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Abstract. In this paper we solve the Kolmogorov equation and, as a consequence, the martingale
problem corresponding to a stochastic differential equation of type

dXt = AXt dt + b(Xt ) dt + dYt ,

on a Hilbert space E, where (Yt )t�0 is a Levy process on E,A generates a C0-semigroup on E and
b : E→ E. Our main point is to allow unbounded A and also singular (in particular, non-continuous)
b. Our approach is based on perturbation theory of C0-semigroups, which we apply to generalized
Mehler semigroups considered on L2(µ), where µ is their respective invariant measure. We apply
our results, in particular, to stochastic heat equations with Levy noise and singular drift.
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1. Introduction

In this paper we study stochastic differential equations on a Hilbert space E of type

dXt = AXt dt + b(Xt) dt + dYt, (1.1)

where (Yt)t�0 is a Levy process on E,A generates a C0-semigroup on E and b :
E → E. Our main point is to allow at the same time A to be unbounded and also
singular (in particular, non-continuous) b. Therefore, we can only aim for weak
solutions to (1.1). More precisely, we shall construct a strong (cadlag) Markov
process solving (1.1) in the sense of a martingale problem (cf. [22] and Section 7
below).

There is quite a lot of literature on equation (1.1) in the finite-dimensional case
(i.e. dimE <∞) with much more general types of processes in the noise part (cf.,
e.g., [1, 10, 11, 13, 21] and references therein). If dim E = ∞ there are only a
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few papers on (1.1). We refer to [7] for the linear case b ≡ 0, [2] for the case with
Lipschitz coefficients and Poisson noise (allowing also a non-constant diffusion
coefficient) and [16, 17] for the case b ≡ 0 and a special non-constant coefficient
in front of the noise. Already in the linear case (as also pointed out in [7, Section 8])
the infinite dimensional situation is drastically different from the finite-dimensional
one. For example, as is well known, in particular in the case (Yt)t�0 has a jump part,
Girsanov’s formula for solving (1.1) weakly does not work in general.

So, we will follow the classical approach of Kolmogorov and try to construct
directly the transition semigroup of the solution to (1.1) by solving the (backward)
Kolmogorov equations on L2(E;µ) for some suitable probability measure µ on
E. Since we have done a complete analysis of the case b ≡ 0 in [14], we will
proceed by perturbation theory on L2(E;µ), where µ is the invariant measure for
the solution of the linear equation. We emphasize that this is not a straightforward
modification of finite-dimensional or “Gaussian” techniques since only the Fourier
transform of the reference measure µ is known and µ is “far away” from a Gaussian
measure. In particular, it does not satisfy an integration by parts formula in general.

The two key ingredients to implement perturbation theory nevertheless are the
following:

(1) the maximal dissipativity of the explicitely given infinitesimal generator L

of the linear equation on a suitable space W of smooth cylinder functions
on E. (This maximal dissipativity is one of the main results in [14] and will be
summarized in Section 3 below.)

(2) an explicit formula for the square field operator given by L (cf. Sections 3
and 4, in particular Proposition 4.1 below) which immediately implies that for
all u ∈ W∫

E
E′
〈
u′(x), R(u′(x))

〉
E
µ(dx) � −2(u, Lu)L2(E;µ) (1.2)

(where R is the symmetric operator associated with the quadratic form appear-
ing in the Levy–Khinchin representation for the negative definite functional
determining the Levy process (Yt)t�0).

Both the above ingredients together by a standard result (e.g., from [19]) imply that
the candiate for the inifinitesimal generator of (1.1) given by

Lbu := Lu+ E′
〈
(u′(x), b(x)

〉
E
, u ∈ W,

is dissipative on L2(E;µ) and its closure Lb generates a C0-semigroup (P b
t )t�0 on

L2(E;µ) (cf. Section 5 below where also the assumptions on b are specified).
In particular, u(t, x) := P b

t f (x) solves the Kolmogorov equation (or Cauchy
problem)

d

dt
u = Lbu, u(0, ·) = f ∈ L2(E;µ).
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We stress at this point that L is in general not sectorial on L2(E;µ). So, perturba-
tion theory in terms of sectorial forms is not applicable and we have to work with
the operators directly.

We recall that if b ≡ 0, then P b
t = P 0

t =: Pt , t � 0, has an explicit form and
is a so-called generalized Mehler semigroup. Generalized Mehler semigroups have
been studied in detail in [5, 6, 9, 12, 14], and more recently in [8].

In order to show that (P b
t )t�0 (as in the case b ≡ 0) really gives the transition

probabilities of the solution to (1.1) one first has to prove that it is Markov, i.e. it
is positivity preserving and satisfies P b

t 1 = 1 for all t > 0. Because of our general
drifts b, it seems impossible to check any version of a maximum principle for Lb

(which would also imply the Markov property of (P b
t )t�0), but instead we have to

proceed via characterizations of the positivity preserving property of (P b
t )t�0 (as

P b
t 1 = 1 for all t > 0 is obvious) through properties of Lb (e.g., proved in [15]).

This turns out to be quite involved and requires knowledge about the invariant
measure µ for the linear equation (cf. Section 6).

