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Abstract

Denote by Rm (respectively RM ) the radius of the largest (respectively smallest) disk cen-
tered at a typical particle of the two-dimensional Poisson-Voronoi tessellation and included
within (respectively containing) the polygonal cell associated with that particle. In this article,
we obtain the joint distribution of Rm and RM . This result is derived from the covering prop-
erties of the circle due to Stevens, Siegel and Holst. The same method works for studying the
Crofton cell associated to the Poisson line process in the plane. The computation of the condi-
tional probabilities P{RM ≥ r+ s|Rm = r} reveals the circular property of the Poisson-Voronoi
typical cells (as well as the Crofton cells) having a “large” in-disk.

Introduction and presentation of results.

Consider Φ = {xn;n ≥ 1} a homogeneous Poisson point process in R
2, with the 2-dimensional

Lebesgue measure V2 for intensity measure. The set of cells

C(x) = {y ∈ R
d; ||y − x|| ≤ ||y − x′||, x′ ∈ Φ}, x ∈ Φ,

(which are almost surely bounded polygons) is the well-known Poisson-Voronoi tessellation of R
2.

Introduced by Meijering [12] and Gilbert [4] as a model of crystal aggregates, it provides now
models for many natural phenomena such as thermal conductivity [11], telecommunications [1],
astrophysics [26] and ecology [20]. An extensive list of the areas in which the tessellation has been
used can be found in Stoyan et al. [25] and Okabe et al. [18].

In order to describe the statistical properties of the tessellation, the notion of typical cell C
in the Palm sense is commonly used [16]. Consider the space K of convex compact sets of R

2

endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set B ⊂ R
2 such that

0 < V2(B) < +∞. The typical cell C is defined by means of the identity [16]:

Eh(C) =
1

V2(B)
E
∑

x∈B∩Φ

h(C(x) − x),

where h : K −→ R runs throughout the space of bounded measurable functions.
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Consider now the cell

C(0) = {y ∈ R
2; ||y|| ≤ ||y − x||, x ∈ Φ}

obtained when the origin is added to the point process Φ. It is well known [16] that C(0) and C
are equal in law. From now on, we will use C(0) as a realization of the typical cell C.

The explicit distributions of the main geometrical characteristics of the typical cell are mainly
unknown. For example, we do not have any precise idea of the asymptotic behaviour of the
distribution function of the area of C and the best estimation up to now was obtained by Gilbert
[4] in 1961 (see also [18]):

e−4t ≤ P{V2(C) ≥ t} ≤ t − 1

et−1 − 1
, t > 0. (1)

Nevertheless, the law of the radius Rm of the largest ball centered at the origin and contained in
C(0) can be obtained easily. Indeed:

P{Rm ≥ r} = P{D(r) ⊂ C(0)}
= P{Φ ∩ D(2r) = ∅} = e−4πr2

, r > 0,

where D(r), r > 0, denotes the closed disk centered at the origin of radius r.
It is more difficult to determine the law of the radius RM of the smallest disk centered at the

origin containing C(0). This problem was investigated by Foss and Zuyev [3] in the framework of a
mathematical modelization of a telecommunications network. They obtained the following upper
bound:

P{RM ≥ r} ≤ 7e−µr2
, r > 0, (2)

where µ = 2(sin(π/14) cos(5π/14) + π/7) ≈ 1.09.
In this work, we obtain the exact distribution of RM .

Theorem 1 The law of RM is given by the following equality

P{RM ≥ r} = e−4πr2



1 −
∑

k≥1

(−4πr2)k

k!
ξk



 , r > 0, (3)

with

ξk =

∫

[

k
∏

i=1

F (ui)

]

e4πr2
Pk

i=1

R ui
0 F (t)dtdσk(u), k ≥ 1,

and

F (t) =

{

sin2(πt) if 0 ≤ t ≤ 1/2
1 if t ≥ 1/2,

(4)

where σk denotes the (normalized) area measure of the simplex

{u = (u1, · · · , uk) ∈ [0, 1]k ;

k
∑

i=1

ui = 1}.
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The proof of Theorem 1 relies on the observation that P{RM ≥ r} can be expressed in terms of
probabilities of coverage of a circle by random independent and identically distributed arcs. More
precisely, for any probability measure ν on [0, 1], let us denote by P (ν, n) the probability of the
coverage of a circle of circumference one by n open random arcs Ai, 1 ≤ i ≤ n such that:

(i) the lengths 0 ≤ Li ≤ 1, 1 ≤ i ≤ n, of the arcs are independent and identically distributed
random variables of law ν;

(ii) The centers Ci, 1 ≤ i ≤ n, of these arcs are independent and uniformly distributed (on the
unit circle) random variables;

(iii) The sequences {Li; i ≥ 1} and {Ci; i ≥ 1} are independent.

We show that

Theorem 2 For all r ≥ 0,

P{RM ≥ r} =
∑

n≥0

e−4πr2 (4πr2)n

n!
(1 − P (ν0, n)), (5)

where ν0(dt) = π sin(2πt)1[0,1/2](t)dt.

The probabilities P (ν, n) (see formula (18)) were explicitely calculated by Siegel and Holst [23]. By
inserting their expressions in (5), we obtain Theorem 1.

Using Matlab, we obtain precise estimates for P (ν0, n), n ≥ 0 that we insert in (5). It provides
us numerical values for the distribution function of RM that are listed in Table 1.

Besides, we deduce from Theorem 2 theoretical lower and upper bounds for P{RM ≥ r} that
improve significantly the latest result (2) due to Foss and Zuyev:

Theorem 3 For all r > 0, we have

2πr2e−πr2

(

1 +
1

2πr2
e−πr2

)

≤ P{RM ≥ r}

≤ 2πr2e−πr2

(

2 − 2πr2e−πr2
+

π2r4

3
e−2πr2

+
1

2πr2
e−3πr2

)

.

In particular, for r ≥ α ≈ 0.337,

2πr2e−πr2 ≤ P{RM ≥ r} ≤ 4πr2e−πr2
. (6)

These estimations, particularly essential when r is large, are difficult to obtain. In order to do it,
we use a conjecture of Siegel [22] which we deduce from a non-trivial result proved by Huffer and
Shepp [9].

Let us notice that Theorem 3 provides an upper bound for the distribution function of the area
of C which is better than Gilbert’s one (1) for 0 < t ≤ t∗ ≈ 1.043 and worse for t ≥ t∗.

By the same method we obtain the conditional distributions

P{RM ≥ t|Rm = r}, r ≥ 0, t > 0

as well as the corresponding asymptotic estimations.
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r 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P{RM ≥ r} 1 0.999 0.995 0.983 0.946 0.874 0.758 0.604 0.441

r 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

P{RM ≥ r} 0.292 0.177 0.098 0.050 0.023 0.010 0.004 0.001 0

Table 1: Numerical values for P{RM ≥ r}.

Theorem 4 For all r, s > 0,

P{RM ≥ r + s|Rm = r} = e−4π(s2+2rs)ar,s + e−4π(s2+2rs)



1 +
∑

k≥1

(−1)k
(4π(s2 + 2rs))k

k!
ξk(r, s)



 ,

(7)
where, for all k ≥ 1,

ξk(r, s) =

∫

1{u1≥lr,s}

[

k+1
∏

i=2

Fr,s(ui)

]

e4π(s2+2rs)
Pk+1

i=1

R ui
0 Fr,s(t)dtdσk+1(u)

−
∫

[

k
∏

i=1

Fr,s(ui)

]

e4π(s2+2rs)
Pk

i=1

R ui
0 Fr,s(t)dt

[

k
∑

i=1

(ui − lr,s)+

]

dσk(u),

with
lr,s = arccos(r/(r + s))/π, (8)

Fr,s(t) = νr,s([0, t]) =

{

(r+s)2

2rs+s2 sin2(πt) if 0 ≤ t ≤ lr,s
1 if t ≥ lr,s,

(9)

and

ar,s =

∫ 1

0
t dνr,s(t)

