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Abstract

In this paper, we give an explicit integral expression for the joint distribution of the number
and the respective positions of the sides of the typical cell C of a two-dimensional Poisson-
Voronoi tessellation. We deduce from it precise formulas for the distributions of the principal
geometric charateristics of C (area, perimeter, area of the fundamental domain). We also adapt
the method to the Crofton cell and the empirical (or typical) cell of a Poisson line process.

1 Introduction and principal results.

1.1 The typical cell of a two-dimensional Poisson-Voronoi tessellation.

Consider Φ a homogeneous Poisson point process in R
2, with the two-dimensional Lebesgue measure

V2 for intensity measure. The set of cells

C(x) = {y ∈ R
2; ||y − x|| ≤ ||y − x′||, x′ ∈ Φ}, x ∈ Φ,

(which are almost surely bounded polygons) is the well-known Poisson-Voronoi tessellation of R
2.

Introduced by Meijering [13] and Gilbert [6] as a model of crystal aggregates, it provides now models
for many natural phenomena such as thermal conductivity [9], telecommunications [3], astrophysics
[22] and ecology [19]. An extensive list of the areas in which the tessellation has been used can be
found in Stoyan et al. [20] and Okabe et al. [18].

In order to describe the statistical properties of the tessellation, the notion of typical cell C
in the Palm sense is commonly used [17]. Consider the space K of convex compact sets of R

2

endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set B ⊂ R
2 such that

0 < V2(B) < +∞. The typical cell C is defined by means of the identity [17]:

Eh(C) =
1

V2(B)
E

∑

x∈B∩Φ

h(C(x) − x),

where h : K −→ R runs throughout the space of bounded measurable functions.
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Consider now the cell

C(0) = {y ∈ R
2; ||y|| ≤ ||y − x||, x ∈ Φ}

obtained when the origin is added to the point process Φ. It is well known [17] that C(0) and C are
equal in law. From now on, we will use C(0) as a realization of the typical cell C. We will call a
point y of Φ a neighbor of the origin if the bisecting line of the segment [0, y] intersects the boundary
of C(0). Let us denote by N0(C) the number of sides (or equivalently vertices) of the typical cell
C. In [5], we provided an integral formula for the distribution function of N0(C). We extend the
method to obtain the joint distribution of the respective positions of the k lines bounding C(0)
conditionally to the event {N0(C(0)) = k}, k ≥ 3.

Theorem 1 (i) For every k ≥ 3, we have

P{N0(C) = k} =
(2π)k

k!

∫

dσk(δ1, · · · , δk)

∫ k
∏

i=1

e−H(δi,pi,pi+1)1B(pi−1, pi, pi+1, δi−1, δi)pidpi, (1)

where σk is the (normalized) uniform measure on the simplex

Sk = {(δ1, · · · , δk) ∈ [0, 2π];

k
∑

i=1

δi = 2π}, (2)

with
B = {(p, q, r, α, β) ∈ (R+)3 × (0, π)2; p sin(β) + r sin(α) ≥ q sin(α + β)}, (3)

with for every δ ∈ (0, π), p, q ≥ 0,

H(δ, p, q) =
1

2 sin2(δ)

{

(p2 + q2 − 2pq cos(δ))
δ

2
+ pq sin(δ) − p2

4
sin(2δ) − q2

4
sin(2δ)

}

, (4)

and with the conventions p0 = pk, pk+1 = p1, and δ0 = δk;
(ii) conditionally to {N0(C(0)) = k}, let us denote by (P1,Θ1), · · · , (Pk,Θk) the polar coordinates
of the consecutive neighbors of the origin in the trigonometric order.

The joint distribution of the vector

(P1, · · · , Pk,Θ2 − Θ1, · · · ,Θk − Θk−1, 2π + Θ1 − Θk)

then has a density with respect to the measure

dνk(p1, · · · , pk, δ1, · · · , δk) = dp1 · · · dpkdσk(δ1, · · · , δk), (5)

and its density ϕk is given by the following equality for every p1, · · · , pk ≥ 0, (δ1, · · · , δk) ∈ Sk,

ϕk(p1, · · · , pk, δ1, · · · , δk) =
1

P{N0(C) = k}
(2π)k

k!

k
∏

i=1

pie
−H(δi ,pi,pi+1)1B(pi−1, pi, pi+1, δi−1, δi).

A table of numerical values for the distribution function of N0(C) has already been provided (see
[5], table 1).

Let us denote by F(C(0)) the fundamental domain associated to C(0), i.e.