In Section 7 we construct the cadlag Markov process on E which solves (1.1) in
the above sense. The price we have to pay for working in this quite general situation
is that this process will possibly only live on an enlarged state space. The method
of proof relies on results in [9], ensuring tightness of (r, p)-capacities related to the
linear equation, i.e. (1.1) with b ≡ 0 (we need the case r = 2, p = 2). Furthermore,
we use the existence results for processes associated with generalized Dirichlet
forms from [20]. We also prove uniqueness in the sense of Markov selections under
some constraint (see Section 7 for details).

Finally, in Section 8 we apply all this to a stochastic partial differential equation,
namely to the stochastic heat equation on (an extension E of) L2(]0, 1[)

dXt = dYt + [�Xt + b(Xt)] dt,
where � denotes the Laplacian on ]0, 1[ with Dirichlet boundary conditions and
(Yt)t�0 is a Levy process with determining negative definite functional

λ(ξ) := ‖ξ‖2
L2(]0,1[) + ‖ξ‖αL2(]0,1[), ξ ∈ L2(]0, 1[),

for some fixed α ∈ ]0, 2[.

2. A General Lemma on Hilbert Spaces

Let E be a (real) separable Hilbert spaces. E′ 〈·, ·〉E will denote the duality bracket
between E and E′:

E′ 〈ξ, x〉E = ξ(x), ξ ∈ E′, x ∈ E.

We shall also set 〈·, ·〉 := E′ 〈·, ·〉E if there is no confusion possible. Let (·, ·)E
denote the Hilbertian inner product on E. Except for E = R

n, we shall (as in [9,
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14]) not identify E and E′. We need a technical, purely algebraic result concerning
Hilbert spaces: let RE denote the Riesz isomorphism RE : E → E′, defined by

E′ 〈RE(v),w〉E = RE(v)(w) = (v,w)E,

and let JE′ : E′ → E denote its inverse isomorphism. Let R : E′ → E be a
(continuous) linear operator such that

R ◦ RE : E → E

is symmetric, positive and continuous.  We set Q0 := R ◦ RE, and denote by
R0 = Q

1/2
0 : E → E the positive, symmetric square root of Q0. Since for all

v ∈ E(
v,Q0(v)

)
E
= (v,R2

0(v)
)
E
= (v,R∗0(R0(v)

))
E
= (R0(v), R0(v)

)
E
,

Q0(v) = 0 implies R0(v) = 0, i.e. kerQ0 ⊆ kerR0. Since, obviously, kerR0 ⊆
kerR2

0 = ker Q0, one has kerR0 = ker Q0. Let G := (kerR0)
⊥ = (kerQ0)

⊥.
Then

E = kerQ0 ⊕⊥ G

= kerR0 ⊕⊥ G,

hence R0 induces a continuous isomorphism

S0 := R0|G : G→ R0(G) = R0(E).

Let H0 := R0(E) = R0(G) = S0(G) be equipped with the scalar product
defined by

(v,w)H0 =
(
S−1

0 (v), S−1
0 (w)

)
E
.

It is clear that (H0, (·, ·)H0) is a Hilbert space and that the inclusion i : H0 ↪→ E is
continuous (because S0 is). As R0 is symmetric, R0(G) = ImR0 ⊆ (ker R0)

⊥ = G.

LEMMA 2.1. (i) For all l′ ∈ E′ one has

S−1
0

(
JH ′0

(
i∗(l)

)) = R0
(
JE′(l)

)
.

(It is easy to see that both sides of the above equality belong to G.)
(ii) For all v,w ∈ E′, one has(

JH ′0(i
∗(v)), JH ′0(i

∗(w))
)
H0
= E′ 〈v,Rw〉E.

 Modulo the canonical identification between E and E′′ one has, of course, JE′ = RE′ .
  Whenever we shall use Lemma 2.1 in this paper, R ◦ RE will actually be of trace class.
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Proof. (i) Let w be an arbitrary element of G. Then(
R0
(
JE′(l)

)
, w
)
E

= (JE′(l), R0(w)
)
E

(by symmetry of R0)

= E′
〈
l, R0(w)

〉
E

(by definition of JE′)

= E′
〈
l, i
(
R0(w)

)〉
E

= H ′0
〈
i∗(l), R0(w)

〉
H0

(since R0(w) ∈ R0(E) = H0)

= (JH ′0(i∗(l)), R0(w)
)
H0

(by definition of JH ′0)

= (S−1
0

(
JH ′0

(
i∗(l)

))
, S−1

0

(
R0(w)

))
E

(by definition of (·, ·)H0)

= (S−1
0

(
JH ′0

(
i∗(l)

))
, w
)
E

(since w ∈ G and S0 = R0|G).
Therefore, R0(JE′(l)) − S−1

0 (JH ′0(i
∗(l))) ∈ G is orthogonal to all elements of G,

hence it has to be 0.
(ii) One has(

JH ′0
(
i∗(v)

)
, JH ′0

(
i∗(w)

))
H0

= (S−1
0

(
JH ′0

(
i∗(v)

))
, S−1

0

(
JH ′0

(
i∗(w)

)))
E

(by definition of (·, ·)H0)

= (R0
(
JE′(v)

)
, R0

(
JE′(w)

))
E

(by (i))

= (JE′(v), R2
0

(
JE′(w)

))
E

(by symmetry of R0)

= (JE′(v),Q0
(
JE′(w)

))
E

= E′
〈
v,Q0

(
JE′(w)

)〉
E

(by definition of JE′)

= E′
〈
v,R

(
RE

(
JE′(w)

))〉
E

(by definition of Q0)

= E′
〈
v,R(w)

〉
E

(since JE′ = R−1
E ). ✷

3. Review of the Linear Case

The framework of “generalized Mehler semigroups” has been established in [6, 9,
14]; for the convenience of the reader we recall its main features here.