=
1

2
√

2π

√

r

s
(1 +

s

2r
)−1/2 +

1

π
arccos(1 − s

s + r
)(1 +

s

2r
)−1(− r

4s
+

1

2
+

s

4r
). (10)

Theorem 5 For all 0 < c < 8/(3
√

2) and all fixed −1 < α < 1/3,

P{RM ≥ r +
1

rα
|Rm = r} = O(e−cr

1
2 (1−3α)

), when r → +∞. (11)

The asymptotic result (11) follows from (7) and an inequality proved by Shepp (see [21]). It means
that the boundary of the cells such that the in-disk (centered at the nucleus associated to the cell)
has a “large radius” r, is included in the annulus A(r, r +1/rα) (with probability close to one). We
observe, expressed in a different form, the circular property of the large cells of the two-dimensional
Poisson-Voronoi tessellation that we already noticed in [7].

Besides, we can adapt the procedure to study the radius R′
M of the smallest disk centered at

the origin containing the Crofton cell of the Poisson line process in the plane, of intensity measure

µ(A) =

∫ +∞

0

∫ 2π

0
1A(ρ, θ)dθdρ, A ∈ B(R2).
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Theorem 6 The law of R′
M is given by the equality

P{R′
M ≥ r} = e−2πr



1 −
∑

k≥1

(−2πr)k

k!
ζk



 , r > 0, (12)

where for any k ≥ 1,

ζk =

∫

[

k
∏

i=1

G(ui)

]

e4πr2
Pk

i=1

R ui
0 G(t)dtdσk(u),

and

G(t) =

{

1 − cos(πt) if 0 ≤ t ≤ 1/2
1 if t ≥ 1/2.

(13)

Theorem 7 We have

P{R′
M ≥ r} =

∑

n≥0

e−2πr (2πr)n

n!
(1 − P (ν ′

0, n)),

where ν ′
0(dt) = π sin(πt)1[0,1/2](t)dt.

Theorem 8 We have

2πre−2r

(

cos 1 +
e−2(π cos 1−1)r

2πr

)

≤ P{R′
M ≥ r}

≤ 2πre−2r

(

1 − (π − 2)re−2r +
2

3
(π − 3)2r2e−4r +

e−2(π−1)r

2πr

)

.

Denoting by R′
m the radius of the largest disk centered at the origin and contained in the cell, we

have:

Theorem 9 For all r, s > 0,

P{R′
M ≥ r + s|R′

m = r} = e−2πsbr,s + e−2πs



1 +
∑

k≥1

(−1)k
(2πs)k

k!
ζk(r, s)



 ,

where for any k ≥ 1,

ζk(r, s) =

∫

1{u1≥lr,s}

[

k+1
∏

i=2

Gr,s(ui)

]

e2πs
Pk+1

i=1

R ui
0 Gr,s(t)dtdσk+1(u)

−
∫

[

k
∏

i=1

Gr,s(ui)

]

e2πs
Pk

i=1

R ui
0 Gr,s(t)dt

[

k
∑

i=1

(ui − lr,s)+

]

dσk(u),

with

Gr,s(t) = ν ′
r,s([0, t]) =

{

r+s
s (1 − cos(πt)) if 0 ≤ t ≤ lr,s

1 if t ≥ lr,s,
(14)
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and

br,s =

∫ 1

0
t dν ′

r,s(t)

=

√
2

π

√

r

s
(1 +

s

2r
)1/2 − r

πs
arccos(1 − s

s + r
). (15)

Theorem 10 For all 0 < c < 8/(3
√

2) and all fixed 1/3 < α < 1,

P{R′
M ≥ r + rα|R′

m = r} = O(e−cr
1
2 (3α−1)

) when r → +∞.

This paper is structured as follows. We prove first Theorem 2 which connects the distribution of
RM to the coverage probabilities. From this we deduce Theorem 1. Then we prove the conjecture
of Siegel that the probability of coverage of the circle is an increasing function of the concentration
(about the mean) of the distribution of the arc lengths. This result (which seems to be unknown)
is derived quite easily from a comparison lemma of Huffer and Shepp. It provides us Theorem 3.
Then we apply the same method to determine the conditional distributions P{RM ≥ r+s|Rm = r},
r, s > 0 (Theorems 4 and 5). Finally we conclude this article by using the same arguments in order
to obtain similar results in the case of the Crofton cell of the Poisson line process in the plane
(Theorems 6 to 10).

