0)))$  is Gamma distributed of parameters (k,1);
- (ii) the distribution of  $V_2(\mathcal{C})$  is given by the following equality for every  $t \geq 0$ :

$$\mathbf{P}\{V_2(\mathcal{C}) \geq t | N_0(\mathcal{C}) = k\} = \int (\mathbf{1}_{C_t} \cdot \varphi_k)(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k) d\nu_k(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k),$$

where

$$C_{t} = \{ (p_{1}, \dots, p_{k}, \delta_{1}, \dots, \delta_{k}) \in (\mathbb{R}_{+})^{k} \times (0, \pi)^{k};$$

$$\frac{1}{8} \sum_{i=1}^{k} \frac{1}{\sin(\delta_{i-1})\sin(\delta_{i})} p_{i}(p_{i-1}\sin(\delta_{i}) + p_{i+1}\sin(\delta_{i-1}) - p_{i}\sin(\delta_{i-1} + \delta_{i})) \ge t \}; (6)$$

(iii) the distribution of  $V_1(\mathcal{C})$  is given by the following equality for every  $t \geq 0$ :

$$\mathbf{P}\{V_1(\mathcal{C}) \geq t | N_0(\mathcal{C}) = k\} = \int (\mathbf{1}_{E_t} \cdot \varphi_k)(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k) d\nu_k(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k),$$

where

$$E_{t} = \{ (p_{1}, \dots, p_{k}, \delta_{1}, \dots, \delta_{k}) \in (\mathbb{R}_{+})^{k} \times (0, \pi)^{k};$$

$$\frac{1}{2} \sum_{i=1}^{k} \frac{1}{\sin(\delta_{i-1})\sin(\delta_{i})} (p_{i-1}\sin(\delta_{i}) + p_{i+1}\sin(\delta_{i-1}) - p_{i}\sin(\delta_{i-1} + \delta_{i})) \ge t \}.$$

**Remark 1** The point (i) was already obtained by Zuyev [23] with a different method based on Russo's formula. The result can be easily extended to a d-dimensional Poisson-Voronoi tessellation,  $d \geq 3$ , in the following way: conditionally to the event {number of hyperfaces of C(0) = k},  $k \geq d+1$ , the Lebesgue measure of the fundamental domain of C(0) is Gamma distributed of parameters (k, 1).

## 1.2 The Crofton cell of a Poisson line process.

Let us now consider  $\Phi'$  a Poisson point process in  $\mathbb{R}^2$  of intensity measure

$$\mu(A) = \int_0^{+\infty} \int_0^{2\pi} \mathbf{1}_A(r, u) d\theta dr, \quad A \in \mathcal{B}(\mathbb{R}^2).$$

Let us consider for all  $x \in \mathbb{R}^2$ ,  $H(x) = \{y \in \mathbb{R}^2; (y-x) \cdot x = 0\}$ ,  $(x \cdot y)$  being the usual scalar product). Then the set  $\mathcal{H} = \{H(x); x \in \Phi\}$  is called a *Poisson line process* and divides the plane into convex polygons that constitute the so-called *two-dimensional Poissonian tessellation*. This tessellation is isotropic, i.e. invariant in law by any isometric transformation of the Euclidean space.

This random object was used for the first time by S. A. Goudsmit [8] and by R. E. Miles ([14], [15] and [16]). In particular, it provides a model for the fibrous structure of sheets of paper.

The origin is almost surely included in a unique cell  $C'_0$ , called the *Crofton cell*. As in Theorem 1, we can get the joint distribution of the number of sides  $N_0(C'_0)$  of  $C'_0$  and the respective positions of its bounding lines.

**Theorem 2** (i) For every  $k \geq 3$ , we have

$$\mathbf{P}\{N_{0}(C'_{0}) = k\} = \frac{(2\pi)^{k}}{k!} \int d\sigma_{k}(\delta_{1}, \dots, \delta_{k})$$

$$\int \prod_{i=1}^{k} e^{-p_{i}\left(\frac{1-\cos(\delta_{i})}{\sin(\delta_{i})} + \frac{1-\cos(\delta_{i-1})}{\sin(\delta_{i-1})}\right)} \mathbf{1}_{B}(p_{i-1}, p_{i}, p_{i+1}, \delta_{i-1}, \delta_{i}) dp_{i}; \quad (7)$$

(ii) conditionally to  $\{N_0(C_0') = k\}$ , let us denote by  $(P_1', \Theta_1'), \dots, (P_k', \Theta_k')$  the polar coordinates of the projections of the origin on the consecutive lines bounding  $C_0'$  in the trigonometric order.