F(C(0)) = ∪x∈C(0)D(x, ||x||),
where D(y, r) is the disk centered at y ∈ R

2 and of radius r ≥ 0.
Theorem 1 provides an easy way to obtain the distribution of the area of F(C(0)) conditionally

to {N0(C(0)) = k}, k ≥ 3, and explicit integral formulas for the distribution of the area V2(C) and
the perimeter V1(C) of C.
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Corollary 1 Conditionally to the event {N0(C) = k}, k ≥ 3,
(i) the area V2(F(C(0))) is Gamma distributed of parameters (k, 1);
(ii) the distribution of V2(C) is given by the following equality for every t ≥ 0:

P{V2(C) ≥ t|N0(C) = k} =

∫

(1Ct · ϕk)(p1, · · · , pk, δ1, · · · , δk)dνk(p1, · · · , pk, δ1, · · · , δk),

where

Ct = {(p1, · · · , pk, δ1, · · · , δk) ∈ (R+)k × (0, π)k ;

1

8

k
∑

i=1

1

sin(δi−1) sin(δi)
pi(pi−1 sin(δi) + pi+1 sin(δi−1) − pi sin(δi−1 + δi)) ≥ t}; (6)

(iii) the distribution of V1(C) is given by the following equality for every t ≥ 0:

P{V1(C) ≥ t|N0(C) = k} =

∫

(1Et · ϕk)(p1, · · · , pk, δ1, · · · , δk)dνk(p1, · · · , pk, δ1, · · · , δk),

where

Et = {(p1, · · · , pk, δ1, · · · , δk) ∈ (R+)k × (0, π)k ;

1

2

k
∑

i=1

1

sin(δi−1) sin(δi)
(pi−1 sin(δi) + pi+1 sin(δi−1) − pi sin(δi−1 + δi)) ≥ t}.

Remark 1 The point (i) was already obtained by Zuyev [23] with a different method based on
Russo’s formula. The result can be easily extended to a d-dimensional Poisson-Voronoi tessellation,
d ≥ 3, in the following way: condtionally to the event {number of hyperfaces of C(0) = k}, k ≥ d+1,
the Lebesgue measure of the fundamental domain of C(0) is Gamma distributed of parameters
(k, 1).

1.2 The Crofton cell of a Poisson line process.

Let us now consider Φ′ a Poisson point process in R
2 of intensity measure

µ(A) =

∫ +∞

0

∫ 2π

0
1A(r, u)dθdr, A ∈ B(R2).

Let us consider for all x ∈ R
2, H(x) = {y ∈ R

2; (y−x)·x = 0}, (x·y being the usual scalar product).
Then the set H = {H(x);x ∈ Φ} is called a Poisson line process and divides the plane into convex
polygons that constitute the so-called two-dimensional Poissonian tessellation. This tessellation is
isotropic, i.e. invariant in law by any isometric transformation of the Euclidean space.

This random object was used for the first time by S. A. Goudsmit [8] and by R. E. Miles ([14],
[15] and [16]). In particular, it provides a model for the fibrous structure of sheets of paper.

The origin is almost surely included in a unique cell C ′
0, called the Crofton cell. As in Theorem

1, we can get the joint distribution of the number of sides N0(C ′
0) of C ′

0 and the respective positions
of its bounding lines.
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Theorem 2 (i) For every k ≥ 3, we have

P{N0(C ′
0) = k} =

(2π)k

k!

∫

dσk(δ1, · · · , δk)

∫ k
∏

i=1

e
−pi

“

1−cos(δi)
sin(δi)

+
1−cos(δi−1)

sin(δi−1)

”

1B(pi−1, pi, pi+1, δi−1, δi)dpi; (7)

(ii) conditionally to {N0(C ′
0) = k}, let us denote by (P ′

1,Θ
′
1), · · · , (P ′

k,Θ
′
k) the polar coordinates of

the projections of the origin on the consecutive lines bounding C ′
0 in the trigonometric order.

The joint distribution of the vector

(P ′
1, · · · , P ′

k,Θ
′
2 − Θ′

1, · · · ,Θ′
k − Θ′

k−1, 2π + Θ′
1 − Θ′

k)

then has a density with respect to the measure νk (defined by (5)) and its density ϕ′
k is given by the

following equality for every p1, · · · , pk ≥ 0, (δ1, · · · , δk) ∈ Sk,

ϕ′
k(p1, · · · , pk, δ1, · · · , δk) =

1

P{N0(C ′
0) = k}

(2π)k

k!

k
∏

i=1

e
−pi

“

1−cos(δi)

sin(δi)
+

1−cos(δi−1)

sin(δi−1)

”

1B(pi−1, pi, pi+1, δi−1, δi).