1 Proofs of Theorems 1 and 2.

The probability of coverage of the circle by arcs of constant length equal to 0 ≤ a ≤ 1 (corresponding
to the choice ν = δa) was obtained by Stevens [23]. A proof of the following theorem can be found
in [24].

Theorem 11 (Stevens, 1939) For all n ≥ 1, we have

P (δa, n) =
n
∑

k=0

(−1)k
(

n

k

)

(1 − ka)n−1
+ . (16)

In particular, we deduce easily from Theorem 11 the following corollary.

Corollary 1 For all p ∈ [0, 1] and all n ≥ 1, we have

P ((1 − p)δ0 + pδa, n) = 1 − (1 − p)n +

n
∑

k=1

(−1)k
(

n

k

)

pk(1 − ka)k−1
+ [1 − p + p(1 − ka)+]n−k. (17)

The formula (16) was extended to the general case by Siegel and Holst [23] under the form:

Theorem 12 (Siegel, Holst, 1982) For any probability measure ν on [0, 1] with Fν for distribu-
tion function, we have

P (ν, n) =
n
∑

k=0

(−1)k
(

n

k

)∫

[

k
∏

i=1

Fν(ui)

][

k
∑

i=1

∫ ui

0
Fν(t)dt

]n−k

dσk(u), n ∈ N
∗, (18)

where σk, k ≥ 1, is the (normalized) uniform measure of the simplex

{u = (u1, · · · , uk);

k
∑

i=1

ui = 1}

.
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0

X1

A(X1)

A(X3)

X2

X3

A(X2)

Figure 1: Covering the circle with the arcs A(Xi), 1 ≤ i ≤ n .

The formula (3) giving the law of RM is derived directly from (5) and (18). It remains to prove
Theorem 2.

Let us fix r > 0 and notice first that the convexity of C(0) implies that

RM ≥ r ⇐⇒ there exists x ∈ C(0) such that ||x|| = r.

From the definition of the cell C(0), we deduce the identity:

{RM ≥ r} = {∃x ∈ C(0); ||x|| = r}
= {∃x; ||x|| = r and ||x − y|| ≥ r ∀y ∈ Φ}
= {∃x; ||x|| = r and ||x − y|| ≥ r ∀y ∈ Φ ∩ D(2r)}, (19)

Let us define for all x ∈ D(2r),

A(x) = {y; ||y|| = r and ||y − x|| < r}.

The sets A(x), x ∈ D(2r), are open arcs of the circle of radius r > 0 (see Figure 2). From (19) we
get:

{RM ≥ r} = {∃x; ||x|| = r and x 6∈ ∪y∈Φ∩D(2r)A(y)}. (20)

Besides, let us recall that
Φ ∩ D(2r) = {Xn; 1 ≤ n ≤ N},

where:

7



(i’) {Xn;n ≥ 1} is a sequence of independent and identically distributed random variables, taking
values in D(2r), of law:

X1(P) =
1

4πr2
1D(2r)(x)dx;

(ii’) N is a Poisson variable of mean EN = 4πr2 and independent of the sequence {Xn;n ≥ 1}.

Let us note

Ai =
1

2πr
A(Xi), i ≥ 1.

Then by an elementary geometrical argument, we deduce from (i’) that for all n ≥ 1, the sequence
{Ai; 1 ≤ i ≤ n}, satisfies the conditions (i)-(iii) with

Li =
1

π
arccos

( ||Xi||
2r

)

, i ≥ 1,

which corresponds to the fact that the law ν0 of the arc lengths is

ν0(dt) = π sin(2πt)1[0, 1
2
](t)dt.

