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Random tessellations and cellular structures occur in many domains of ap-
plication, such as astrophysics, ecology, telecommunications, biochemistry and
naturally cellular biology (see (Stoyan, Kendall and Mecke, 1987) or (Okabe,
Boots, Sugihara and Chiu, 2000) for complete surveys). The theoretical study of
these objects was initiated in the second half of the twentieth century by D. G.
Kendall, J. L. Meijering, E. N. Gilbert and R. E. Miles notably. Two isotropic
and stationary models have emerged as the most basic and useful: the Poisson
hyperplane tessellation and the Poisson–Voronoi tessellation. Since then, a large
majority of questions raised about random tessellations have concerned statistics
of the population of cells (“how many cells are triangles in the plane?”, “how
many cells have a volume greater than one?”) or properties of a specific cell (typ-
ically the one containing the origin). Two types of results are presented below:
exact distributional calculations and asymptotic estimations.

In a first part, we describe the two basic constructions of random tessellations
(i.e. by throwing random hyperplanes or by constructing Voronoi cells around
random nuclei) and we introduce the fundamental notion of typical cell of a
stationary tessellation. The second part is devoted to the presentation of exact
distributional results on basic geometrical characteristics (number of hyperfaces,
typical k-face, etc.). The following part concerns asymptotic properties of the
cells. It concentrates in particular on the well-known D. G. Kendall’s conjecture
which states that large planar cells in a Poisson line tessellation are close to
the circular shape. In the last part, we present some recent models of iterated
tessellations which appear naturally in applied fields (study of crack structures,
telecommunications).

Intentionally, this chapter does not contain an exhaustive presentation of
all the models of random tessellations existing in the literature (in particular,
dynamical constructions such as Johnson–Mehl tessellations will be omitted).
The aim of the text below is to provide a significative view of recent selected
methods and results on a few specific models.

0.1 Definitions and basic properties of random tessellations

0.1.1 Introduction

Let T = {Ci}i≥1 be a locally finite collection of closed sets of Rd, d ≥ 1. The
family T is said to be a tessellation of Rd if Ci and Cj have disjoint interiors for
i 6= j and

⋃
i≥1 Ci = Rd. The sets Ci, i ≥ 1, are called the cells of the tessellation

T . In this chapter, we will consider the particular case of a convex tessellation
where each cell is a convex polyhedron.

We endow the set T of all convex tessellations of Rd with the σ-algebra
generated by sets of the form

{T = {Ci}i≥1 : [∪i≥1∂Ci] ∩K 6= ∅}

where K is any compact subset of Rd.
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A random convex tessellation is then defined as a random variable with values
in T, see (Stoyan, Kendall and Mecke, 1987). In the following, we will focus on two
fundamental examples: the hyperplane tessellation and the Voronoi tessellation.

Let X be a point process in Rd which does not contain the origin almost
surely. For every x ∈ X \ {0}, we denote by Hx the affine hyperplane orthogonal
to x and containing x, i.e.

Hx = {y ∈ Rd : 〈y − x, x〉 = 0}, (0.1)

where 〈·, ·〉 denotes the usual scalar product in Rd. The hyperplane tessellation
induced by X is the convex tessellation constituted with the closure of each
connex component of Rd \ ∪x∈XHx.

Let X be a point process in Rd. For every x ∈ X, we define the cell C(x)
associated with x as

C(x) = {y ∈ Rd : ‖y − x‖ ≤ ‖y − x′‖ for all x′ ∈ X}.

The Voronoi tessellation induced by X is the tessellation {C(x) : x ∈ X}. The
points in X are called the nuclei of the tessellation.

In particular, if X is a stationary point process in Rd, the associated Voronoi
tessellation is stationary (invariant under any translation). In the particular case
where X is a homogeneous Poisson point process, it is stationary and isotropic
(invariant under any rotation): we speak of a Poisson–Voronoi tessellation (Ok-
abe, Boots, Sugihara and Chiu, 2000; Møller, 1994).

Let us consider the measure Θ0 on Rd such that its density with respect to
the Lebesgue measure is ‖·‖−(d−1). If X is a Poisson point process with intensity
measure Θ0 (up to a multiplicative constant), the associated hyperplane tessel-
lation is isotropic and stationary. We speak of a (stationary) Poisson hyperplane
tessellation (Gilbert, 1962; Miles, 1964a; Miles, 1964b; Miles, 1969; Miles, 1971).

There are obviously many other types of tessellations which are of great
interest and could not be discussed here, for instance Johnson–Mehl tessella-
tions (Møller, 1992) or Laguerre tessellations (Lautensack, 2007; Lautensack and
Zuyev, 2008). Though the only Voronoi tessellation that will receive attention
in the rest of the chapter is the (homogeneous) Poisson–Voronoi tessellation, it
should be noted that Voronoi tessellations generated by other types of more com-
plicated point processes have also been investigated and have led to significative
results, see e.g. (Heinrich, 1998; B laszczyszyn and Schott, 2003; Heinrich and
Muche, 2008).

0.1.2 Zero-cell, ergodic means and typical cell

One of the fundamental questions raised in the study of random tessellations is
to find a way to isolate a particular cell which will be a good descriptor of the
collection of all cells, i.e. to define a uniform sample among all the cells.

0.1.2.1 Zero-cell. A first idea is to fix a point in Rd and consider the cell
containing that point.
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If there is almost surely a unique cell containing the origin 0, it is called the
zero-cell of the tessellation and will be denoted by C0. It is correctly defined for a
Poisson–Voronoi tessellation or for a hyperplane tessellation where the associated
point process has an intensity measure which does not charge the origin. In
particular, the zero-cell of the stationary Poisson hyperplane tessellation is called
the Crofton cell.

Let us remark that C0 is not a “mean cell”, in the sense that it does not have
the mean characteristics of the whole population of cells. It is in particular bigger
than the typical cell defined below, see the ergodic convergence (0.2) applied to
f = λd.

0.1.2.2 Ergodic means. It is therefore intuitive to consider a finite set of cells
included in a non-empty compact set W and to calculate the mean over these cells
of a real-valued, bounded, measurable and invariant-under-translations function
f defined on the family K of convex and compact sets in Rd. If the tessellation
is stationary and ergodic (as in both Poisson–Voronoi and Poisson hyperplane
cases), Wiener’s ergodic theorem (Wiener, 1939) and a proper treatment of “edge
regions” ensure that this mean converges when the size of W goes to infinity
(Cowan, 1978; Cowan, 1980).