The joint distribution of the vector

$$(P'_1, \dots, P'_k, \Theta'_2 - \Theta'_1, \dots, \Theta'_k - \Theta'_{k-1}, 2\pi + \Theta'_1 - \Theta'_k)$$

then has a density with respect to the measure  $\nu_k$  (defined by (5)) and its density  $\varphi'_k$  is given by the following equality for every  $p_1, \dots, p_k \geq 0$ ,  $(\delta_1, \dots, \delta_k) \in \mathcal{S}_k$ ,

$$\varphi'_{k}(p_{1}, \dots, p_{k}, \delta_{1}, \dots, \delta_{k}) = \frac{1}{\mathbf{P}\{N_{0}(C'_{0}) = k\}} \frac{(2\pi)^{k}}{k!} \prod_{i=1}^{k} e^{-p_{i}\left(\frac{1-\cos(\delta_{i})}{\sin(\delta_{i})} + \frac{1-\cos(\delta_{i-1})}{\sin(\delta_{i-1})}\right)} \mathbf{1}_{B}(p_{i-1}, p_{i}, p_{i+1}, \delta_{i-1}, \delta_{i}).$$

As for the Voronoi case, the point (i) of Theorem 2 provides numerical values estimated by a Monte-Carlo procedure which are listed in Table 1.

We deduce from Theorem 2 the joint distributions of the couples  $(N_0(C'_0), V_1(C'_0))$  and  $(N_0(C'_0), V_2(C'_0))$ .

Corollary 2 Conditionally to the event  $\{N_0(C_0') = k\}, k \geq 3$ ,

- (i) the perimeter  $V_1(C'_0)$  is Gamma distributed of parameters (k,1);
- (ii) the distribution of  $V_2(C'_0)$  is given by the following equality for every  $t \geq 0$ :

$$\mathbf{P}\{V_2(C_0') \ge t | N_0(C_0') = k\} = \int (\mathbf{1}_{C_{t/4}} \cdot \varphi_k')(p_1, \dots, p_k, \delta_1, \dots, \delta_k) d\nu_k(p_1, \dots, p_k, \delta_1, \dots, \delta_k),$$

where the set  $C_{t/4}$  is defined by the equality (6).

**Remark 2** The point (i) was already obtained by G. Matheron (see [10], p.177). It can be extended to any d-dimensional Poissonian tessellation,  $d \ge 3$ , in the following way: conditionally to the event {number of hyperfaces of  $C_0' = k$ },  $k \ge d + 1$ , the mean width of  $C_0'$  is Gamma distributed of parameters  $\left(k, \frac{\Gamma(d/2)}{\pi^{d/2}}\right)$ .

### 1.3 The typical cell of a Poisson line process.

The notion of typical (or empirical) cell C' for the Poisson tessellation was first introduced by Miles [14], [15] through the convergence of ergodic means and has been reinterpreted since by means of a Palm measure (see [11], [12] and [4]). The typical cell C' is connected in law to the Crofton cell by the following equality (see for example [4]):

$$\mathbf{E}h(\mathcal{C}') = \frac{1}{\mathbf{E}(1/V_2(C_0'))} \mathbf{E}\left(\frac{h(C_0')}{V_2(C_0')}\right),\tag{8}$$

| k                           | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|-----------------------------|--------|--------|--------|--------|--------|--------|--------|
| $\mathbf{P}\{N_0(C_0')=k\}$ | 0.0767 | 0.3013 | 0.3415 | 0.1905 | 0.0682 | 0.0155 | 0.0052 |

Table 1: Numerical values for  $\mathbf{P}\{N_0(C_0')=k\}$ .

for all measurable and bounded function  $h: \mathcal{K} \longrightarrow \mathbf{R}$  which is invariant by translation. Besides, it is well known [20] that

$$\mathbf{E}\{V_2(\mathcal{C}')\} = \left[\mathbf{E}\left(\frac{1}{V_2(C_0')}\right)\right]^{-1} = \frac{1}{\pi}.$$
(9)

Since Corollary 2 provides the joint distribution of the couple  $(N_0(C'_0), V_2(C'_0))$ , we can deduce from the equality (8) the law of the number of sides  $N_0(C')$  and also generalize all the results obtained for the Crofton cell.