Let E be a (real) separable Hilbert space with Borel σ -algebra B(E). Let
(Tt)t�0 denote a strongly continuous (i.e. C0−) semigroup of bounded linear oper-
ators on E, with generator A, and let λ : E′ → C satisfy the following hypothesis:

(H1) λ : E′ → C is negative-definite and Sazonov-continuous (cf., e.g., [24])
with λ(0) = 0.

Then, as is well-known (cf., e.g., [18, Theorem VI.4.10]), λ posesses a unique
Levy–Khinchin representation of the form

λ(ξ) = −i〈ξ, α〉 + 1

2
〈ξ, Rξ 〉



322 PAUL LESCOT AND MICHAEL RÖCKNER

−
∫
E

(
ei〈ξ,x〉 − 1− i〈ξ, x〉

1+ ‖x‖2
E

)
M(dx), ξ ∈ E′, (3.1)

where α ∈ E, R : E′ → E is such that R ◦ RE : E → E is a symmetric
trace class operator, and M is a Levy measure on B(E), i.e. M({0}) = 0 and∫
E
(1 ∧ ‖x‖2

E)M(dx) < ∞. By [14, Lemma 3.2], there is a constant D > 0 such
that for all ξ ∈ E′∣∣λ(ξ)∣∣ � D

(
1+ ‖ξ‖2

E′
)
. (3.2)

The generalized Mehler semigroup (Pt )t�0 associated with λ and (Tt)t�0 is then
given by

Ptf (x) =
∫
E

f (Ttx + y)µt (dy), x ∈ E, (3.3)

where the measures µt, t � 0, have Fourier transforms given by

µ̂t (ξ ) := exp

{
−
∫ t

0
λ(T ∗s ξ ) ds

}
, ξ ∈ E′. (3.4)

We make additional assumptions:

(H2) There exists a probability measure µ on B(E) which is invariant under Pt ,
i.e. such that for all t � 0 and all bounded, B(E)-measurable functions
f : E → R one has∫

E

Ptf (x) dµ(x) =
∫
E

f (x) dµ(x).

(H3) There exists a sequence (ξn)n∈N in E′, consisting of eigenvectors of A∗ (i.e.
the dual of the generator A on E) and separating the points of E.

REMARK 3.1. By [9, Theorem 3.1] the following constitutes a sufficient con-
dition for (H2) to hold (which is also necessary if limt→∞ Ttx = 0 for all x ∈
E):

(H2)′ (i) sup
t>0

Tr

(∫ t

0
TsRT ∗s ds

)
<∞,

(ii)
∫ ∞

0

∫
E

(
1 ∧ ‖Tsx‖2

E

)
M(dx) <∞,

(iii) a∞ := limt→∞(a
(1)
t + a

(2)
t ) exists in E, where for t � 0

a
(1)
t :=

∫ t

0
Tsα ds,

a
(2)
t :=

∫ t

0

∫
E

Tsx

(
1

1+ ‖Tsx‖2
E

− 1

1+ ‖x‖2
E

)
M(dx) ds.
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In this case

µ̂(ξ) = e−λ∞(ξ),

where λ∞ is given by (3.1) with α,R,M replaced by a∞, R∞ :=
∫∞

0 TsRT ∗s ds,
and M∞ :=

∫∞
0 M ◦ T −1

s ds, respectively.

REMARK 3.2. Condition (H3) is satisfied whenever A is self-adjoint with com-
pact resolvent. We therefore have numerous easy examples.

(Pt )t�0 extends naturally to L2(E;µ), and the domain D(L) of its generator L

(denoted by A in [14]) contains a space W of test functions which we describe
now:

Let W0 be the space of functions u that have a representation of the form

u(x) = f
(〈ξ1, x〉, . . . , 〈ξm, x〉

)
,

for all x ∈ E and for m � 1 an integer and f ∈ S(Rm,C) (i.e. the Schwartz
space of complex-valued functions, “rapidly decreasing” at infinity as well as their
derivatives). With the notations above, let g0 : Rm → C denote the inverse Fourier
transform of f , i.e. the function g0, such that for all y ∈ R

m

f (y) =
∫

Rm

ei〈y,v〉g0(v) dv,

and let ν0(dv) := g0(v) dv, where dv denotes the Lebesgue measure on R
m. Let

3m : Rm → E′ be defined by

3m(v1, . . . , vm) := v1ξ1 + · · · + vmξm,

and let ν = (3m)∗ν0. Then a very classical computation [3, Lemma 1.3, p. 103]
yields that u = ν̂. It is clear that W0 is a (C-) vector subspace of Cb(E,C). Let
W be the (R-) vector space of R-valued elements of W0. With the notations above,
and u ∈ W0, it will be that u ∈ W as soon as for all β ∈ R

g0(−β) = g0(β).

From this and the hypothesis made on A∗, it is easy to see that W separates the
points of E and is dense in (real) Lp(E;µ).