Let NR be the number of cells of a Poisson–Voronoi or stationary Poisson
hyperplane tessellation included in RW for every R > 0. Then for any bounded,
measurable and invariant-under-translations function f : K → R,

lim
R→∞

1
NR

NR∑
i=1

f(Ci) =
1

E(λd(C0)−1)
E

(
f(C0)
λd(C0)

)
, (0.2)

where λd is the d-dimensional Lebesgue measure. The typical cell C is then
defined as a random variable which takes values in the set K and has a density
with respect to the distribution of C0 equal to (1/λd) up to a multiplicative
constant.

The use of this kind of convergence as an approximation of the typical cell
requires the existence of central limit theorems: in the two-dimensional Poisson–
Voronoi case, it was proved by Avram and Bertsimas (1993) when f is the
perimeter of a polygon, through a stabilisation-type method. Afterwards, Paroux
(1998) obtained with the method of moments a similar result for the Poisson line
tessellation in the plane and for several functionals among which the perimeter
and the number of vertices. More recently, Heinrich, Schmidt and Schmidt (2005)
used Hoeffding’s decomposition of U -statistics to derive multivariate central limit
theorems for a d-dimensional Poisson hyperplane tessellation (d ≥ 2) and for the
number and volume of k-faces (0 ≤ k ≤ (d− 1)) of the tessellation.

0.1.2.3 Typical cell and Palm measure. Defining the typical cell through er-
godic means may not be the most convenient way to study its specific proper-
ties. Stationarity allows us to deduce an equivalent definition through the use of
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Palm measures (Mecke, 1967; Neveu, 1977) (see also [CHAPTER Classical
stochastic geometry]).

Indeed, let us suppose that we can assign to any cell C in the tessellation a
unique centroid z(C) such that z(C + x) = z(C) + x and the point process Y
of all these centroids is stationary (of intensity γ). For instance, in the Poisson–
Voronoi case, z(C) can be the nucleus associated with C. In the general case
of a stationary tessellation, we can take the center of mass, or the center of the
largest ball included in the cell or equivalently the lowest point of the cell (with
respect to one of the coordinates).

The typical cell C is then equivalently defined as a random variable such
that for every bounded, measurable and invariant-under-translations function
f : K → R and every B ∈ B such that 0 < λd(B) < ∞

E(f(C )) =
1

γλd(B)
E

 ∑
{C:z(C)∈B}

f(C − z(C))

 . (0.3)

That definition (Mecke, 1967; Mecke, 1975; Møller, 1986) does not depend on the
chosen centroid process and the method is equivalent to the ergodic procedure,
since E(f(C )) is precisely the limit of the ergodic means, i.e.

E(f(C )) =
1

E(λd(C0)−1)
E

(
f(C0)
λd(C0)

)
. (0.4)

This last equality (Møller, 1989) can also be seen as a generalization of a formula
which can be found in (Gilbert, 1962), page 964, and would here correspond to
the choice f = λd

2.
In simple words, C is the cell containing the origin 0 when the point process

of centroids is conditioned on containing 0. It is also the cell “seen from a typical
centroid”.

In the same way, it is possible to define the typical k-face Ck, 0 ≤ k ≤
(d − 1) by associating with any k-face of the tessellation a precise centroid and
by using the underlying Palm probability measure P̃ 0

k , see e.g. (Møller, 1989;
Møller, 1994).

Finally, a different approach consists in defining a typical point on a k-face
by considering the stationary random measure Mk =

∑
{F k-face}Hk(F ∩ ·) and

its associated Palm probability measure P 0
k on the set of locally finite subsets of

Rd: ∫
f(ω)dP 0

k (ω) =
1

γkλd(B)
E

{∫
B

f({z(C)− x,C cell})dMk(x)
}

, (0.5)

where f is a measurable bounded function defined on locally finite subsets of
Rd and γk is defined as the multiplicative constant such that the deterministic
measure E(Mk) which is invariant under translations is equal to γkλd, see e.g.
(Baumstark and Last, 2007). We say that P 0

k is the distribution of the point
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process of the centroids of the cells “seen from a typical point on a k-face”. We
denote by C0,k the k-face containing the origin under P 0

k .
The two Palm procedures (seeing the tessellation from the centroid of a k-

face or from a typical point of a k-face) are related in the same way as C and
C0 in equation (0.4). Indeed, Neveu’s exchange formula (Neveu, 1977) provides
the relation

E(f(Ck)) =
1

E(Hk(C0,k)−1)
E

(
f(C0,k)
Hk(C0,k)

)
(0.6)

for any bounded, measurable and invariant-under-translations f : K → R, see
Baumstark and Last (2007). As a matter of fact, (0.6) is generally applied to
functions f which are invariant-under-rotations as well.

0.1.2.4 Realizations of the typical cell. The typical cell is not a particular cell
isolated from a realization of the tessellation. Nevertheless, it can be explicitly
constructed in both Poisson–Voronoi and Poisson hyperplane cases.

The key result in both cases is the well-known and very useful Slivnyak’s
formula for Poisson processes (see [CHAPTER Classical stochastic geom-
etry]). If X is a Poisson point process in Rd of intensity measure µ, then for
every n ≥ 1

E

 ∑
{x1,...,xn}⊂X

f(x1, . . . , xn, X)


=

1
n!

∫
E {f(x1, . . . , xn, X ∪ {x1, . . . , xn})}dµ(x1) . . . dµ(xn), (0.7)

where f is a bounded, measurable and invariant-under-permutations function
defined on the product (Rd)n × N , N being the set of locally finite subsets of
Rd, see Møller (1994).

If the set of centroids is a homogeneous Poisson point process, a basic use of
Slivnyak’s formula implies that the associated Palm measure is the distribution
of the same process with an extra point at the origin. In particular, the typical
cell C of a Poisson–Voronoi tessellation generated by a homogeneous Poisson
point process X is equal in distribution to the zero-cell of a Voronoi tessellation
constructed with the new set of nuclei X ∪{0}. In the Poisson hyperplane tessel-
lation case, a specific choice of a centroid process is required. The result below
is a particular example of a possible realization of the typical cell. It is based on
(Calka, 2001).

If we take for z(C) the center of the largest ball included in the cell C,
Slivnyak’s formula allows us to obtain a generalization in any dimension of the
construction given by Miles in dimension two (Miles, 1973).

• Let R and (U0, . . . , Ud) be independent random variables with values in
R+ and (Sd−1)(d+1) respectively such that R is exponentially distributed
with mean 1/ωd and (U0, . . . , Ud) has a density with respect to the uniform
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measure on (Sd−1)(d+1) which is proportional to the volume of the simplex
constructed with these (d+1) vectors (multiplied by the indicator function
that this simplex contains the origin).

• Let Y be a point process such that conditionally on {R = r}, r > 0, Y is
a Poisson point process of intensity measure 1Rd\Br(0)(x)‖x‖−(d−1)dx.