Finally applying the property (ii’) we obtain with (20):

P{RM ≥ r} = P{N = 0} +
∑

n≥1

P{N = n} × P{∃x; ||x|| = r and x 6∈ ∪1≤i≤nA(Xi)}

= e−4πr2



1 +
∑

n≥1

(4πr2)n

n!
(1 − P (ν0, n))



 .

This is the required result.2

2 A result of comparison for probabilities of coverage.

A. F. Siegel introduced [22] the following notion of comparison of probability distributions.

Definition 1 (Siegel, 1978) Consider ν1 and ν2 two probability distributions on [0, 1] with com-
mon expectation

∫ 1

0
t dν1(t) =

∫ 1

0
t dν2(t) = e ∈ [0, 1]. (21)

ν1 is said to be more concentrated (about the mean) than ν2 if

{

ν1([0, t]) ≤ ν2([0, t]) for t < e
ν1([0, t]) ≥ ν2([0, t]) for t ≥ e

In particular, if ν1 is more concentrated (about the mean) than ν2, then ν1 is less dangerous than
ν2, which is written in modern notation as ν1 ≤D ν2 (see [17], p. 23).

Using simulation observations, A. F. Siegel conjectured [22] that

Theorem 13 If ν1 is more concentrated than ν2, then we have

P (ν1, n) ≤ P (ν2, n) ∀n ≥ 1. (22)
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We are going to prove Siegel’s conjecture. Let us remark first that

P (ν1, n) =

∫

P (l1, · · · , ln)dν1(l1) · · · dν1(ln), (23)

where P (l1, · · · , ln), l1, · · · , ln ∈ [0, 1], denotes the probability that the circle of circumference one
is covered by n arcs of lengths respectively equal to l1, · · · , ln, where the centers of the arcs are
independent and uniformly distributed (on the circle) random variables.

Moreover, Huffer and Shepp [9] proved the following non-trivial result.

Theorem 14 (Huffer, Shepp, 1987) The function

(l1, · · · , ln) 7−→ P (l1, · · · , ln)

is convex in each argument when the others are held fixed.

Besides, it is well known (see [17], pages 16-17, 23) that the comparison ν1 ≤D ν2 associated to
(21) implies ν1 ≤cx ν2, i.e. comparison in the convex order of distributions, which by definition
ensures that for any convex function f on [0, 1], we have

∫

f(t)dν1(t) ≤
∫

f(t)dν2(t). (24)

Then applying Theorem 14 and (24), we obtain by successive iterations

∫
[
∫

P (l1, l2, · · · , ln)dν1(l2) · · · dν1(ln)

]

dν1(l1)

≤
∫ [∫

P (l1, l2, · · · , ln)dν1(l2) · · · dν1(ln)

]

dν2(l1)

=

∫
[
∫

P (l1, l2, · · · , ln)dν2(l1)dν1(l3) · · · dν1(ln)

]

dν1(l2)

≤
∫
[
∫

P (l1, l2, · · · , ln)dν2(l1)dν1(l3) · · · dν1(ln)

]

dν2(l2)

...

≤
∫

P (l1, l2, · · · , ln)dν2(l1) · · · dν2(ln).

Consequently, using (23), we get

P (ν1, n) ≤ P (ν2, n), n ≥ 1.2

3 Proof of Theorem 3.

The upper and lower bounds on the distribution function of RM given by Theorem 3 may be
obtained easily from the preceding comparison result. Actually, we have clearly

∫

t dν0(t) = π

∫ 1/2

0
t sin(2πt)dt =

1

4
,

and besides ν0([0, 1/4]) = 1/2. So
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Lemma 1 (i) The measure δ1/4 is more concentrated than ν0;

(ii) The measure ν0 is more concentrated than 1
2(δ0 + δ1/2).

Moreover, Stevens’s formula (Theorem 11) and Corollary 1 provide the following expressions.