**Theorem 3** (i) For every  $k \geq 3$ , we have

$$\mathbf{P}\{N_0(\mathcal{C}') = k\} = \frac{(2\pi)^k}{\pi \cdot k!} \int d\sigma_k(\delta_1, \dots, \delta_k)$$

$$\int \frac{\prod_{i=1}^k e^{-p_i \left(\frac{1-\cos(\delta_i)}{\sin(\delta_i)} + \frac{1-\cos(\delta_{i-1})}{\sin(\delta_{i-1})}\right)} \mathbf{1}_B(p_{i-1}, p_i, p_{i+1}, \delta_{i-1}, \delta_i)}{W_k(p_1, \dots, p_k, \delta_1, \dots, \delta_k)} dp_1 \dots dp_k, (10)$$

where

$$W_k(p_1, \dots, p_k, \delta_1, \dots, \delta_k) = \frac{1}{2} \sum_{i=1}^k \frac{1}{\sin(\delta_{i-1})\sin(\delta_i)} p_i(p_{i-1}\sin(\delta_i) + p_{i+1}\sin(\delta_{i-1}) - p_i\sin(\delta_{i-1} + \delta_i));$$

$$(Q_1, \cdots, Q_k, \Sigma_1, \cdots, \Sigma_k) \in (\mathbb{R}_+)^k \times \mathcal{S}_k$$

be a random vector which has a density  $\psi_k$  with respect to the measure  $\nu_k$  (given by (5)) satisfying the following equality for every  $p_1, \dots, p_k \geq 0$ ,  $(\delta_1, \dots, \delta_k) \in \mathcal{S}_k$ ,

$$\psi_k(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k) = a_k \cdot \frac{\varphi_k'(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k)}{W_k(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k)}.$$

where 
$$a_k = (\mathbf{P}\{N_0(C_0') = k\}/(\pi \mathbf{P}\{N_0(C') = k\})).$$

Let us consider a random angle  $\Theta$  independent of the preceding vector and uniformly distributed on the circle. We denote by  $X_1, X_2, \dots, X_k$  the points of the plane of respective polar coordinates  $(Q_1, \Theta), (Q_2, \Theta + \Sigma_1), \dots, (Q_k, \Theta + \Sigma_1 + \dots + \Sigma_{k-1})$ . The typical cell  $\mathcal{C}'$  then is equal in law to the convex polygon bounded by the lines  $H(X_1), \dots, H(X_k)$ .

Numerical values for the distribution function of  $N_0(\mathcal{C}')$  using the point (i) and a Monte-Carlo method are listed in Table 2. Let us remark that Miles [14] obtained that  $\mathbf{P}\{N_0(\mathcal{C}')=3\}=2-\frac{\pi^2}{6}$  and Tanner [21] get the exact value for  $\mathbf{P}\{N_0(\mathcal{C}')=4\}$ .

As for the Crofton cell, we deduce from the preceding theorem a corollary about the joint distributions of the number of sides and the perimeter  $V_1(\mathcal{C}')$  (resp. the area  $V_2(\mathcal{C}')$ ) of the typical cell.

| k                                   | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| $\mathbf{P}\{N_0(\mathcal{C}')=k\}$ | 0.3554 | 0.3815 | 0.1873 | 0.0596 | 0.0129 | 0.0023 | 0.0004 |

Table 2: Numerical values for  $\mathbf{P}\{N_0(\mathcal{C}')=k\}$ .

Corollary 3 Conditionally to the event  $\{N_0(\mathcal{C}') = k\}, k \geq 3$ ,

- (i) the perimeter  $V_1(C')$  is Gamma distributed of parameters (k-2,1);
- (ii) the distribution of  $V_2(\mathcal{C}')$  is given by the following equality for every  $k \geq 3$ ,  $t \geq 0$ :

$$\mathbf{P}\{V_2(\mathcal{C}') \geq t | N_0(\mathcal{C}') = k\} = \int (\mathbf{1}_{C_{t/4}} \cdot \psi_k)(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k) d\nu_k(p_1, \cdots, p_k, \delta_1, \cdots, \delta_k),$$

where the set  $C_{t/4}$  is defined by the equality (6).

**Remark 3** The point (i) was already obtained by R. E. Miles [14]. It can be extended to any d-dimensional Poissonian tessellation in the following way: conditionally to the event {number of hyperfaces of  $\mathcal{C}' = k$ },  $k \geq d+1$ , the mean width of  $\mathcal{C}'$  is Gamma distributed of parameters  $\left(k-d, \frac{\Gamma(d/2)}{\pi^{d/2}}\right)$ .