• Let C1 be the polyhedron containing the origin obtained as the intersection
of the (d + 1) half-spaces bounded by the hyperplanes HRUi , 0 ≤ i ≤ d.

• Let C2 be the zero-cell of the hyperplane tessellation associated with Y .
Then the typical cell of the stationary Poisson hyperplane tessellation is dis-
tributed as the intersection C1 ∩ C2.

The next part provides some precise results on the distribution of several
geometrical characteristics of the typical cell and the typical k-faces.

0.2 Exact distributional results

0.2.1 Number of hyperfaces and distribution of the cell conditioned on the
number of hyperfaces

In this section, we consider the zero-cell C0 of a Poisson hyperplane process
such that the intensity measure of the underlying point process is (in spherical
coordinates)

dΘ(t, u) = γ1R+(t)tα−1dtdσd(u),

where σd is the uniform measure on Sd−1, α ≥ 1 and γ > 0.
In particular, if α = 1, we obtain the Crofton cell and if α = d and γ = 2d,

C0 is distributed as the typical cell of a Poisson–Voronoi tessellation of unit
intensity.

Let us denote by Nd−1 the number of hyperfaces of C0. In the Poisson–
Voronoi case, it can be identified as the number of neighbors of the typical nucleus
0. We explain here how to calculate the probability of having n hyperfaces as a
multiple integral of order n. The formula can be made fully explicit in dimension
two. The lines below are based on (Calka, 2003b; Calka, 2003a).

For n points x1, . . . , xn ∈ Rd \ {0}, we define D(x1, . . . , xn) as the connected
component containing the origin of Rd \ ∪n

i=1Hxi , see (0.1) for the definition of
Hxi .

In any dimension, Slivnyak’s formula (0.7) yields that for any n ≥ (d + 1),

P{Nd−1 = n} =
1
n!

∫
e−γΦ(x1,...,xn)1An(x1, . . . , xn)dΘ(x1) . . . dΘ(xn), (0.8)

where γΦ(x1, . . . , xn) = Θ
(
{x ∈ Rd : Hx ∩D(x1, . . . , xn) 6= ∅}

)
and An is the

subset of n-tuples (x1, . . . , xn) such that D(x1, . . . , xn) is a convex polyhedron
with n hyperfaces and containing the origin 0.

Let us remark that this formula was heuristically obtained in dimension two
and in the Poisson–Voronoi case by Miles and Maillardet (1982). The functional
Φ as well as the indicator function 1An need to be made more explicit in function
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of x1, . . . , xn. For any convex subset K of Rd which contains the origin, we denote
by h(K, u) = sup{〈x, u〉 : x ∈ K}, u ∈ Sd−1, its support function. Then for any
real α ≥ 1,

Φ(x1, . . . , xn) =
1
α

∫
h(D(x1, . . . , xn), u)αdσd(u).

In the two-dimensional case, if the points x1 = (r1, θ1), . . . , xn = (rn, θn) are
sorted by angular coordinate such that 0 ≤ θ1 < · · · < θn < 2π, we have for
every uθ = (cos(θ), sin(θ)) with θi ≤ θ < θi+1 (1 ≤ i < n)

h(D(x1, . . . , xn), uθ) =
1

sin(θi+1 − θi)
(sin(θi+1 − θ)ri + sin(θ − θi)ri+1)

and the integration of hα can be carried out for α = 1 and α = 2. If γ = 1, we then
obtain in the first case the perimeter of the set D(x1, . . . , xn) and in the second
case the area of the fundamental domain of D(x1, . . . , xn) (often called Voronoi
flower), i.e. the union of the n discs centered at yi/2 and of radius ‖yi‖/2, where
the yi, 1 ≤ i ≤ n, are the vertices of D(x1, . . . , xn). Lastly, we can express the
indicator function with the use of polar coordinates: (x1, . . . , xn) ∈ Cn if and
only if for every 1 ≤ i ≤ n,

ri−1 sin(θi+1 − θi) + ri+1 sin(θi − θi−1) > ri sin(θi+1 − θi−1)

with the conventions x0 = (r0, θ0) = xn and xn+1 = x1.
Consequently, we obtain an explicit formula which provides a way to do

numerical calculations or to look for asymptotic estimates and limit shapes for
many-sided cells, see e.g. (Hilhorst, 2005; Hilhorst, 2006; Hilhorst and Calka,
2008). Nevertheless it is of little help for estimating the moments, for instance, it
is very hard to verify the well-known equality E(N1) = 6 in the planar Poisson–
Voronoi case. In this connection, it should be noted that a calculation of the
second moment of the number of vertices of the typical Poisson–Voronoi cell in
any dimension has been recently provided in (Heinrich and Muche, 2008) via the
use of second-order properties of the point process of nodes of the tessellation,
see also (Heinrich, Körner, Mehlhorn and Muche, 1998).

Going back to (0.8), let us add that the functional of (x1, . . . , xn) inside
the integral is up to a multiplicative constant the density of the distribution
of the respective positions of the n hyperplanes which surround the zero-cell
conditioned on having n hyperfaces. In particular, it provides an easy way to
verify that conditionally on {Nd−1 = n}, n ≥ (d+1), Θ({x ∈ Rd : Hx∩C0 6= ∅})
is Gamma-distributed with parameters n and 1, see (Zuyev, 1992; Cowan, Quine
and Zuyev, 2003) and also the work by S. Zuyev on “stopping sets” techniques
(Zuyev, 1999).

0.2.2 Typical k-face of a section of a Poisson–Voronoi tessellation
This section is a quick survey of a number of papers (Møller, 1989; Muche and
Stoyan, 1992; Mecke and Muche, 1995; Muche, 1996; Schlather, 2000; Muche,
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2005; Baumstark and Last, 2007), which concern exclusively the d-dimensional
Poisson–Voronoi tessellation or its sections with deterministic affine subspaces
and propose mainly explicit formulas for the distribution of the typical k-face or
typical edge.

Let T be a Voronoi tessellation generated by a set of nuclei distributed as
a homogeneous Poisson point process of intensity 1. Miles (1970), Mecke and
Muche (1995) and Muche (1996) provided a precise description of the Palm
measure P 0

0 as defined in (0.5), i.e. the distribution of the point process of the
nuclei as seen from a typical vertex. Baumstark and Last (2007) prove a gen-
eralization of their result, i.e. a full characterization of the Palm measure P 0

k

(0 ≤ k ≤ d) which is explained below.

• The random set P 0
k contains no point (from the homogeneous Poisson point

process) apart from the origin 0 in a random ball BRk
(0) such that Rk is

Gamma-distributed variable with parameters (d− k + k/d) and κd.
• Conditioned on {Rk = r}, r > 0, P 0

k ∩ {x ∈ Rd : ‖x‖ > r} is distributed as
a homogeneous Poisson point process of intensity 1.