Note that by definition of the Fréchet derivative u′ of u it follows that u′(x) ∈
D(A∗) for all x ∈ E. One has:

LEMMA 3.3 ([14, Theorem 1.2] with p = 2). For all f = ν̂ ∈ W and any x ∈ E

Lf (x) =
∫
E′

(
i〈A∗ξ, x〉 − λ(ξ)

)
ei〈ξ,x〉ν(dξ), (3.5)

and also
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THEOREM 3.4 ([14, Theorem 1.3(ii)] with p = 2). (L,W) is maximally dissi-
pative on L2(E;µ), i.e. for all u ∈ W (Lu, u) � 0 and (1 − L)(W) is dense in
L2(E;µ). In particular, the closure of (L,W) is (L,D(L)).

We shall need another expression for L (cf., e.g., [21] for the case E = R
d).

PROPOSITION 3.5. For each u ∈ W , one has for all x ∈ E

Lu(x) = 〈
A∗(u′(x)), x

〉 + 〈u′(x), α〉
+ 1

2
�H0u(x)+

∫
E

(
u(x + y)− u(x)− 〈u

′(x), y〉
1+ ‖y‖2

)
M(dy), (3.6)

where for x ∈ E

�H0u(x) :=
m∑

j,k=1

∂j∂kf
(
E′ 〈ξ1, x〉E, . . . , E′ 〈ξm, x〉E

)(
JH ′0

(
i∗(ξj )

)
, JH ′0

(
i∗(ξk)

))
H0

=
m∑

k=1

E′
〈(
∂kf

(〈ξ1, ·〉, . . . , 〈ξm, ·〉
))′

, Rξk
〉
E

= −
∫
E′

E′ 〈ξ, Rξ 〉EeiE′ 〈ξ,x〉Eν(dξ). (3.7)

Here as usual ∂if denotes the partial derivative with respect to the i-th coordinate.
Proof. From the formula

Lu(x) =
∫
E′

(
i〈A∗ξ, x〉 − λ(ξ)

)
ei〈ξ,x〉ν(dξ)

it follows that

Lu(x) =
∫
E′

(
i〈A∗ξ, x〉 + i〈ξ, α〉 − 1

2
〈ξ, Rξ 〉

+
∫
E

(
ei〈ξ,y〉 − 1− i〈ξ, y〉

1+ ‖y‖2

)
M(dy)

)
ei〈ξ,x〉ν(dξ)

=
E′

〈
A∗
(∫

E′
ei〈ξ,x〉iξν(dξ)

)
, x

〉
E

+
E′

〈 ∫
E′

ei〈ξ,x〉iξν(dξ), α
〉
E

− 1

2

∫
E′
〈ξ, Rξ 〉ei〈ξ,x〉ν(dξ)

+
∫
E

(∫
E′

(
ei〈ξ,x+y〉 − ei〈ξ,x〉 − 〈iξ, y〉e

i〈ξ,x〉

1+ ‖y‖2

)
ν(dξ)

)
M(dy)

= 〈
A∗
(
u′(x)

)
, x
〉+ 〈u′(x), α〉− 1

2

∫
E′
〈ξ, Rξ 〉ei〈ξ,x〉ν(dξ)

+
∫
E

(
u(x + y)− u(x) − 〈u

′(x), y〉
1+ ‖y‖2

)
M(dy),
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where the interchange of integrals in the last term can be justified via Fubini’s
Theorem and majorations similar to those in [14]. Therefore, we only have to check
that

�H0u(x) = −
∫
E′
〈ξ, Rξ 〉ei〈ξ,x〉ν(dξ).

But, by definition of �H0 (see (3.7)) and since

∂j∂kf (u1, . . . , um) = −
∫

Rm

ei(u,v)Rmvjvkg0(v) dv

and (
JH0

(
i∗(ξj )

)
, JH0

(
i∗(ξk)

))
H0
= E′ 〈ξj , Rξk〉E

by Lemma 2.1(ii), we have

�H0u(x) = −
m∑

j,k=1

(∫
Rm

eiE′ 〈v1ξ1+···+vmξm,x〉Evjvkg0(v) dv

)
E′ 〈ξj , Rξk〉E

= −
∫

Rm

eiE′ 〈v1ξ1+···+vmξm,x〉E
E′

〈
m∑

j=1

vj ξj , R

(
m∑

j=1

vj ξj

)〉
E

g0(v) dv

= −
∫

Rm

eiE′ 〈3m(v),x〉E
E′ 〈3m(v), R(3m(v))〉Eg0(v) dv

= −
∫
E′

eiE′ 〈ξ,x〉EE′ 〈ξ, Rξ 〉Eν(dξ),

where all computations are finite-dimensional by definition of ν. ✷
REMARK 3.6. By Theorem 5.3 in [9] we know that there always exists a larger
separable Hilbert space E1, such that E ↪→ E1 is Hilbert–Schmidt and the fol-
lowing holds: Tt as well as µt have extensions to E1 so that (3.3) extends to all
x ∈ E1, and there exists a Levy process (Yt)t�0 on some probability space (9,P)

with values in E1 starting at 0 with determining negative definite function λ such
that

Xx
t := Ttx + Y t +

∫ t

0
Tt−sAY s ds, t � 0,

is a well-defined process on E1 with transition semigroup given by (the extension
to E1 of) (Pt )t�0 in (3.3). Furthermore, for all ω ∈ 9 and all x ∈ E1

Xx
t (ω) = x + Yt(ω)+ A

(∫ t

0
Xx

s (ω) ds

)
, t � 0.