Lemma 2 We have for all n ≥ 1,

1 − P (δ1/4, n) = n

(

3

4

)n−1

−
(

n

2

)(

1

2

)n−1

+

(

n

3

)(

1

4

)n−1

(25)

1 − P (1/2(δ0 + δ1/2), n) = 2−n +
n

2

(

3

4

)n−1

. (26)

Consequently, it suffices to apply Theorems 2 and 13 as well as Lemmas 1 and 2.2

4 Proofs of Theorems 4 and 5.

Proof of Theorem 4. Notice first the following identity

{Φ|Rm = r} law
= Φr ∪ {X0},

where

(i) Φr is a Poisson planar point process of intensity measure 1D(2r)cdx

(ii) X0 is a random variable uniformly distributed on the circle centered at the origin of radius
2r, and independent of Φr.

So we can apply word for word the arguments described in the proof of Theorem 1 by replacing Φ
by the point process Φr ∪ {X0}. We obtain

P{RM ≥ r + s|Rm = r} = P{∃x; ||x|| = r + s and x 6∈ ∪y∈Φr∪{X0}A(y)}
=

∑

n≥0

P{N = n} × P{∃x; ||x|| = r + s and x 6∈ ∪0≤i≤nA(Xi)},(27)

where

(i) {Xn, n ≥ 1} is a sequence of random variables independent and identically distributed of law

X1(P) =
1

4π(s2 + 2rs)
1D(2(r+s))\D(2r)(x)dx,

(ii) N is a Poisson variable of mean EN = 4π(s2 + 2rs) and independent of the sequence
{Xn;n ≥ 1}.

The arcs

Ai =
1

2π(r + s)
A(Xi), i ≥ 0,

are independent. The arc A0 is of constant length equal to

L0 = lr,s = arccos(r/(r + s))/π.
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The arcs Ai, i ≥ 1, are of length Li, i ≥ 1, having the distribution

νr,s(dt) =
π(r + s)2

2rs + s2
sin(2πt)1[0,lr,s ](t)dt.

The corresponding probability of coverage is not contained in the framework of Siegel and Holst’s
formula. Nevertheless by adapting the proof of [23] to the case where one of the arcs has a constant
length and the others have i.i.d. lengths, it is not too difficult to obtain the formula

P {∃x; ||x|| = 1 and x 6∈ ∪0≤i≤nAi}

= (1 − ar,s)
n +

n
∑

k=1

(−1)k (n
k)







∫

1{u1≥lr,s}

[

k+1
∏

i=2

Fr,s(ui)

][

k+1
∑

i=1

∫ ui

0
Fr,s(t)dt

]n−k

dσk+1(u)

−
∫

[

k
∏

i=1

Fr,s(ui)

][

k
∑

i=1

∫ ui

0
Fr,s(t)dt

]n−k [ k
∑

i=1

(ui − lr,s)+

]

dσk(u)







, (28)

where

ar,s = EL1 =

∫

tdνr,s(t).

This last equality associated to (27) provides us (7).2

Proof of Theorem 5. Fix r, s > 0. Remark that

Li ≤ lr,s, a.s. i ≥ 1.

Consequently, we obtain with Theorem 13 that

P{∃x; ||x|| = 1 and x 6∈ ∪n
i=0Ai} ≤ P{∃x; ||x|| = 1 and x 6∈ ∪n+1

i=1 Ai}
= 1 − P (νr,s, n + 1)

≤ 1 − P (δar,s , n + 1), n ≥ 0, (29)

where ar,s =
∫

tdνr,s(t) denotes the expectation of νr,s given by the formula (10).
Besides, Shepp [21] proved by using a stopping-time argument that

Lemma 3 (Shepp, 1972) If 0 ≤ a ≤ 1/4, then we have

1 − P (δa, n) ≤ 2(1 − a)2n

∫ a
0 (1 − a − t)ndt + (1

4 − a)(1 − 2a)n
, n ≥ 1.

With the choice r/s ≥ cos(π/12)/(1 − cos(π/12)), we have

ar,s = EL1 ≤ lr,s =
1

π
arccos(

r

r + s
) ≤ 1

12
,

so in particular
1

4
− 1

n + 1
− (1 − 2

n + 1
)ar,s ≥ 0, ∀n ≥ 4.