• The intersection P 0
k ∩(RkSd−1) contains exactly (d+1−k) points from the

homogeneous Poisson point process which are independent with (Rk, {x ∈
P 0

k : ‖x‖ > r}) and distributed as follows: we denote by Zk and R′
k the

center and the radius of the unique (d−1−k)-dimensional sphere containing
these (d + 1 − k) nuclei. The (d + 1 − k) neighbors of the origin are then
distributed as

√
R2

k −R′2
k U + R′

kUi, 0 ≤ i ≤ (d − k) (up to a special
orthogonal transformation), where
∗ we have U ∈ Sd−1 and (U0, . . . , Ud−k) ∈ (Sd−1−k)(d−k+1),
∗ the (d−k +1)-tuple (U0, . . . , Ud−k) has a density (with respect to the

uniform measure on (Sd−1−k)(d−k+1)) which is proportional to the
(d− k)-dimensional Hausdorff measure raised to the power (k + 1) of
the simplex spanned by the (d− k + 1) vectors,

∗ conditioned on (U0, . . . , Ud−k), the direction U is uniformly distributed
on Sd−1 ∩ {U0, . . . , Ud}⊥,

∗ the quantity R′2
k /R2

k is independent with the vector of directions
(U,U0, . . . , Ud−k) and is Beta-distributed with parameters d(d− k)/2
and k/2.

The main tools for proving this decomposition are Slivnyak’s formula (0.7) and
the Blaschke–Petkantschin change of variables formula, see Satz 7.2.1 of (Schnei-
der and Weil, 2000). It can be thought as a generalization of the previously known
distributional results about the Poisson–Delaunay typical cell which would cor-
respond here to the case k = 0, see e.g. (Miles, 1970; Møller, 1994). Let us remark
finally that this results have been recently extended to Laguerre tessellations by
Lautensack (2007).

This description combined with the relation expressed by (0.6) between the
Palm measure P 0

k and the typical k-face Ck implies some precise distributional
results on Ck. If the centroid of a k-face is chosen as the equidistant point from
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the (d−k+1) neighbors of the k-face and in the affine subspace generated by the
neighbors, it is possible to calculate explicitly the joint distribution of the vector
constituted with Hk(Ck), the distance ρk from the centroid 0 of the typical k-face
to the (d− k + 1) neighbors of the k-face and the (d− k + 1) unit-vectors which
determine the directions from the centroid to the neighbors. In particular, these
directions are shown to be independent with (Hk(Ck), ρk) and have the same
distribution as (U0, . . . , Ud−k) in the construction above.

If k = 1, the calculation can be simplified and provides the same formulas
as in (Muche, 2005), which will be given afterwards. In that paper, L. Muche
investigates more generally the typical edge of a section of a Poisson–Voronoi
tessellation of intensity 1 by a deterministic s-dimensional affine subspace where
1 ≤ s ≤ d and d ≥ 2. This work unifies and extends previous efforts due to
Brakke (1985), Møller (1989), Muche and Stoyan (1992), and Schlather (2000).

Exploiting the fact that the typical edge is equal in distribution to a randomly
chosen edge emanating from the typical vertex, L. Muche makes explicit the joint
distribution of the vector constituted with the length L of the typical edge and
the two adjacent angles B1 = ∠(v1, v2, x) and B2 = ∠(v2, v1, x) where v1 and
v2 are the vertices of the edge and x is one of the s neighbors of the edge. The
density of (L,B1, B2) is up to a multiplicative constant equal to

f(l, β1, β2) =
ld(s+2)−s−1(sin(β1) sin(β2))d

sinds+2d−s(β1 + β2)
fB(β1)fB(β2) exp (−ν(l, β1, β2)) ,

where
• the quantity ν(l, β1, β2) is the d-dimensional Lebesgue measure of the union

of two balls such that their centers v1 and v2 are at distance l and the an-
gles ∠(v2, v1, x) and ∠(v1, v2, x) are equal to β1 and β2, x being any point
at the intersection of the boundaries of the balls.

• fB(β) =
(d− 1)sΓ

(
d+1
2

)
Γ

(
ds+d−s

2

)
Γ

(
d
2

)
Γ

(
ds+d−s+1

2

) sinds−s−1(β)
b d−1

2 c∑
i=0

bi(β),

for every 0 ≤ β ≤ π with

b0 =


1
π [(π − β) cos(β) + sin(β)] if d even

cos2(β/2) else
,

bi =


− Γ(i)

4
√

πΓ(i+ 3
2 )

sin2i+1(β) if d even

− Γ(i− 1
2 )

4
√

πΓ(i+1)
sin2i(β) else

, 1 ≤ i ≤ b(d− 1)/2c.

Let us remark that the explicit calculation of all the moments of the variables
can be deduced from the formulas above. Additional calculations were added
in (Muche, 2005) about the relative positions of the s neighbors. It concerns
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in particular the distance from any neighbor to the affine subspace generated
by the typical edge and the conditional distribution of the length of the edge
conditionally on the fact that the projection of any neighbor on the spanned
affine subspace is inside the edge or not.

0.2.3 The circumscribed radius

This section provides a different kind of information on the zero-cell C0 defined
in section 0.2.1. Indeed, we are now interested in putting in an optimal way
the boundary of C0 between two spheres centered at 0. The main result is that
in any dimension, the joint distribution of the radii of the two spheres can be
expressed in terms of covering probabilities of the unit-sphere by random caps
and in dimension two, it can be explicitly calculated. The following ideas are
basic generalizations of the results contained in (Calka, 2002).

We introduce the quantity Rm = sup{r > 0 : Br(0) ⊂ C0}, i.e. the radius of
the largest disk centered at 0 and contained in the cell. Clearly, we have

P{Rm ≥ r} = exp
(
−γωd

α
rα

)
, r > 0,

and the distribution of the hyperplane process conditioned on {Rm ≥ r}, r > 0,
is a new hyperplane process of intensity measure 1Rd\Br(0)dΘ.

In order to have a more precise idea of the shape of C0, it is relevant to
consider the radius of the circumscribed ball centered at the origin, i.e. RM =
inf{r > 0 : Br(0) ⊃ C0}. It can be shown that the distribution of RM is related to
the covering probability of Sd−1 by a Poissonian number of independent random
circular caps such that their centers on Sd−1 are uniformly distributed and their
angular radii (divided by π) have the distribution given below:.

dν(θ) = απ sin(πθ) cosα(πθ)1[0,1/2](θ)dθ.