As for the Voronoi case, the point (i) of Theorem 2 provides numerical values estimated by a
Monte-Carlo procedure which are listed in Table 1.

We deduce from Theorem 2 the joint distributions of the couples (N0(C ′
0), V1(C ′

0)) and
(N0(C ′

0), V2(C ′
0)).

Corollary 2 Conditionally to the event {N0(C ′
0) = k}, k ≥ 3,

(i) the perimeter V1(C ′
0) is Gamma distributed of parameters (k, 1);

(ii) the distribution of V2(C ′
0) is given by the following equality for every t ≥ 0:

P{V2(C ′
0) ≥ t|N0(C ′

0) = k} =

∫

(1Ct/4
· ϕ′

k)(p1, · · · , pk, δ1, · · · , δk)dνk(p1, · · · , pk, δ1, · · · , δk),

where the set Ct/4 is defined by the equality (6).

Remark 2 The point (i) was already obtained by G. Matheron (see [10], p.177). It can be extended
to any d-dimensional Poissonian tessellation, d ≥ 3, in the following way: conditionally to the event
{number of hyperfaces of C ′

0 = k}, k ≥ d + 1, the mean width of C ′
0 is Gamma distributed of

parameters
(

k, Γ(d/2)

πd/2

)

.

1.3 The typical cell of a Poisson line process.

The notion of typical (or empirical) cell C ′ for the Poisson tessellation was first introduced by Miles
[14], [15] through the convergence of ergodic means and has been reinterpreted since by means of
a Palm measure (see [11], [12] and [4]). The typical cell C ′ is connected in law to the Crofton cell
by the following equality (see for example [4]):

Eh(C′) =
1

E(1/V2(C ′
0))

E

(

h(C ′
0)

V2(C ′
0)

)

, (8)
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k 3 4 5 6 7 8 9

P{N0(C ′
0) = k} 0.0767 0.3013 0.3415 0.1905 0.0682 0.0155 0.0052

Table 1: Numerical values for P{N0(C ′
0) = k}.

for all measurable and bounded function h : K −→ R which is invariant by translation. Besides, it
is well known [20] that

E{V2(C′)} =

[

E

(

1

V2(C ′
0)

)]−1

=
1

π
. (9)

Since Corollary 2 provides the joint distribution of the couple (N0(C ′
0), V2(C ′

0)), we can deduce from
the equality (8) the law of the number of sides N0(C′) and also generalize all the results obtained
for the Crofton cell.

Theorem 3 (i) For every k ≥ 3, we have

P{N0(C′) = k} =
(2π)k

π · k!

∫

dσk(δ1, · · · , δk)

∫
∏k

i=1 e
−pi

“

1−cos(δi)

sin(δi)
+

1−cos(δi−1)

sin(δi−1)

”

1B(pi−1, pi, pi+1, δi−1, δi)

Wk(p1, · · · , pk, δ1, · · · , δk)
dp1 · · · dpk,(10)

where

Wk(p1, · · · , pk, δ1, · · · , δk) =
1

2

k
∑

i=1

1

sin(δi−1) sin(δi)
pi(pi−1 sin(δi) + pi+1 sin(δi−1)− pi sin(δi−1 + δi));

(ii) Let
(Q1, · · · , Qk,Σ1, · · · ,Σk) ∈ (R+)k × Sk

be a random vector which has a density ψk with respect to the measure νk (given by (5)) satisfying
the following equality for every p1, · · · , pk ≥ 0, (δ1, · · · , δk) ∈ Sk,

ψk(p1, · · · , pk, δ1, · · · , δk) = ak · ϕ
′
k(p1, · · · , pk, δ1, · · · , δk)

Wk(p1, · · · , pk, δ1, · · · , δk)
.

where ak = (P{N0(C ′
0) = k}/(πP{N0(C′) = k})).

Let us consider a random angle Θ independent of the preceding vector and uniformly distributed
on the circle. We denote by X1, X2, · · · , Xk the points of the plane of respective polar coordinates
(Q1,Θ), (Q2,Θ + Σ1), · · · , (Qk,Θ + Σ1 + · · ·+ Σk−1). The typical cell C ′ then is equal in law to the
convex polygon bounded by the lines H(X1), · · · ,H(Xk).