Remark 4 Comparing the points (i) of Corollaries 1 and 3, we notice that the area of the fundamental domain of C(0) plays the same role for the Poisson-Voronoi case as the perimeter of  $\mathcal{C}'$  for the Poisson line process. This analogy may be explained as follows: for every fixed measure in  $\mathbb{R}^2$ , the set of the lines H(x),  $x \in \mathbb{R}^2$ , induces a pseudo-metric in the plane in the sense of R. V. Ambartzumian [1], [2]. The quantity  $V_2(\mathcal{F}(C(0)))$  (resp.  $V_1(\mathcal{C}')$ ) then is proportional to the perimeter of the typical cell with respect to the pseudo-metric associated to the intensity measure of the Poisson point process  $\Phi$  (resp.  $\Phi'$ ).

In the paper, we first prove the resuls relative to the Poisson-Voronoi tessellation and secondly the analogous facts for the Crofton cell of a Poisson line process. Let us remark that Theorem 3 and Corollary 3 are direct consequences of Theorem 2 and Corollary 2 combined with (8) and (9).

# 2 Proofs of Theorem 1 and Corollary 1.

We use the same technique as in [5] based on Slivnyak's formula (see e.g. [17]).

For every  $x \in \mathbb{R}^2$ , let us denote by L(x) (respectively  $\mathcal{D}(x)$ ) the bisecting line of the segment [0,x] (respectively the half-plane containing 0 delimited by L(x)).

We then define for all  $k \geq 3$ , and  $x_1, \dots, x_k \in \mathbb{R}^2$ , the domain

$$\mathcal{D}(x_1, \cdots, x_k) = \bigcap_{i=1}^k \mathcal{D}(x_k).$$

Besides, we consider the set of  $(\mathbb{R}^2)^k$ 

$$A_k = \{(x_1, \dots, x_k) \in (\mathbb{R}^2)^k; \mathcal{D}(x_1, \dots, x_k) \text{ is a convex polygon with } k \text{ sides}\},$$
(11)

and for every  $(x_1, \dots, x_k) \in A_k$ , the Lebesgue measure of the fundamental domain of  $\mathcal{D}(x_1, \dots, x_k)$ , i.e.

$$V(x_1, \dots, x_k) = V_2[\mathcal{F}(\mathcal{D}(x_1, \dots, x_k))] = V_2[\cup_{x \in \mathcal{D}(x_1, \dots, x_k)} D(x, ||x||)].$$

Let  $\mathcal{N}_0$  be the set of all neighbors of the origin.

**Proposition 1** For every  $k \geq 3$  and every bounded and measurable function  $h : \mathbb{R}^k \longrightarrow \mathbb{R}$  invariant by permutation, we have

$$\mathbf{E}\left\{\mathbf{1}_{\{N_0(C(0))=k\}}h(\mathcal{N}_0)\right\} = \frac{1}{k!} \int h(x_1, \dots, x_k) \exp\{-V(x_1, \dots, x_k)\} \mathbf{1}_{A_k}(x_1, \dots, x_k) dx_1 \dots dx_k.$$
(12)

**Proof.** Let us decompose  $\Omega$  over all possibilities for the set  $\mathcal{N}_0$ .

$$\begin{split} \mathbf{E} \left\{ \mathbf{1}_{\{N_0(C(0))=k\}} h(\mathcal{N}_0) \right\} \\ &= \mathbf{E} \left\{ \sum_{\{x_1, \cdots, x_k\} \subset \Phi} h(x_1, \cdots, x_k) \mathbf{1}_{A_k}(x_1, \cdots, x_k) \mathbf{1}_{\{\mathcal{D}(x_1, \cdots, x_k) = C(0)\}} \right\} \\ &= \mathbf{E} \left\{ \sum_{\{x_1, \cdots, x_k\} \subset \Phi} h(x_1, \cdots, x_k) \mathbf{1}_{A_k}(x_1, \cdots, x_k) \mathbf{1}_{\{L(y) \cap \mathcal{D}(x_1, \cdots, x_k) = \emptyset \ \forall y \in \Phi \setminus \{x_1, \cdots, x_k\}\}} \right\}. \end{split}$$