11



Then by using Lemma 3, we obtain for all n ≥ 1,

1 − P (δar,s , n) ≤ 2(1 − ar,s)
2n

∫ ar,s

0 (1 − ar,s − t)ndt + (1
4 − ar,s)(1 − 2ar,s)n

=
2(1 − ar,s)

2n

1
n+1(1 − ar,s)n+1 + (1

4 − 1
n+1 − (1 − 2

n+1)ar,s)(1 − 2ar,s)n

≤
{

2(n + 1)(1 − ar,s)
n−1 for n ≥ 4

1 ≤ 2(n + 1)(1 − ar,s)
n−1 for n ≤ 3.

(30)

Consequently, the identity (27) and the inequalities (29) and (30) imply that

P{RM ≥ r + s|Rm = r} ≤ (8π(s2 + 2rs) + 4)e−4π(s2+2rs)ar,s ,

and with the choice s = 1/rα, r1+α ≥ cos(π/12)/(1 − cos(π/12)),

P{RM ≥ r +
1

rα
|Rm = r} ≤ (8π(r−2α + 2r1−α) + 4)e−4π(r−2α+2r1−α)ar,1/rα . (31)

It remains to study the behaviour of ar,1/rα , where −1 < α < 1/3 is fixed, and r goes to infinity.
We have

ar,1/rα =
1

2
√

2π
r

1+α
2 (1 +

1

2r1+α
)−1/2

+
1

π
arccos(1 − 1

1 + r1+α
)(1 +

1

2r1+α
)−1(−r1+α

4
+

1

2
+

1

4r1+α
)

∼ 1

3
√

2π

1

r
1+α

2

when r → +∞.

This asymptotic result associated to (31) implies that for all 0 < c < 8/(3
√

2) and all −1 < α < 1/3,

P{RM ≥ r +
1

rα
|Rm = r} = O(e−cr

1
2 (1−3α)

),

which provides the result of Theorem 5.2

5 The case of the Crofton cell of a Poisson line process.

We are going to adapt our method to the study of the smallest disk centered at the origin and
containing the Crofton cell of a Poisson line process in the plane. Let us recall first the required
definitions.

Let Ψ a Poisson point process in R
2, of intensity measure

µ(A) =

∫ +∞

0

∫ 2π

0
1A(ρ, θ)dθdρ, A ∈ B(R2). (32)

For all x ∈ R
2, let us consider

H(x) = {y ∈ R
2; (y − x) · x = 0},

the polar line associated to x (x·y being the usual scalar product). Then the set H = {H(x);x ∈ Φ}
divides the space into convex polyhedra that constitute the so-called two-dimensional Poissonian
tessellation.

12



In particular, this tessellation is isotropic, that means it is invariant by isometric transformations
of R

2. The first results on this geometrical object date from the beginning of the forties. There are
due to Goudsmit [8] and to Miles [13], [14] and [15]. Some recent contributions can be found in [2],
[6], [10], and [19].

Let us denote by C0 the cell of the tessellation containing the origin. It can be proved [5] that
the cell C0 (known as Crofton cell) is almost surely well defined. Denote respectively by R′

m and
R′

M the radii of the largest disk centered at the origin included in C0 and the smallest disk centered
at the origin containing C0.
Proofs of Theorems 6 and 7. We use the same method of proof as for Theorems 1 and 2. The
definition of C0 provides us the following identity.

{R′
M ≥ r} = {∃x; ||x|| = r/2 and ||x − y|| ≥ r/2 ∀y ∈ Ψ ∩ D(r)}. (33)

Moreover, classically
Ψ ∩ D(r) = {Xn; 1 ≤ n ≤ N}, (34)

where:

(i) {Xn;n ≥ 1} is a sequence of i.i.d. random variables taking their values in D(r) of law:

X1(P) =
1

2πr
1D(r)(x)dµ(x);

(ii) N is a Poisson variable of mean EN = 2πr and independent of the sequence {Xn;n ≥ 1}.

Then by using (33) and (34), we obtain that

P{R′
M ≥ r} = P{N = 0} +

∑

n≥1

P{N = n} ×P{∃x; ||x|| = r/2 and x 6∈ ∪n
i=1A(Xi)}.