Indeed, having RM ≥ r for a fixed r > 0 means that there is a non-empty
portion of the sphere rSd−1 which is not covered by the intersection with the
hyperplanes of the Poisson hyperplane process. To be more precise, let us denote
by P (ν, n), for every n ≥ 0, the covering probability of Sd−1 by n independent
random circular caps which are isotropic and of angular radius distributed as
ν(·/π). We obtain

P{RM ≥ r} = exp
(
−γωd

α
rα

) ∞∑
n=0

(
γωd

α rα
)n

n!
(1− P (ν, n)).

This relation is easily generalized if C0 is conditioned on {Rm = r}.
We now concentrate on the two-dimensional case. If d = 2, the covering

probabilities P (ν, n) can be calculated (Stevens, 1939; Siegel and Holst, 1982),
which provides us an expression for P{RM ≥ r}. In particular, when r →∞, we
use a basic ordering relation between the covering probabilities (conjectured in
(Siegel, 1978) and proved in (Calka, 2002)) in order to “replace” the distribution
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ν by its mean Iα = 1
π

∫ π/2

0
cosα(u)du. We obtain that there exist two constants

0 < C1 < C2 < ∞ such that for r large enough,

C1r
α exp

(
−2πγIα

α
rα

)
≤ P{RM ≥ r} ≤ C2r

α exp
(
−2πγIα

α
rα

)
.

The calculation of the joint distribution of the couple (RM , Rm) leads us to
obtain an asymptotic estimation of P{RM ≥ r +rδ|Rm = r} for 1− 2

3α < δ < 1,
see section 0.3.2 for a generalization of that result in any dimension. In fact,
this probability is proved to decrease exponentially fast to zero, which indicates
that the zero-cell converges to a circle when its inradius goes to infinity. It is a
particular case of D. G. Kendall’s conjecture which will be the center of our next
section.

0.3 Asymptotic results

0.3.1 D. G. Kendall’s conjecture

A very-well known conjecture due to D. G. Kendall states that cells of large
area in an isotropic Poisson line tessellation are close to the circular shape, see
e.g. the foreword of (Stoyan, Kendall and Mecke, 1987). The conjecture can be
rephrased in a modern setting as follows: the conditional distribution of the two-
dimensional Crofton cell converges weakly when its area goes to infinity to the
degenerate law concentrated at the circular shape.

Works due notably to Miles (1995) or Goldman (1998) were first advance-
ments on the subject (see also (Goldman, 1996; Goldman and Calka, 2003) for an
interpretation of the conjecture in terms of the first eigenvalue of the Dirichlet–
Laplacian on the cell). Kovalenko (1997, 1998, 1999) proved the conjecture in the
case of a two-dimensional isotropic and stationary Poisson line tessellation. Since
then, Hug, Schneider and Reitzner (2004a, 2004b) have obtained far more precise
results which generalize D. G. Kendall’s conjecture in four different ways: more
general Poisson hyperplane tessellations, more general functionals to measure
the largeness of a cell, explicit estimates for deviations from asymptotic shapes
and identification of the cases where limit shapes do not exist. Their proofs mix
precise arguments from geometry of convex bodies (in particular, isoperimetric
inequalities and existence of associated extremal bodies) combined with prob-
abilistic estimations which make good use of the Poissonian distribution. This
section is devoted to a basic presentation of the main results and the underlying
methods contained in papers by Hug, Reitzner and Schneider (2004a, 2004b) and
by Hug and Schneider (2004, 2007a).

0.3.1.1 Context and useful functionals. We consider the zero-cell C0 of a hy-
perplane tessellation in Rd, d ≥ 2, such that its intensity measure denoted by Θ
is defined in spherical coordinates by the equality

dΘ(t, u) = γtα−1dtϕ(du),
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where γ > 0, α ≥ 1 and ϕ is a probability measure on Sd−1 such that its support
is not contained in a half-sphere. As previously mentioned, this general model
interpolates the cases of the Crofton cell of an isotropic Poisson hyperplane
tessellation and of the typical Poisson–Voronoi cell.

Here we follow the scheme developed in the papers cited above. Three types
of functionals are used to study size and shape of the zero-cell C0. They are
defined on the set denoted by K0 of all convex bodies K such that K contains
0 and is the intersection of its supporting halfspaces which have an outer unit
normal vector in the support of ϕ.

• The parameter functional Φ (already used in section 0.2.1) is defined by
the equality

Φ(K) =
1
α

∫
h(K, u)αϕ(du), K ∈ K0.

It is a continuous function related to the intensity measure in such a way
that the probability P{K ⊂ C0} is equal to exp(−γΦ(K)).

• The size functional denoted by Σ is a function aimed at “measuring” the
size of C0. The only properties that Σ has to satisfy are that it has to
be continuous, increasing and homogeneous of some degree k > 0 (i.e.
Σ(rK) = rkΣ(K) for every K ∈ K and r > 0). Volume, surface area or
inradius (see section 0.3.2) are basic examples of such a function.

• The deviation functional V is related to the two previous functionals Φ and
Σ and will measure the distance between C0 and the potential limit shape.
It is defined in the following way: since Φ is homogeneous of degree α, the
two previous functionals Φ and Σ satisfy an isoperimetric inequality of the
form

Φ(K) ≥ τΣ(K)α/k, K ∈ K0, (0.9)

where τ is some positive constant which can be chosen such that there
exist convex bodies K ∈ K0, called extremal bodies, for which the equality
holds. The functional V is then introduced as a continuous, non-negative
and homogeneous of degree zero function such that V(K) = 0 implies that
K is extremal. For instance, V can be defined by the equality

V(K) =
Φ(K)

τΣ(K)α/k
− 1, K ∈ K. (0.10)

Let us remark that the isoperimetric inequality (0.9) can be strengthened as
follows: there exists a non-negative continuous function f on R+ with a unique
zero at zero such that if V(K) ≥ ε > 0 for K ∈ K0, K must satisfy the inequality
Φ(K) ≥ τ(1 + f(ε))Σ(K)α/k.

0.3.1.2 Estimates of conditional probabilities. If ε > 0 and a > 0 are fixed, the
aim is now to evaluate conditional probabilities

P{V(C0) ≥ ε|Σ(C0) ≥ a} =
P{V(C0) ≥ ε; Σ(C0) ≥ a}

P{Σ(C0) ≥ a}
(0.11)
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for a fixed ε > 0 and a sufficiently large.
A first remark is that it is easier to give a lower bound of the denominator in

(0.11). Indeed, for an extremal body K, the probability of having K ⊂ C0 is equal
to exp(−τγΣ(K)α/k). Consequently, it suffices to compare C0 with an extremal
body included in it of size a to obtain that P{Σ(C0) ≥ a} ≥ exp(−τγaα/k) for
every a > 0.