Using Slivnyak's formula [17], we obtain

$$\mathbf{E}\left\{\mathbf{1}_{\{N_{0}(C(0))=k\}}h(\mathcal{N}_{0})\right\}$$

$$=\frac{1}{k!}\int h(x_{1},\cdots,x_{k})\mathbf{1}_{A_{k}}(x_{1},\cdots,x_{k})\mathbf{E}\left(\mathbf{1}_{\{L(y)\cap\mathcal{D}(x_{1},\cdots,x_{k})=\emptyset\ \forall y\in\Phi\}}\right)dx_{1}\cdots dx_{k}$$

$$=\frac{1}{k!}\int h(x_{1},\cdots,x_{k})\mathbf{1}_{A_{k}}(x_{1},\cdots,x_{k})\mathbf{P}\{L(y)\cap\mathcal{D}(x_{1},\cdots,x_{k})=\emptyset\ \forall y\in\Phi\}dx_{1}\cdots dx_{k}.(13)$$

We can easily verify that for any  $z \in \mathbb{R}^2$ ,

$$L(z) \cap \mathcal{D}(x_1, \dots, x_k) \neq \emptyset \iff z \in \bigcup_{x \in \mathcal{D}(x_1, \dots, x_k)} D(x, ||x||),$$

From this remark and the Poissonian property of  $\Phi$ , we get

$$\mathbf{P}\{L(y) \cap \mathcal{D}(x_1, \dots, x_k) = \emptyset \ \forall y \in \Phi\} = \mathbf{P}\{\Phi \cap \left[ \bigcup_{x \in \mathcal{D}(x_1, \dots, x_k)} D(x, ||x||) \right] = \emptyset\}$$
$$= e^{-V(x_1, \dots, x_k)}. \tag{14}$$

Inserting the equality (14) in (13), we deduce Proposition 1.

We already expressed the set  $A_k$  analytically and calculated the area  $V(x_1, \dots, x_k)$  in function of the polar coordinates of  $x_1, \dots, x_k$  (see [5], lemmas 1 and 2). Let us denote by

$$(p_1,\theta_1),\cdots,(p_k,\theta_k)\in\mathbb{R}_+\times[0,2\pi),$$

the respective polar coordinates of  $x_1, \dots, x_k \in \mathbb{R}^2$ . Supposing that  $\theta_1, \dots, \theta_k$  are in growing order, we define  $\delta_i = \theta_{i+1} - \theta_i$ ,  $1 \le i \le (k-1)$ , and  $\delta_k = 2\pi + \theta_1 - \theta_k$ . We then have the two following results:

$$\mathbf{1}_{A_k}(x_1, \cdots, x_k) = \prod_{i=1}^k \mathbf{1}_B(p_{i-1}, p_i, p_{i+1}, \delta_{i-1}, \delta_i), \tag{15}$$

where the set B is defined by (3), and for every  $(x_1, \dots, x_k) \in A_k$ ,

$$V(x_1, \dots, x_k) = \sum_{i=1}^k \frac{1}{2\sin^2(\delta_i)} \left\{ (p_i^2 + p_{i+1}^2 - 2p_i p_{i+1} \cos(\delta_i)) \frac{\delta_i}{2} + p_i p_{i+1} \sin(\delta_i) - \frac{p_i^2}{4} \sin(2\delta_i) - \frac{p_{i+1}^2}{4} \sin(2\delta_i) \right\}.$$
(16)

**Proof of Theorem 1.** Using polar coordinates in the integral of the equality (12), we obtain for every  $k \geq 3$ ,

$$\mathbf{E}\{\mathbf{1}_{\{N_{0}(\mathcal{C})=k\}}h(\mathcal{N}_{0})\} 
= \frac{1}{k!} \int e^{-V(p_{1}u_{\theta_{1}},\cdots,p_{k}u_{\theta_{k}})} (h \cdot \mathbf{1}_{A_{k}})(p_{1}u_{\theta_{1}},\cdots,p_{k}u_{\theta_{k}}) \prod_{i=1}^{k} \mathbf{1}_{\{p_{i}\geq 0\}} \mathbf{1}_{\{0\leq \theta_{i}\leq 2\pi\}} p_{i} dp_{i} d\theta_{i} 
= \int e^{-V(p_{1}u_{\theta_{1}},\cdots,p_{k}u_{\theta_{k}})} (h \cdot \mathbf{1}_{A_{k}})(p_{1}u_{\theta_{1}},\cdots,p_{k}u_{\theta_{k}}) \mathbf{1}_{\{0\leq \theta_{1}\leq \cdots\leq \theta_{k}\leq 2\pi\}} \prod_{i=1}^{k} \mathbf{1}_{\{p_{i}\geq 0\}} p_{i} dp_{i} d\theta_{i}, (17)$$