By standard arguments it follows that Px := P ◦ (Xx
t )
−1, x ∈ E1, solves the

martingale problem corresponding to (1.1) (cf. Section 7).
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4. A Formula for the Square Field Operator

Let us consider the situation described in the previous section. In particular, (H1)–
(H3) are still in force.

PROPOSITION 4.1. For all u ∈ W and all x ∈ E we have the following expres-
sion for the square field operator:

;(u, u)(x) := L(u2)(x)− 2u(x)L(u)(x)

=
E′
〈
u′(x), R

(
u′(x)

)〉
E
+
∫
E

(
u(x)− u(x + y)

)2
M(dy).

In particular, ; maps W ×W into L∞(E;µ).

REMARK. This is analogous to the well-known property that for all
f ∈ C2(Rn;R)

�(f 2) = 2f�f + 2|∇f |2
Rn .

Proof. Let u ∈ W . Then (cf. Section 3)

u = f ◦3′m = ν̂,

3′m(x) =
(〈ξ1, x〉, . . . , 〈ξm, x〉

)
, x ∈ E,

where

f (α) =
∫

Rm

ei(α,β)Rmg0(β) dβ, α ∈ R
m,

for some g0 ∈ S(Rm,C) and ν := (3m)∗ν0, ν0(dβ) := g0(β) dβ.
Then u2 = f 2 ◦ 3′m, where f 2 is the Fourier transform of h0 = g0 ∗ g0.

Therefore, u2 = θ̂ , where

θ = (3m)∗(ν0 ∗ ν0) = ν ∗ ν.
By definition of L, one may write for all x ∈ E

L(u2)(x) =
∫
E′

(
i〈A∗ξ, x〉 − λ(ξ)

)
ei〈ξ,x〉θ(dξ)

=
∫∫

E′×E′
(
i〈A∗(ξ ′ + ξ ′′), x〉 − λ(ξ ′ + ξ ′′)

)
ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

(by definition of the convolution product) and one arrives at

L(u2)(x) = −
∫∫

E′×E′
ei〈ξ

′+ξ ′′,x〉λ(ξ ′ + ξ ′′)ν(dξ ′)ν(dξ ′′)

+
∫∫

E′×E′
i〈A∗(ξ ′ + ξ ′′), x〉ei〈ξ ′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′) (4.1)
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(as shown in [14], the splitting of the integral is permitted here). But, by Fubini’s
Theorem and symmetry∫∫

E′×E′
i
〈
A∗(ξ ′ + ξ ′′), x

〉
ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

= 2
∫∫

E′×E′
i〈A∗ξ ′, x〉ei〈ξ ′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′),

which, again by Fubini’s Theorem, equals to

2
∫
E′

ei〈ξ
′′,x〉
(∫

E′
i〈A∗ξ ′, x〉ei〈ξ ′,x〉ν(dξ ′)

)
ν(dξ ′′)

= 2

(∫
E′

ei〈ξ
′′,x〉ν(dξ ′′)

)(∫
E′

i〈A∗ξ ′, x〉ei〈ξ ′ ,x〉ν(dξ ′)
)

= 2u(x)
∫
E′
i〈A∗ξ ′, x〉ei〈ξ ′ ,x〉ν(dξ ′)

= 2u(x)

(
Lu(x)+

∫
E′

λ(ξ ′)ei〈ξ
′,x〉ν(dξ ′)

)
,

where the last equality holds by the definition of L. Therefore, using Fubini’s
Theorem again (since λ has at most quadratic growth)

L(u2)(x)− 2u(x)L(u)(x)

= 2u(x)
∫
E′
λ(ξ ′)ei〈ξ

′,x〉ν(dξ ′)

−
∫∫

E′×E′
λ(ξ ′ + ξ ′′)ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

= 2
∫
E′

ei〈ξ
′′,x〉ν(dξ ′′)

∫
E′

λ(ξ ′)ei〈ξ
′,x〉ν(dξ ′)

−
∫∫

E′×E′
λ(ξ ′ + ξ ′′)ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

= 2
∫∫

E′×E′
λ(ξ ′)ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

−
∫∫

E′×E′
λ(ξ ′ + ξ ′′)ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

 We need to check the convergence of
∫∫
E′×E′ |〈A∗ξ ′, x〉| |ν|(dξ ′)|ν|(dξ ′′), which is just

∫∫
R2m

∣∣∣∣∣
〈

m∑
i=1

β′iA∗ξi , x
〉∣∣∣∣∣ |g0(β

′)| |g0(β
′′)| dβ′ dβ′′

� Cx,ξ

∫∫
R2n
‖β′‖Rm |g0(β

′)| |g0(β
′′)| dβ′ dβ′′,

where Cx,ξ := (
∑m

i=1〈A∗ξi , x〉2)1/2. But the right-hand side is finite, since g0 ∈ S.
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=
∫∫

E′×E′
(
λ(ξ ′)+ λ(ξ ′′)

)
ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

−
∫∫

E′×E′
λ(ξ ′ + ξ ′′)ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

(by the same symmetry argument as above). Hence

L(u2)(x)− 2u(x)L(u)(x)

=
∫∫

E′×E′
(
λ(ξ ′)+ λ(ξ ′′)− λ(ξ ′ + ξ ′′)

)
ei〈ξ

′+ξ ′′,x〉ν(dξ ′)ν(dξ ′′)

for all x ∈ E. But by the Levy–Khinchin representation (3.1) and the symmetry of
(ξ ′, ξ ′′) �→ E′ 〈ξ ′, Rξ ′′〉E (cf. Lemma 2.1(ii)) it follows that

λ(ξ ′)+ λ(ξ ′′)− λ(ξ ′ + ξ ′′)

= −E′ 〈ξ ′, Rξ ′′〉E −
∫
E

(
ei〈ξ

′,y〉 + ei〈ξ
′′,y〉 − ei〈ξ

′+ξ ′′,y〉 − 1
)
M(dy)

= −E′ 〈ξ ′, Rξ ′′〉E +
∫
E

(
1− ei〈ξ

′,y〉)(1− ei〈ξ
′′,y〉)M(dy).