The estimation of the numerator in (0.11) is a much more delicate matter.
Following the structure of the proofs contained in (Hug, Reitzner and Schneider,
2004a; Hug and Schneider, 2004), we describe below some of the key arguments
in order to do it.

• The range of Σ(C0) in the event has first to be limited to an interval
[a, a(1 + h)] for some h “not too large” (afterwards, the range is extended
by a covering argument).

• An additional condition is added in the event in order to guarantee that
the diameter of C0 is bounded and that C0 is included in a deterministic
ball B (afterwards, the sum over all possible intervals for the diameter is
taken).

• The cell C0 is defined as the intersection of all half-spaces coming from
the initial hyperplane process. Hyperplanes which have a non-empty in-
tersection with the boundary of C0 must also intersect the deterministic
ball B introduced above. Consequently, the event we are interested in can
be rewritten in terms of the set GB of all hyperplanes which hit B. For-
tunately the distribution of GB is known: its cardinality is shown to be
Poisson distributed, of mean γΦ(B) and all hyperplanes in GB are i.i.d.
and distributed as (γΦ(B))−11{Hx∩B 6=∅}dΘ.

• By an argument of convex geometry, for a fixed α > 0, the polyhedron C0

can be replaced by the convex hull C̃0 of a finite number of its vertices in
such a way that the ratio Φ(C̃0)/Φ(C0) is more than 1− α.

• The numerator in (0.11) is finally overestimated by the probability that C̃0

is not hit by the majority of the hyperplanes involved.

0.3.1.3 Results and examples. Various extensions of the estimations presented
above imply the following general result: there exists a constant c0 depending
only on the dimension d such that for every ε > 0 and 0 < a < b ≤ ∞ with
aα/kγ ≥ σ0, we have

P{V(C0) ≥ ε|Σ(C0) ∈ [a, b)} ≤ c exp(−c0f(ε)aα/kγ), (0.12)

where c is a constant depending only on the measure Θ and the choices of Σ, f ,
ε and σ0.

Moreover, the question of the existence of a limit shape has also been inves-
tigated: the shape of a convex set K is defined as the equivalence class of K
under the action of a subgroup of similarities. The zero-cell C0 is said to have
a limit shape if the distribution of the shape of C0 conditioned on {Σ(C0) ≥ a}
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converges weakly to a Dirac measure when a → ∞. In particular, if there ex-
ists a subgroup of similarities which preserves K0 and the function defined in
(0.10) and such that all extremal bodies are in the same equivalence class, then
the zero-cell C0 admits a limit shape. It should be noticed that this limit shape
depends not only on the distribution Θ but also on the chosen size functional.

The general result (0.12) can be applied in the particular case where C0 is the
typical Poisson–Voronoi cell (γ = 2dωd, α = d and ϕ is the uniform probability
measure on Sd−1). As previously seen in section 0.2.1, Φ is the Lebesgue measure
of the union of all the balls B‖x‖/2(x/2) where x is any point of C0. If the size
functional is the k-th intrinsic volume, the limit shape is a ball and a convenient
choice of deviation functional is V(K) = (RM −Rm)/(RM +Rm) where the radii
Rm and RM are the same as in section 0.2.3. In particular, if Σ(C0) = λd(C0),
the estimation (0.12) becomes

P
{

RM −Rm

RM + Rm
≥ ε

∣∣∣∣λd(C0) ∈ [a, b)
}
≤ c exp(−c0ε

(d+1)/2aγ). (0.13)

In the same way, if Σ(C0) = Rm, we have

P
{

RM −Rm

RM + Rm
≥ ε

∣∣∣∣Rm ∈ [a, b)
}
≤ c exp(−c0ε

(d+1)/2adγ). (0.14)

When C0 is the Crofton cell (γ = ωd, α = 1 and ϕ is the uniform probabil-
ity measure on Sd−1), D. G. Kendall’s conjecture (i.e. convergence to the limit
shape of a ball) is solved in any dimension with the particular choice of the
d-dimensional Lebesgue measure as the size functional and a deviation function
V defined in the following way: the quantity V(K) is the infimum of (s/r − 1)
over all couples (s, r) ∈ (R∗

+)2 such that there exists a translate of K which is
between Br(0) and Bs(0) for the inclusion. Interestingly, the limit shape is not
a ball but a segment if the size is measured by the diameter.

These results for the Crofton cell can be extended to the typical cell of a
stationary Poisson hyperplane tessellation through the use of a new realization
of the typical cell based on the choice of the lowest points of the cells as centroids
(Hug and Schneider, 2007b), see section 0.1.2.4. Other extensions of this work
concern the determination of a logarithmic equivalent for the distribution tail
of Σ(C0) (Goldman, 1998; Hug and Schneider, 2007a) and large typical cells in
Poisson–Delaunay tessellations (Hug and Schneider, 2005).

0.3.2 Cells with a large inradius

We go back to the model introduced in section 0.2.1, i.e. we concentrate on the
particular case where the hyperplane process is isotropic, of intensity measure
dΘ = tα−1dtdσd(u) where 1 ≤ α ≤ d. We suppose now that the inball centered
at the origin is large. The preceding results show that the cell is close to a ball but
some specifications can be added. Indeed, the boundary of the cell can be proved
to be inside an annulus around the origin with a decreasing thickness when the
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inradius goes to infinity. Moreover, limit theorems can be deduced from this
fact for both the number Nd−1 of hyperfaces and the volume Vd between the
boundary of the cell and the inball. We give below a description of the methods
involved and of the main asymptotic results. The results and methods developed
below are almost direct generalizations of a joint work with Schreiber (Calka and
Schreiber, 2005; Calka and Schreiber, 2006).

In any dimension, an asymptotic estimation of the probability P{RM ≥
r + s|Rm = r} (s > 0) when r goes to infinity, is made possible by a method
introduced in (Calka and Schreiber, 2006). This procedure allows us to estimate
the quantities Nd−1 and Vd as well and can be described as follows:

• Step 1. After an homothetic transformation on the zero-cell C0 conditioned
on {Rm = r}, we obtain the zero-cell associated with a deterministic hy-
perplane at distance one from 0 and a hyperplane process outside B1(0) of
intensity measure rα1R\B1(0)dΘ. The number Nd−1 is preserved whereas
Vd is multiplied by r−d.