Numerical values for the distribution function of N0(C′) using the point (i) and a Monte-Carlo

method are listed in Table 2. Let us remark that Miles [14] obtained that P{N0(C′) = 3} = 2 − π2

6
and Tanner [21] get the exact value for P{N0(C′) = 4}.

As for the Crofton cell, we deduce from the preceding theorem a corollary about the joint
distributions of the number of sides and the perimeter V1(C′) (resp. the area V2(C′)) of the typical
cell.
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k 3 4 5 6 7 8 9

P{N0(C′) = k} 0.3554 0.3815 0.1873 0.0596 0.0129 0.0023 0.0004

Table 2: Numerical values for P{N0(C′) = k}.

Corollary 3 Conditionally to the event {N0(C′) = k}, k ≥ 3,
(i) the perimeter V1(C′) is Gamma distributed of parameters (k − 2, 1);
(ii) the distribution of V2(C′) is given by the following equality for every k ≥ 3, t ≥ 0:

P{V2(C′) ≥ t|N0(C′) = k} =

∫

(1Ct/4
· ψk)(p1, · · · , pk, δ1, · · · , δk)dνk(p1, · · · , pk, δ1, · · · , δk),

where the set Ct/4 is defined by the equality (6).

Remark 3 The point (i) was already obtained by R. E. Miles [14]. It can be extended to any
d-dimensional Poissonian tessellation in the following way: conditionally to the event {number
of hyperfaces of C ′ = k}, k ≥ d + 1, the mean width of C ′ is Gamma distributed of parameters
(

k − d, Γ(d/2)

πd/2

)

.

Remark 4 Comparing the points (i) of Corollaries 1 and 3, we notice that the area of the fun-
damental domain of C(0) plays the same role for the Poisson-Voronoi case as the perimeter of C ′

for the Poisson line process. This analogy may be explained as follows: for every fixed measure
in R

2, the set of the lines H(x), x ∈ R
2, induces a pseudo-metric in the plane in the sense of R.

V. Ambartzumian [1], [2]. The quantity V2(F(C(0))) (resp. V1(C′)) then is proportional to the
perimeter of the typical cell with respect to the pseudo-metric associated to the intensity measure
of the Poisson point process Φ (resp. Φ′).

In the paper, we first prove the resuls relative to the Poisson-Voronoi tessellation and secondly the
analogous facts for the Crofton cell of a Poisson line process. Let us remark that Theorem 3 and
Corollary 3 are direct consequences of Theorem 2 and Corollary 2 combined with (8) and (9).

2 Proofs of Theorem 1 and Corollary 1.

We use the same technique as in [5] based on Slivnyak’s formula (see e.g. [17]).
For every x ∈ R

2, let us denote by L(x) (respectively D(x)) the bisecting line of the segment
[0, x] (respectively the half-plane containing 0 delimited by L(x)).

We then define for all k ≥ 3, and x1, · · · , xk ∈ R
2, the domain

D(x1, · · · , xk) = ∩k
i=1D(xk).

Besides, we consider the set of (R2)k

Ak = {(x1, · · · , xk) ∈ (R2)k;D(x1, · · · , xk) is a convex polygon with k sides}, (11)

and for every (x1, · · · , xk) ∈ Ak, the Lebesgue measure of the fundamental domain of D(x1, · · · , xk),
i.e.

V (x1, · · · , xk) = V2[F(D(x1, · · · , xk))] = V2

[

∪x∈D(x1.,··· ,xk)D(x, ||x||)
]

.

Let N0 be the set of all neighbors of the origin.
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Proposition 1 For every k ≥ 3 and every bounded and measurable function h : R
k −→ R invariant

by permutation, we have

E
{

1{N0(C(0))=k}h(N0)
}

=
1

k!

∫

h(x1, · · · , xk) exp{−V (x1, · · · , xk)}1Ak
(x1, · · · , xk)dx1 · · · dxk.

(12)

Proof. Let us decompose Ω over all possibilities for the set N0.

E
{

1{N0(C(0))=k}h(N0)
}

= E







∑

{x1,··· ,xk}⊂Φ

h(x1, · · · , xk)1Ak
(x1, · · · , xk)1{D(x1,··· ,xk)=C(0)}







= E







∑

{x1,··· ,xk}⊂Φ

h(x1, · · · , xk)1Ak
(x1, · · · , xk)1{L(y)∩D(x1 ,··· ,xk)=∅ ∀y∈Φ\{x1 ,··· ,xk}}







.

Using Slivnyak’s formula [17], we obtain

E
{

1{N0(C(0))=k}h(N0)
}

=
1

k!