Thus,

L(u2)(x)− 2u(x)L(u)(x)

= −
∫∫

E′×E′
ei〈ξ

′+ξ ′′,x〉〈ξ ′, Rξ ′′〉ν(dξ ′)ν(dξ ′′)

+
∫∫

E′×E′
ei〈ξ

′+ξ ′′,x〉
(∫

E

(
1− ei〈ξ

′,y〉)(1− ei〈ξ
′′,y〉)M(dy)

)
ν(dξ ′)ν(dξ ′′).

But, due to the obvious bounds∣∣(1− ei〈ξ
′,y〉)(1− ei〈ξ

′′,y〉)∣∣ �
{

4, and

|〈ξ ′, y〉| |〈ξ ′′, y〉| � ‖ξ ′‖ ‖ξ ′′‖ ‖y‖2,

and the finiteness of ν,
∫ ‖ξ‖ν(dξ) and

∫
(1 ∧ ‖y‖2)M(dy), Fubini’s Theorem

applies here. The second term of our sum therefore equals∫
E

(∫
E′

ei〈ξ
′,x〉(1− ei〈ξ

′,y〉)ν(dξ ′))(∫
E′

ei〈ξ
′′,x〉(1− ei〈ξ

′′,y〉)ν(dξ ′′))M(dy)

=
∫
E

(∫
E′

ei〈ξ
′,x〉ν(dξ ′)−

∫
E′

ei〈ξ
′,x+y〉ν(dξ ′)

)2

M(dy)

=
∫
E

(
u(x)− u(x + y)

)2
M(dy).

As u ∈ F C∞b (E), u is both globally Lipschitzian and bounded, so that there is a
Cu � 0, such that for all x, y ∈ E∣∣u(x)− u(x + y)

∣∣ � Cu

(‖y‖E ∧ 1
)
,
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so the convergence of the last integral follows from the very definition of a Levy
measure. Furthermore, it follows from

u(x) =
∫
E′

ei〈ξ,x〉ν(dξ), x ∈ E,

that for all x ∈ E

u′(x) =
∫
E′
iei〈ξ,x〉ξν(dξ),

hence

E′
〈
u′(x), R

(
u′(x)

)〉
E
= −

∫∫
E′×E′

ei〈ξ
′+ξ ′′,x〉

E′ 〈ξ ′, Rξ ′′〉Eν(dξ ′)ν(dξ ′′)

and the formula in the assertion follows. ✷
COROLLARY 4.2. For each u ∈ W ,∫

E
E′
〈
u′(x), R

(
u′(x)

)〉
E
µ(dx) � −2(u, Lu)L2(E;µ).

Proof. By Proposition 4.1, one has, for any given x ∈ E,

E′
〈
u′(x), R

(
u′(x)

)〉
E

� ;(u, u)(x) = L(u2)(x)− 2u(x)L(u)(x).

Therefore,∫
E

E′
〈
u′(x), R

(
u′(x)

)〉
E
µ(dx) �

∫
E

(
L(u2)(x)− 2u(x)L(u)(x)

)
µ(dx)

= −2(u, Lu)L2(E;µ) +
∫
E

L(u2)(x)µ(dx).

But
∫
E
L(u2) dµ = 0, since µ is (Pt )t�0-invariant (and therefore infinitesimally

(Pt )t�0-invariant) and u2 ∈ W ⊆ D(L). Hence the result follows. ✷

5. Existence of the Semigroup

In this section we shall prove the existence of a C0-semigroup PB
t on L2(E;µ)

with generator L + B, where B denotes a “first-order” drift term. By the results
of the previous section, in particular Corollary 4.2, we shall see that now standard
perturbation theory for generators of C0-semigroups applies.

 All the gradient computations are in fact finite-dimensional due to the definition of ν and,
therefore, no problem arises from them.
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(H4) Let b̂ : E × E→ R be µ⊗M-measurable, such that

s :=
(∫

E

b̂(·, y)2M(dy)

)1/2

∈ L∞(E;µ),
and b : E → H0, µ-measurable and bounded.

Define now B : W0 → L∞(E;µ) by

Bu := E′ 〈u′, b〉E +
∫
E

b̂(·, y)(u− u(· + y)
)
M(dy).

PROPOSITION 5.1. Let α := ‖s‖L∞(E;µ) and β := ‖|b|H0‖L∞(E;µ). Then for all
u ∈ W

‖Bu‖L2(E;µ) � K

√
−(Lu, u)L2(E;µ) (5.1)

with K := 2 max(α, β).
Proof. By assumption, b = S0 ◦ c, for a certain bounded c : E→ G. Then

β = ‖b‖L∞(E;H0) = ‖c‖L∞(E;G) = ‖c‖L∞(E;E).