• Step 2. Let us apply the inversion defined by I(x) = x/‖x‖2 for every
x ∈ Rd \ {0}. It transforms the zero-cell into a germ-grain model inside
the unit-ball. More precisely, the image of the hyperplane process outside
B1(0) is a process of spheres centered at y/2 and of radius ‖y‖/2 where
y is an element of a Poisson point process Ψ inside B1(0) of intensity
measure rα1B1(0)t

−(α+1)dtdσd(u). The number Nd−1 can be seen as the
number of extreme points of the convex hull of Ψ and the volume Vd as
r−dµ(B1(0) \ ∪y∈Ψ∪{y0}B‖y‖/2(y/2)) where y0 is a deterministic point on
Sd−1 and µ = 1B1(0)t

−(d+1)dtdσd(u).
• Step 3. We consider a Poisson point process Ψ in B1(0) of intensity measure

λdx (λ > 0) or in a more general context λf(t)dtdσd(u) with limt→1 f(t) =
1. Then
∗ the convex hull of this process contains the ball B(1−Kt−δ)(0) (for a

fixed constant K > 0 and with 0 < δ < 2/(d + 1)) with a probability
going to 1 exponentially fast (Calka and Schreiber, 2006).

∗ the number of vertices of the convex hull follows a law of large numbers
(Rényi and Sulanke, 1963; Reitzner, 2003), as well as a central limit
theorem (Reitzner, 2005) and a large deviation-type result (Calka and
Schreiber, 2006; Vu, 2005).

∗ the volume or the µ-measure of the set between the unit-sphere and
the union ∪y∈ΨB‖y‖/2(y/2) satisfies a law of large numbers, a central
limit theorem and a moderate deviation principle (Schreiber, 2002;
Schreiber, 2003).

We obtain from the three steps above the following results:

1. There exists a constant c > 0 such that for every d+1−2α
d+1 < δ < 1, we have

when r goes to infinity

P{RM ≥ r + rδ|Rm = r} = O(exp(−crβ)) (0.15)



16

where β = 1
2 [(2α− (d + 1)) + δ(d + 1)].

In other words, the boundary of the zero-cell conditioned on {Rm = r} is
typically included in an annulus of thickness r(d+1−2α)/(d+1).

2. There exists a constant a > 0 (known explicitly) depending only on d and
α such that

Nd−1(ar
α(d−1)

d+1 )−1 −→ 1 in L1 and a.s. when r →∞.

3. The number Nd−1 satisfies a central limit theorem when r →∞ as well as
a moderate-deviation result: for every ε > 0,

lim inf
r→∞

1
log(r)

log
(
− log

(
P

{∣∣∣∣ Nd−1

ENd−1
− 1

∣∣∣∣ ≥ ε

}))
≥ α(d− 1)

3d + 5
.

4. The same type of limit theorems holds for the quantity Vd which grows as
r

α(d−1)
d+1 (up to an explicit multiplicative constant).

It emerges that in the context of a large inradius, supplementary informations on
the growth of the number of hyperfaces and of the volume outside the inball are
obtained to specify the convergence of the random polyhedron to the ball-shape.
Besides, we may notice that the asymptotic result (0.15) could not be deduced
from the previous estimation (0.14) since the constant c depends on ε in the
latter inequality.

The last part is independent with the rest of the chapter: it concerns different
types of tessellation called iterated tessellations, which are natural models in
several concrete situations and have been recently investigated for applicational
purposes.

0.4 Iterated tessellations

0.4.1 Tessellations stable with respect to iteration

Real tessellations may present “hierarchical” structures, which occur in some
crack structures, as the “craquelé” on pottery surfaces. In order to provide a
good approximation, W. Nagel and V. Weiss have investigated the iteration of
tessellations. They aim at determining the existence of tessellations which are
stable (in distribution) with respect to iteration (STIT) and at characterizing
these tessellations.

An explicit model called the crack STIT tessellation is given via an algo-
rithmic construction and it is proved that such a model is indeed STIT and
conversely, that any STIT tessellation is a crack STIT tessellation. This section
is devoted to a formal description of the work due to W. Nagel and V. Weiss
(Nagel and Weiss, 2003; Nagel and Weiss, 2004; Nagel and Weiss, 2005).

0.4.1.1 Construction of a crack STIT tessellation in a window. Let ϕ be a
probability measure on Sd−1 such that its support contains a basis of Rd. As
we previously did, we consider the associated measure dΘ = dtφ(du) on the
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set of hyperplanes of Rd which is supposed to be invariant with respect to the
translations of Rd. For a bounded Borel set C ⊂ Rd, we denote by [C] the set of
all hyperplanes that hit C and by ΘC the probability measure on [C] defined by
the relation ΘC = 1

Θ([C])Θ(· ∩ [C]) (if 0 < Θ([C]) < ∞).
Let W ⊂ Rd be a d-dimensional compact and convex domain such that

0 < Θ([W ]) < ∞. The crack STIT tessellation T (a,W ) is constructed in W and
on a time interval [0, a], a > 0, as follows: an i.i.d sequence (τi, γi), i ≥ 1, is given
where τi is a random time which is exponentially distributed with parameter
Θ([W ]) and γi is a random hyperplane with distribution ΘW .

• If τ1 > a, the algorithm does not begin and the tessellation is W itself.
• If τ1 ≤ a, the algorithm starts with a first cutting of W at time τ1 into

two parts W+ and W−. W+ and W− are then treated in the same way,
separately and independently. Let us describe the evolution of W+:
∗ If τ1 + τ2 > a, W+ is conserved as it is and will be a part of the final

tessellation.
∗ If τ1 + τ2 ≤ a, W+ is divided at time τ1 + τ2 by γ2 if γ2 intersects

W+. If W+ has not been divided by γ2, the next potential division of
W+ occurs at time τ1 + τ2 + τ3 (if that time is less than a). If W+ has
been divided by γ2, the algorithm goes on with the two subsections
W+,+ and W+,−.

This construction can be fulfilled equivalently through a formal description based
on random binary trees.

0.4.1.2 Extension to a crack STIT tessellation of Rd and stability with respect
to iteration. The capacity functional of the tessellation T (a,W ),

TT (a,W ) : C 7−→ P{T (a,W ) ∩ C = ∅}, C ∈ K ∩ C ,

can be calculated if C is connected and recursively if C has a finite number
of connected components. Moreover, this computation does not depend on the
window W which contains C and is invariant with respect to translations of Rd.
Consequently, there exists a random stationary tessellation T (a) of the whole
space Rd such that its intersection with a compact convex window W is equal
in distribution to T (a,W ) (see Satz of 2.3.1 in (Schneider and Weil, 2000)). In
particular, T (a) satisfies the scaling property, i.e. for a > 0, T (a) coincides in
distribution with 1

aT (1).
A fundamental property of the tessellation T (a) is that it is stable with

respect to iteration. More precisely, let us define the operation of iteration: an
initial stationary tessellation T (0) of the whole space Rd and a sequence of i.i.d.
tessellations Y = {T (i) : i ≥ 1} are given. We denote by C

(0)
1 , C

(0)
2 , . . . the cells

of T (0). The iterated tessellation I(T (0),Y) is then obtained by replacing in T (0)

the interior of each cell C
(0)
i by C

(0)
i ∩ T (i), i ≥ 1.