where  $u_{\theta}$ ,  $0 \le \theta \le 2\pi$ , denotes the unit vector in the plane of rectangular coordinates  $(\cos \theta, \sin \theta)$ . Let us suppose that h is invariant under rotation, i.e. for all  $\theta \in [0, 2\pi]$ ,

$$h(p_1u_{\theta+\theta_1},\cdots,p_ku_{\theta+\theta_k})=h(p_1u_{\theta_1},\cdots,p_ku_{\theta_k}).$$

Inserting then the results (15) and (16) in (17), we deduce that

$$\mathbf{E}\{\mathbf{1}_{\{N_{0}(\mathcal{C})=k\}}h(\mathcal{N}_{0})\} 
= \int \left[ \int h(p_{1}u_{0}, p_{2}u_{\delta_{1}}, \cdots, p_{k}u_{\delta_{1}+\cdots+\delta_{k-1}}) \prod_{i=1}^{k} e^{-H(\delta_{i}, p_{i}, p_{i+1})} \mathbf{1}_{B}(p_{i-1}, p_{i}, p_{i+1}, \delta_{i-1}, \delta_{i}) p_{i} dp_{i} \right] 
\mathbf{1}_{\{\delta_{1}+\cdots+\delta_{k-1}\leq 2\pi\}} \delta_{k} d\delta_{1} \cdots d\delta_{k-1} 
= \frac{(2\pi)^{k}}{k!} \int d\sigma_{k}(\delta_{1}, \cdots, \delta_{k}) \int h(p_{1}u_{0}, p_{2}u_{\delta_{1}}, \cdots, p_{k}u_{\delta_{1}+\cdots+\delta_{k-1}}) 
\prod_{i=1}^{k} e^{-H(\delta_{i}, p_{i}, p_{i+1})} \mathbf{1}_{B}(p_{i-1}, p_{i}, p_{i+1}, \delta_{i-1}, \delta_{i}) p_{i} dp_{i}, \quad (18)$$

where the function H is defined by the equality (4).

This last equality provides us the point (ii) of Theorem 1 and replacing h by  $\mathbf{1}$ , we obtain the point (i).

**Proof of Corollary 1.** Let us first notice that for every  $(x_1, \dots, x_k) \in A_k$ ,

$$V_2(\mathcal{D}(x_1, \dots, x_k)) = \frac{1}{8} \sum_{i=1}^k \frac{1}{\sin(\delta_{i-1})\sin(\delta_i)} p_i(p_{i-1}\sin(\delta_i) + p_{i+1}\sin(\delta_{i-1}) - p_i\sin(\delta_{i-1} + \delta_i)), \quad (19)$$

and

$$V_{1}(\mathcal{D}(x_{1}, \dots, x_{k})) = \frac{1}{2} \sum_{i=1}^{k} \frac{1}{\sin(\delta_{i-1})\sin(\delta_{i})} (p_{i-1}\sin(\delta_{i}) + p_{i+1}\sin(\delta_{i-1}) - p_{i}\sin(\delta_{i-1} + \delta_{i})) (20)$$

$$= \frac{1}{2} \sum_{i=1}^{k} p_{i} \left( \frac{1 - \cos(\delta_{i})}{\sin(\delta_{i})} + \frac{1 - \cos(\delta_{i-1})}{\sin(\delta_{i-1})} \right). \tag{21}$$

8

The point (ii) (resp. (iii)) then is easily obtained by applying the equality (18) to

$$h(x_1,\cdots,x_k)=\mathbf{1}_{\{V_2(\mathcal{D}(x_1,\cdots,x_k))\geq t\}}$$

(resp.  $h(x_1,\dots,x_k)=\mathbf{1}_{\{V_1(\mathcal{D}(x_1,\dots,x_k))>t\}}$ ). As for point (i), let us apply the equality (12) to

$$h(x_1, \dots, x_k) = e^{-\lambda V(x_1, \dots, x_k)}, \quad \lambda > 0.$$

Let us notice that if  $\mathcal{N}_0 = \{x_1, \dots, x_k\}$ , we have  $V(x_1, \dots, x_k) = V_2(\mathcal{F}(C(0)))$ . Consequently, we obtain

$$\mathbf{E}\left\{\mathbf{1}_{\{N_0(C(0))=k\}}e^{-\lambda V_2(\mathcal{F}(C(0)))}\right\} = \frac{1}{k!}\int e^{-(\lambda+1)V(x_1,\dots,x_k)}\mathbf{1}_{A_k}(x_1,\dots,x_k)dx_1\dots dx_k.$$