For a given x ∈ E, one has(
Bu(x)

)2 =
[

E′
〈
u′(x), b(x)

〉
E
+
∫
E

b̂(x, y)
(
u(x) − u(x + y)

)
M(dy)

]2

� 2

[
E′
〈
u′(x), b(x)

〉2
E

+
(∫

E

b̂(x, y)2M(dy)

)(∫
E

(
u(x) − u(x + y)

)2
M(dy)

)]
by the Cauchy–Schwarz inequality. But with the results and notation of Section 1,

E′
〈
u′(x), b(x)

〉
E
=

E′
〈
u′(x), S0

(
c(x)

)〉
E

=
E′
〈
u′(x), R0

(
c(x)

)〉
E

= (
JE′
(
u′(x)

)
, R0

(
c(x)

))
E

= (
(R0 ◦ JE′)

(
u′(x)

)
, c(x)

)
E
,

where we used the symmetry of R0. Hence, using R2
0 = Q0 = R ◦ RE and JE′ =

R−1
E , we obtain

E′
〈
u′(x), b(x)

〉2
E
= (

(R0 ◦ JE′)
(
u′(x)

)
, c(x)

)2
E

�
∥∥c(x)∥∥2

E

∥∥(R0 ◦ JE′)
(
u′(x)

)∥∥2
E

� β2(R0
(
JE′
(
u′(x)

))
, R0

(
JE′
(
u′(x)

)))
E

= β2
(
JE′
(
u′(x)

)
, R2

0

(
JE′
(
u′(x)

)))
E

= β2(JE′(u′(x)), R(u′(x)))E
= β2

E′
〈
u′(x), R

(
u′(x)

)〉
E
.
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Therefore, by Proposition 4.1

(
Bu(x)

)2 � γ

[
E′
〈
u′(x), R

(
u′(x)

)〉
E
+
∫
E

(
u(x)− u(x + y)

)2
M(dy)

]
= γ

(
L(u2)(x)− 2u(x)L(u)(x)

)
,

where we have set γ := 2 max(α2, β2). From this it follows that

‖Bu‖2
L2(E;µ) � γ

(∫
E

L(u2) dµ− 2
∫
E

uLu dµ

)
= −2γ (u,Lu)L2(E;µ),

by the same argument as in the proof of Corollary 4.2, which completes the proof. ✷
Let us remind the reader of the definition of the graph norm: For u ∈ D(L)

‖u‖gr := ‖u‖L2(E;µ) + ‖Lu‖L2(E;µ).

For the next result, we use the fact that W is a core for (L,D(L)) in an essential
way.

COROLLARY 5.2. For all ε > 0 there exists cε ∈ ]0,∞[ such that

∀µ ∈ W ‖Bu‖L2(E;µ) � ε‖Lu‖L2(E;µ) + cε‖u‖L2(E;µ). (5.2)

In particular, B extends uniquely to a bounded operator (again denoted by B) from
(D(L), ‖ · ‖gr) to L2(E;µ), and (5.1) and (5.2) hold for all u ∈ D(L).

Moreover, W is a core for (L+B,D(L)), i.e. W is dense in D(L) with respect
to the graph norm of L+ B.

Proof. From Proposition 5.1 it follows that for all u ∈ W and δ > 0

‖Bu‖2
L2(E;µ) � K2

∣∣(u, Lu)L2(E;µ)
∣∣ � K2‖u‖L2(E;µ)‖Lu‖L2(E;µ)

� K2

2

[
δ2‖Lu‖2

L2(E;µ) + δ−2‖u‖2
L2(E;µ)

]
.

In particular, B is a bounded operator from (W, ‖ · ‖gr) to L2(E;µ). But as W

is dense in D(L) for the graph norm [14, Theorem 1.3(ii)], the existence and
uniqueness of a bounded extension of B to D(L) follows and (5.1) holds for all
u ∈ D(L) by the usual density argument. ✷
PROPOSITION 5.3. Let c := K2/4. For all t ∈ [0, 1], L+tB−cId is dissipative.

Proof. We have to prove that for all u ∈ D(L)

(u,Lu+ tBu− cu)L2(E;µ) � 0.
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Let t ∈ ]0, 1] be fixed and α := √Kt/2. Then, using Corollary 5.2, one has, if
α > 0, that

(u, Bu)L2(E;µ) � ‖u‖L2(E;µ)‖Bu‖L2(E;µ) � K‖u‖L2(E;µ)
√
−(u, Lu)L2(E;µ)

= K
(
α‖u‖L2(E;µ)

)( 1

α

√
−(u, Lu)L2(E;µ)

)
� K

2

(
α2‖u‖2

L2(E;µ) −
1

α2
(u, Lu)L2(E;µ)

)
= K2t

4
‖u‖2

L2(E;µ) −
1

t
(u, Lu)L2(E;µ).

This result is obviously also true if α = 0 (i.e. K = 0). Hence,

t (u, Bu)L2(E;µ) � ct2(u, u)L2(E;µ) − (u, Lu)L2(E;µ).