It can be easily verified that the arcs A(Xi) are i.i.d. of respective lengths πrLi where

Li =
1

π
arccos

( ||Xi||
r

)

, i ≥ 1,

has the distribution
ν ′
0(dt) = π sin(πt)1[0,1/2](t)dt.

We conclude as in the proof of Theorems 1 and 2.2

Proof of Theorem 8. It consists in noticing that the law associated to the distribution function
G is less concentrated about the mean than δ1/π and more concentrated than

(1 − cos 1)δ0 + cos 1δ1/(π cos 1).

Besides, by applying Stevens’s formula (16) and its corollary (17), we obtain

1 − P (δ1/π, n) = n

(

1 − 1

π

)n−1

−
(

n

2

)(

1 − 2

π

)n−1

+

(

n

3

)(

1 − 3

π

)n−1

,

and on the other hand,

1 − P ((1 − cos 1)δ0 + cos 1δ1/(π cos 1), n) = (1 − cos 1)n + n cos 1

(

1 − 1

π

)n−1

.
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Then it remains to use Theorems 7 and 13.2

Proof of Theorem 9. The proof is based on the same arguments as for Theorem 4. We re-
mark first the following identity

{Ψ|R′
m = r} law

= Ψr ∪ {X0},

where

(i) Ψr is a Poisson planar point process of intensity measure 1D(r)cdµ

(ii) X0 is a random variable uniformly distributed on the circle centered at the origin of radius r
and independent of Φr.

So we see that the procedure described in the proof of Theorem 4 can be applied. We obtain that

P{R′
M ≥ r + s|R′

m = r} = P{∃x; ||x|| = r + s and x 6∈ ∪y∈Ψr∪{X0}A(y)}
=

∑

n≥0

P{N = n} × P{∃x; ||x|| = r + s and x 6∈ ∪0≤i≤nA(Xi)},

where

(i) {Xn, n ≥ 1} is a sequence of i.i.d. random variables of law

X1(P) =
1

2πs
1D(r+s)\D(r)(x)dµ(x),

(ii) N is a Poisson variable of mean EN = 2πs and independent of the sequence {Xn;n ≥ 1}.

The arcs

Ai =
1

π(r + s)
A(Xi), i ≥ 0,

are independent. The arc A0 is of constant length equal to

L0 = lr,s = arccos(r/(r + s))/π.

The arcs Ai, i ≥ 1, are of lengths Li, i ≥ 1, of law

ν ′
r,s(dt) =

π(r + s)

s
sin(πt)1[0,lr,s](t)dt.

We conclude then as for Theorem 4 by using (28).2

Proof of Theorem 10. As for Theorem 5, we notice first that

P{∃x; ||x|| = r/2 and x 6∈ ∪n
i=0A(Xi)} ≤ 1 − P (δbr,s , n + 1), n ≥ 0.

Besides, using Lemma 3 for r/s ≥ cos(π/12)/(1 − cos(π/12)), we obtain that

1 − P (δbr,s , n) ≤ 2(n + 1)(1 − br,s)
n−1, n ≥ 1,

so
P{R′

M ≥ r + s|R′
m = r} ≤ (4πs + 4)e−2πsbr,s ,

14



and with the choice s = rα, for r1−α ≥ cos(π/12)/(1 − cos(π/12)),

P{R′
M ≥ r + rα|R′

m = r} ≤ (4πrα + 4)e−2πrαbr,s . (35)

It remains to study the behaviour of br,rα , α ∈ (1/3, 1), when r goes to infinity. We have

br,rα =

√
2r

1−α
2

π
(1 +

1

2r1−α
)1/2 − r1−α

π
arccos(1 − 1

1 + r1−α
)

∼ 4

3
√

2π

1

r
1−α

2

when r → +∞. (36)

Consequently, we obtain, considering (35) and (36) that for all 0 ≤ c < 8/(3
√

2),

P{R′
M ≥ r + rα|R′

m = r} = O(e−cr
1
2 (3α−1)

).2
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