We take the change of variables  $x_i' = \sqrt{\lambda + 1}x_i$ ,  $1 \le i \le k$ , to deduce that

$$\mathbf{E}\left\{\mathbf{1}_{\{N_{0}(C(0))=k\}}e^{-\lambda V_{2}(\mathcal{F}(C(0)))}\right\} = \frac{1}{(\lambda+1)^{k}} \cdot \frac{1}{k!} \int e^{-V(x_{1},\cdots,x_{k})} \mathbf{1}_{A_{k}}(x_{1},\cdots,x_{k}) dx_{1} \cdots dx_{k}$$

$$= \mathbf{P}\{N_{0}(C(0)=k\} \frac{1}{(\lambda+1)^{k}}.$$

So conditionally to the event  $\{N_0(C(0)) = k\}$ , the Laplace transform of the distribution of  $V_2(\mathcal{F}(C(0)))$  is exactly  $(\lambda + 1)^{-k}$ ,  $\lambda \geq 0$ , i.e.  $V_2(\mathcal{F}(C(0)))$  is Gamma distributed with parameters (k, 1).

## 3 Proofs of Theorem 2 and Corollary 2.

For all  $x \in \mathbb{R}^2$ , let us define  $\mathcal{D}'(x)$  as the half-plane containing the origin delimited by the line H(x). We then denote for every  $x_1, \dots, x_k \in \mathbb{R}^2$ ,

$$\mathcal{D}'(x_1, \cdots, x_k) = \mathcal{D}'(x_1) \cap \cdots \cap \mathcal{D}'(x_k) = \mathcal{D}(2x_1, \cdots, 2x_k).$$

Let  $\mathcal{N}_0'$  be the (random) set of all points  $x \in \Phi'$  such that H(x) intersects the boundary of the Crofton cell  $C_0'$ .

**Proposition 2** For every  $k \geq 3$  and every bounded and measurable function  $h : \mathbb{R}^k \longrightarrow \mathbb{R}$  invariant by permutation, we have

$$\mathbf{E}\left\{\mathbf{1}_{\{N_0(C_0')=k\}}h(\mathcal{N}_0')\right\} = \frac{1}{k!}\int (h\cdot \mathbf{1}_{A_k})(x_1,\cdots,x_k)\exp\{-V_1(\mathcal{D}'(x_1,\cdots,x_k))\}dx_1\cdots dx_k.$$
 (22)

**Proof.** As for Proposition 1, we apply Slivnyak's formula to obtain

$$\mathbf{E}\left\{\mathbf{1}_{\{N_0(C_0')=k\}}h(\mathcal{N}_0')\right\}$$

$$=\frac{1}{k!}\int h(x_1,\cdots,x_k)\mathbf{1}_{A_k}(x_1,\cdots,x_k)\mathbf{P}\{H(y)\cap\mathcal{D}'(x_1,\cdots,x_k)=\emptyset\ \forall y\in\Phi'\}dx_1\cdots dx_k(23)$$

We can easily verify (see e.g. [7]) that

$$\mathbf{P}\{H(y) \cap \mathcal{D}'(x_1, \dots, x_k) = \emptyset \ \forall y \in \Phi'\} = \mathbf{P}\{\mathcal{D}'(x_1, \dots, x_k) \subset C'_0\}$$
$$= \exp\{-V_1(\mathcal{D}'(x_1, \dots, x_k))\}. \tag{24}$$

Inserting the equality (24) in (23), we deduce Proposition 2.

Proofs of Theorem 2 and Corollary 2. Let us recall that

$$V_1(\mathcal{D}'(x_1, \dots, x_k)) = \sum_{i=1}^k p_i \left( \frac{1 - \cos(\delta_i)}{\sin(\delta_i)} + \frac{1 - \cos(\delta_{i-1})}{\sin(\delta_{i-1})} \right), \tag{25}$$

and

$$V_2(\mathcal{D}'(x_1,\dots,x_k)) = \frac{1}{2} \sum_{i=1}^k \frac{1}{\sin(\delta_{i-1})\sin(\delta_i)} p_i(p_{i-1}\sin(\delta_i) + p_{i+1}\sin(\delta_{i-1}) - p_i\sin(\delta_{i-1} + \delta_i)).$$
 (26)

It then suffices to insert in (22) the results (15) and (25) to obtain the two points of Theorem 2.