In order to preserve the same surface intensity of the tessellation, a rescal-
ing is needed. Consequently, if {Ym : m ≥ 1} is a sequence of i.i.d. sequences



18

of tessellations (distributed as T (0)), we define I2(T (0)) = I(2T (0), 2Y1) and
recursively, for every m ≥ 3,

Im(T (0)) = I

(
m

m− 1
Im−1(T (0)),mYm−1

)
.

In other words, at step m, the tessellation
m

m− 1
Im−1(T (0)) is “iterated” with

the sequence of tessellations Y = mYm−1.
A tessellation is said to be stable with respect to iteration (STIT) if Im(T (0))

and T (0) are equal in law for every m ≥ 2.
Going back to the crack STIT tessellation T (a), we can observe that for

any a, b > 0, the process of iterating T (a) with an independent sequence T (b)
of i.i.d. tessellations distributed as T (b) is equivalent to constructing the crack
STIT tessellation over the time interval [0, a + b], i.e. I(T (a),Y(b)) coincides in
distribution with T (a + b). This property comes from the Markov property of
(T (t, W ))t>0 for a fixed window W and combined with the scaling property of
T (a), it implies that T (a), a > 0, is stable with respect to iteration.

It can be proved conversely that any tessellation which has the STIT property
is a crack STIT tessellation. Indeed, a modified version of Korolyuk’s theorem
on processes of facets (see chapter 3 of (Daley and Vere-Jones, 1988)) can be
used to show that for any stationary tessellation T , the sequence Im(T ), m ≥ 1,
converges weakly to a crack STIT tessellation with the same surface intensity
and directional distribution as T .

Numerous properties of STIT tessellations have been derived in (Nagel and
Weiss, 2004). Let us cite in particular the preservation of the STIT property for
every section of a STIT tessellation, as well as the equality in distribution of the
interior of the typical cell with the typical cell of a homogeneous Poisson hyper-
plane tessellation with the same surface intensity and directional distribution.
Mean values in dimension two and three have also been calculated.

0.4.2 Iterated tessellations in telecommunications
We end this last section with a small introduction on the use of iterated tessel-
lations in telecommunications. Models and results cited below are due notably
to Maier, Schmidt and Mayer (2004, 2003) and Heinrich, Schmidt and Schmidt
(2006).

Classical tessellations have been of great use in that specific domain of ap-
plication for several years, see e.g.(Baccelli, Gloaguen and Zuyev, 2000a; Baccelli,
Tchoumatchenko and Zuyev, 2000b; Baccelli and B laszczyszyn, 2001; B laszczyszyn
and Schott, 2003). In order to make the models more realistic and take into ac-
count the fact that a network may contain two levels of roads, R. Maier and V.
Schmidt have introduced a stationary iterated tessellation in the following way
(Maier and Schmidt, 2003).

• Let T (0) = {C(0)
i }i≥1 be a random stationary tessellation called the initial

tessellation.
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• Let {T (n)}n≥1 be a sequence of random stationary tessellations which is
independent with T (0) and such that the T (n), n ≥ 1, are i.i.d. or at least
exchangeable. The T (n) = {C(n)

i }i≥1 are called the component tessella-
tions.

Then the tessellation T constituted with all the intersections C
(n)
i ∩C

(0)
n , n ≥ 1,

i ≥ 1, with a non-empty interior, is the associated stationary iterated tessella-
tion. Basic examples which are concretely used are obtained when the initial
and component tessellations are distributed as Poisson–Voronoi tessellations or
stationary Poisson hyperplane tessellations (Gloaguen, Fleischer, Schmidt and
Schmidt, 2006).

Let us denote by C (0) and λ(0) (resp. C and λ) the typical cell and the
intensity of T (0) (resp. of T ). The use of Neveu’s exchange formula (Neveu,
1977) provides a precise link between C (0) and C , i.e. for every bounded and
measurable function f : K → R,

E(f(C )) =
λ(0)

λ
E

∑
i≥1

f(C(1)
i ∩ C (0))1{Int(C

(1)
i )∩Int(C (0)) 6=∅}.

Quantities of interest for such an iterated tessellation are measurements of inner
structure of the initial cells, such as the number or the k-dimensional Hausdorff
measure of the k-faces of the component tessellation inside an initial cell. In
(Heinrich, Schmidt and Schmidt, 2006), L. Heinrich, H. Schmidt and V. Schmidt
have obtained a more general law of large numbers and a multivariate central
limit theorem which can be applied to the quantities above. Indeed, for a fixed
m ≥ 1, they consider a sequence of i.i.d. vectors Ji = (Ji,1, . . . , Ji,m), i ≥ 1, whose
coordinates are stationary random measures. In particular, Ji is the “descriptor”
of the inner structure of the i-th cell of the initial tessellation and it is supposed
to have a finite intensity vector (λ1, . . . , λm). For a fixed window W which is
a convex set of Rd with a non-empty interior, we denote by Zk,ρ the quantity∑

i≥0 Ji,k(C(0)
i ∩ ρW ) where 1 ≤ k ≤ m and ρ > 0. If the initial tessellation is

ergodic, under some integrability conditions upon the typical cell of T (0) and Ji,
we have for every 1 ≤ k ≤ m

1
λd(ρW )

Zk,ρ −→ λk, as ρ →∞.

The proof of this result is based on classical methods related to Wiener’s er-
godic theorem associated with a precise treatment of the contribution of the
cells hitting the boundary of the window.

Moreover, the authors use a refinement of the Berry–Esseen inequality to
prove under certain conditions of integrability related to Ji and the typical cell
C (0) that the vector

1√
λd(ρW )

(Z1,ρ − λ1λd(ρW ), . . . , Zm,ρ − λmλd(ρW ))

converges to a mean-zero normal distribution with an explicit covariance matrix.
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These convergence results are used to estimate the quantities λk and de-
cide which model of iterated tessellation fits the best in concrete situations, see
(Gloaguen, Fleischer, Schmidt and Schmidt, 2006).
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generalized Voronŏı polygons. J. Appl. Probab. (Special Vol. 19A), 97–111.
Essays in statistical science.



24 References

Møller, J. (1986). Random Tessellations in Rd, Volume 9 of Memoirs. Aarhus
University Institute of Mathematics Department of Theoretical Statistics,
Aarhus.

Møller, J. (1989). Random tessellations in Rd. Adv. in Appl. Probab., 21,
37–73.

Møller, J. (1992). Random Johnson–Mehl tessellations. Adv. in Appl.
Probab., 24, 814–844.

Møller, J. (1994). Lectures on Random Voronŏı Tessellations, Volume 87 of
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