∫

h(x1, · · · , xk)1Ak
(x1, · · · , xk)E

(

1{L(y)∩D(x1 ,··· ,xk)=∅ ∀y∈Φ}

)

dx1 · · · dxk

=
1

k!

∫

h(x1, · · · , xk)1Ak
(x1, · · · , xk)P{L(y) ∩ D(x1, · · · , xk) = ∅ ∀y ∈ Φ}dx1 · · · dxk.(13)

We can easily verify that for any z ∈ R
2,

L(z) ∩ D(x1, · · · , xk) 6= ∅ ⇐⇒ z ∈ ∪x∈D(x1··· ,xk)D(x, ||x||),

From this remark and the Poissonian property of Φ, we get

P{L(y) ∩ D(x1, · · · , xk) = ∅ ∀y ∈ Φ} = P{Φ ∩
[

∪x∈D(x1,··· ,xk)D(x, ||x||)
]

= ∅}
= e−V (x1,··· ,xk). (14)

Inserting the equality (14) in (13), we deduce Proposition 1.

2

We already expressed the set Ak analytically and calculated the area V (x1, · · · , xk) in function of
the polar coordinates of x1, · · · , xk (see [5], lemmas 1 and 2). Let us denote by

(p1, θ1), · · · , (pk, θk) ∈ R+ × [0, 2π),

the respective polar coordinates of x1, · · · , xk ∈ R
2. Supposing that θ1, · · · , θk are in growing order,

we define δi = θi+1 − θi, 1 ≤ i ≤ (k − 1), and δk = 2π + θ1 − θk. We then have the two following
results:

1Ak
(x1, · · · , xk) =

k
∏

i=1

1B(pi−1, pi, pi+1, δi−1, δi), (15)
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where the set B is defined by (3), and for every (x1, · · · , xk) ∈ Ak,

V (x1, · · · , xk) =

k
∑

i=1

1

2 sin2(δi)

{

(p2
i + p2

i+1 − 2pipi+1 cos(δi))
δi
2

+ pipi+1 sin(δi)

−p
2
i

4
sin(2δi) −

p2
i+1

4
sin(2δi)

}

. (16)

Proof of Theorem 1. Using polar coordinates in the integral of the equality (12), we obtain for
every k ≥ 3,

E{1{N0(C)=k}h(N0)}

=
1

k!

∫

e−V (p1uθ1
,··· ,pkuθk

)(h · 1Ak
)(p1uθ1 , · · · , pkuθk

)

k
∏

i=1

1{pi≥0}1{0≤θi≤2π}pidpidθi

=

∫

e−V (p1uθ1
,··· ,pkuθk

)(h · 1Ak
)(p1uθ1 , · · · , pkuθk

)1{0≤θ1≤···≤θk≤2π}

k
∏

i=1

1{pi≥0}pidpidθi, (17)

where uθ, 0 ≤ θ ≤ 2π, denotes the unit vector in the plane of rectangular coordinates (cos θ, sin θ).
Let us suppose that h is invariant under rotation, i.e. for all θ ∈ [0, 2π],

h(p1uθ+θ1 , · · · , pkuθ+θk
) = h(p1uθ1 , · · · , pkuθk

).

Inserting then the results (15) and (16) in (17), we deduce that

E{1{N0(C)=k}h(N0)}

=

∫

[

∫

h(p1u0, p2uδ1 , · · · , pkuδ1+···+δk−1
)

k
∏

i=1

e−H(δi,pi,pi+1)1B(pi−1, pi, pi+1, δi−1, δi)pidpi

]

1{δ1+···+δk−1≤2π}δkdδ1 · · · dδk−1

=
(2π)k

k!

∫

dσk(δ1, · · · , δk)

∫

h(p1u0, p2uδ1 , · · · , pkuδ1+···+δk−1
)

k
∏

i=1

e−H(δi,pi,pi+1)1B(pi−1, pi, pi+1, δi−1, δi)pidpi, (18)

where the function H is defined by the equality (4).
This last equality provides us the point (ii) of Theorem 1 and replacing h by 1, we obtain the

point (i).