The proof of Corollary 2 is also analogous to the Voronoi case. In particular, point (i) is deduced from a calculation of the Laplace transform of the distribution of the perimeter of  $C'_0$  conditioned by the event  $\{N_0(C'_0) = k\}, k \geq 3$ :

$$\mathbf{E}\left\{\mathbf{1}_{\{N_0(C_0')=k\}}e^{-\lambda V_1(C_0')}\right\} = \mathbf{P}\{N_0(C_0')=k\} \cdot \frac{1}{(\lambda+1)^k}, \quad \lambda \ge 0.$$

## References

- [1] R. V. Ambartzumian. A note on pseudo-metrics on the plane. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 37(2):145–155, 1976/77.
- [2] R. V. Ambartzumian. Combinatorial integral geometry. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics. John Wiley & Sons Inc., New York, 1982. With applications to mathematical stereology, Edited and with an appendix by Adrian Baddeley.
- [3] F. Baccelli and B. Błaszczyszyn. On a coverage process ranging from the Boolean model to the Poisson-Voronoi tessellation with applications to wireless communications. *Adv. in Appl. Probab.*, 33(2):293–323, 2001.
- [4] P. Calka. Mosaïques poissoniennes de l'espace euclidien. Une extension d'un résultat de R. E. Miles. C. R. Acad. Sci. Paris Sér. I Math., 332(6):557–562, 2001.
- [5] P. Calka. The explicit expression of the distribution of the number of sides of the typical Poisson-Voronoi cell. Preprint of LaPCS, 02-02, 2002.
- [6] E. N. Gilbert. Random subdivisions of space into crystals. *Ann. Math. Statist.*, 33:958–972, 1962.
- [7] A. Goldman. Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien. *Probab. Theory Related Fields*, 105(1):57–83, 1996.
- [8] S. Goudsmit. Random distribution of lines in a plane. Rev. Modern Phys., 17:321–322, 1945.
- [9] S. Kumar and R. N. Singh. Thermal conductivity of polycristalline materials. *J. of the Amer. Cer. Soc.*, 78(3):728–736, 1995.

- [10] G. Matheron. Random sets and integral geometry. John Wiley & Sons, New York-London-Sydney, 1975. With a foreword by Geoffrey S. Watson, Wiley Series in Probability and Mathematical Statistics.
- [11] J. Mecke. Palm methods for stationary random mosaics. In R. V. Ambartzumian, editor, Combinatorial principles in stochastic geometry, pages 124–132. Armenian Academy of Sciences Publishing House, Erevan, 1980.
- [12] J. Mecke, R. Schneider, D. Stoyan, and W. Weil. Stochastische Geometrie. Birkhäuser, 1990.
- [13] J. L. Meijering. Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. *Philips Res. Rep.*, 8, 1953.
- [14] R. E. Miles. Random polygons determined by random lines in a plane. *Proc. Nat. Acad. Sci. U.S.A.*, 52:901–907, 1964.
- [15] R. E. Miles. Random polygons determined by random lines in a plane. II. *Proc. Nat. Acad. Sci. U.S.A.*, 52:1157–1160, 1964.
- [16] R. E. Miles. The various aggregates of random polygons determined by random lines in a plane. *Advances in Math.*, 10:256–290, 1973.
- [17] J. Møller. Lectures on random Voronoĭ tessellations. Springer-Verlag, New York, 1994.
- [18] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams. John Wiley & Sons Ltd., Chichester, second edition, 2000. With a foreword by D. G. Kendall.
- [19] E. Pielou. Mathematical ecology. Wiley-Interscience, New-York, 1977.
- [20] D. Stoyan, W. S. Kendall, and J. Mecke. *Stochastic geometry and its applications*. John Wiley & Sons Ltd., Chichester, 1987. With a foreword by D. G. Kendall.
- [21] J. C. Tanner. Polygons formed by random lines in a plane: some further results. *J. Appl. Probab.*, 20(4):778–787, 1983.
- [22] R. van de Weygaert. Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations. *Astron. Astrophys.*, 283:361–406, 1994.
- [23] S. A. Zuyev. Estimates for distributions of the Voronoĭ polygon's geometric characteristics. Random Structures Algorithms, 3(2):149–162, 1992.