2

Proof of Corollary 1. Let us first notice that for every (x1, · · · , xk) ∈ Ak,

V2(D(x1, · · · , xk)) =
1

8

k
∑

i=1

1

sin(δi−1) sin(δi)
pi(pi−1 sin(δi) + pi+1 sin(δi−1) − pi sin(δi−1 + δi)), (19)

and

V1(D(x1, · · · , xk)) =
1

2

k
∑

i=1

1

sin(δi−1) sin(δi)
(pi−1 sin(δi) + pi+1 sin(δi−1) − pi sin(δi−1 + δi))(20)

=
1

2

k
∑

i=1

pi

(

1 − cos(δi)

sin(δi)
+

1 − cos(δi−1)

sin(δi−1)

)

. (21)
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The point (ii) (resp. (iii)) then is easily obtained by applying the equality (18) to

h(x1, · · · , xk) = 1{V2(D(x1,··· ,xk))≥t}

(resp. h(x1, · · · , xk) = 1{V1(D(x1,··· ,xk))≥t}). As for point (i), let us apply the equality (12) to

h(x1, · · · , xk) = e−λV (x1,··· ,xk), λ ≥ 0.

Let us notice that if N0 = {x1, · · · , xk}, we have V (x1, · · · , xk) = V2(F(C(0))).
Consequently, we obtain

E
{

1{N0(C(0))=k}e
−λV2(F(C(0)))

}

=
1

k!

∫

e−(λ+1)V (x1,··· ,xk)1Ak
(x1, · · · , xk)dx1 · · · dxk.

We take the change of variables x′i =
√
λ+ 1xi, 1 ≤ i ≤ k, to deduce that

E
{

1{N0(C(0))=k}e
−λV2(F(C(0)))

}

=
1

(λ + 1)k
· 1

k!

∫

e−V (x1,··· ,xk)1Ak
(x1, · · · , xk)dx1 · · · dxk

= P{N0(C(0) = k} 1

(λ + 1)k
.

So conditionally to the event {N0(C(0)) = k}, the Laplace transform of the distribution of
V2(F(C(0))) is exactly (λ + 1)−k, λ ≥ 0, i.e. V2(F(C(0))) is Gamma distributed with parame-
ters (k, 1).

2

3 Proofs of Theorem 2 and Corollary 2.

For all x ∈ R
2, let us define D′(x) as the half-plane containing the origin delimited by the line

H(x). We then denote for every x1, · · · , xk ∈ R
2,

D′(x1, · · · , xk) = D′(x1) ∩ · · · ∩ D′(xk) = D(2x1, · · · , 2xk).

Let N ′
0 be the (random) set of all points x ∈ Φ′ such that H(x) intersects the boundary of the

Crofton cell C ′
0.

Proposition 2 For every k ≥ 3 and every bounded and measurable function h : R
k −→ R invariant

by permutation, we have

E
{

1{N0(C′
0)=k}h(N ′

0)
}

=
1

k!

∫

(h · 1Ak
)(x1, · · · , xk) exp{−V1(D′(x1, · · · , xk))}dx1 · · · dxk. (22)

Proof. As for Proposition 1, we apply Slivnyak’s formula to obtain

E
{

1{N0(C′
0)=k}h(N ′

0)
}

=
1

k!

∫

h(x1, · · · , xk)1Ak
(x1, · · · , xk)P{H(y) ∩D′(x1, · · · , xk) = ∅ ∀y ∈ Φ′}dx1 · · · dxk.(23)

We can easily verify (see e.g. [7]) that

P{H(y) ∩ D′(x1, · · · , xk) = ∅ ∀y ∈ Φ′} = P{D′(x1, · · · , xk) ⊂ C ′
0}

= exp{−V1(D′(x1, · · · , xk))}. (24)

Inserting the equality (24) in (23), we deduce Proposition 2.
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2

Proofs of Theorem 2 and Corollary 2. Let us recall that

V1(D′(x1, · · · , xk)) =

k
∑

i=1

pi

(

1 − cos(δi)

sin(δi)
+

1 − cos(δi−1)

sin(δi−1)

)

, (25)

and

V2(D′(x1, · · · , xk)) =
1

2

k
∑

i=1

1

sin(δi−1) sin(δi)
pi(pi−1 sin(δi) + pi+1 sin(δi−1) − pi sin(δi−1 + δi)). (26)

It then suffices to insert in (22) the results (15) and (25) to obtain the two points of Theorem 2.
The proof of Corollary 2 is also analogous to the Voronoi case. In particular, point (i) is deduced

from a calculation of the Laplace transform of the distribution of the perimeter of C ′
0 conditioned

by the event {N0(C ′
0) = k}, k ≥ 3:

E
{

1{N0(C′
0)=k}e

−λV1(C′
0)

}

= P{N0(C ′
0) = k} · 1

(λ + 1)k
, λ ≥ 0.

2
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