That last inequality obviously remains true when t = 0. Thus, in all cases

(u, Lu+ tBu− cu)L2(E;µ) � c(t2 − 1)(u, u)L2(E;µ) � 0. ✷
COROLLARY 5.4. (L+B,D(L)) generates a C0-semigroup (henceforth denoted
by PB

t ) on L2(E;µ).
Proof. Let c := K2/4. Then L − cId generates a contraction C0-semigroup

(e−ctPt )t�0 on L2(E;µ). By Corollary 5.2, Proposition 5.3, and Theorem 3.4, we
can apply [19, Theorem 3.2, p. 81] to (L−cId,D(L)) and (B,D(L)) and conclude
that L−cId+B generates a contraction C0-semigroup QB

t . Hence L+B generates
the C0-semigroup PB

t = ectQB
t . ✷

6. Markov Property

Define

λ1(ξ) := −i〈ξ, α〉 + 1

2
〈ξ, Rξ 〉, ξ ∈ E′,

λ2(ξ) := −
∫
E

(
ei〈ξ,x〉 − 1− i〈ξ, x〉

1+ ‖x‖2

)
M(dx), ξ ∈ E′.

(6.1)

From now on, in addition to (H1), (H3) and (H4), we are going to assume the
following:

(H5) (i) (H2) holds with both limits a(1)∞ := limt→∞ a
(1)
t and a(2)∞ := limt→∞ a

(2)
t

existing in E.
(ii) Rξk ∈ ImR∞ for all k ∈ N.

(iii) b̂ in (H4) is identically equal to zero.
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Then the measures γ and σ on B(E) with Fourier transforms given by

γ̂ (ξ ) = exp

{
i〈ξ, a(1)

∞ 〉 −
1

2
〈ξ, R∞ξ 〉

}
,

σ̂ (ξ) = exp

{
i〈ξ, a(2)

∞ 〉 +
∫
E

(
ei〈ξ,y〉 − 1− i〈ξ, y〉

1+ ‖y‖2
E

)
M∞(dy)

}
,

ξ ∈ E′, are the invariant measures for the generalized Mehler semigroups (P (1)
t )t�0

resp. (P (2)
t )t�0, associated with λ1 and (Tt)t�0 resp. λ2 and (Tt )t�0.

Since λ = λ1 + λ2, it follows from Remark 3.1 that µ̂(ξ) = γ̂ (ξ )σ̂ (ξ) for all
ξ ∈ E′, i.e.

µ = γ ∗ σ. (6.2)

Let Li, i = 1, 2, be defined on W by (3.5) with λi replacing λ. Then applying
Theorem 3.4 to Li we obtain that the closures (Li,D(Li)) generate C0-semigroups
(etLi )t�0 on L2(γ ) resp. L2(σ ) such that P (i)

t f is a version of etLif, t > 0.
Let us define, as usual, for u ∈ C1(E;E):

∇H0u(x) := JH ′0
(
i∗
(
u′(x)

))
, (6.3)

where i, as above, denotes the inclusion i : H0 ↪→ E.

LEMMA 6.1. For all u ∈ W and x ∈ E:

(i) Bu(x) = (∇H0u(x), b(x))H0 .
(ii) For u = ν̂ ∈ W let

Su(x) := −
∫
E′

λ2(ξ)e
i〈ξ,x〉ν(dξ)

=
∫
E

(
u(x + y)− u(x)− 〈u

′(x), y〉
1+ ‖y‖2

E

)
M(dy).

Then for all y ∈ E

Su(x + y) = S
(
u(x + ·))(y)

and

L2u(x) =
〈
A∗
(
u′(x)

)
, x
〉+ Su(x).

(iii) Lu(x) = 1
2�

H0u(x) + L2u(x)+ E′ 〈u′(x), α〉E .

Proof. (i) holds since for all x ∈ E, one has:(∇H0u(x), b(x)
)
H0

= (JH ′0(i∗(u′(x))), b(x))H0
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= (S−1
0

(
JH ′0

(
i∗
(
u′(x)

)))
, S−1

0

(
b(x)

))
E

(by definition of (·, ·)H0 )

= (R0
(
JE′
(
u′(x)

))
, c(x)

)
E

(by Lemma 2.1(i))

= (JE′(u′(x)), R0
(
c(x)

))
E

(by the symmetry of R0)

= (JE′(u′(x)), S0
(
c(x)

))
E

(as c is G-valued)

= (JE′(u′(x)), b(x))E
=

E′
〈
u′(x), b(x)

〉
E

(by definition of JE′).

(ii) and (iii) follow immediately by definition and Proposition 3.5. ✷
THEOREM 6.2. (P B

t )t�0 is sub-Markovian.
Proof. Let LB = L+ B. Since LB1 = 0, one has

PB
t 1 = etL

B

1 = 1.

Therefore, we just need to check that (P B
t )t�0 is positivity preserving, for which it

suffices to find a c′ > 0 such that (e−c′ tP B
t )t�0 is.

According to [15, Theorem 1.7], this will be the case whenever∫
u+
(
LBu− c′u

)
dµ � 0

for all u ∈ D(LB). Here, u+ := sup(u, 0) denotes the positive part of u.
By a density argument, it further suffices to check that for all u ∈ W∫

E

u+LBu dµ � c′
∫
E

u+u dµ.

So, fix u = ν̂ = f (〈ξ1, ·〉, . . . , 〈ξm, ·〉) ∈ W . Let ε > 0 and let ϕε : R → [−ε,∞[
such that ϕε ∈ C∞(R), ϕε(t) = t for all t ∈ [0,∞[, 0 � ϕ′ε � 1, ϕε(t) = −ε for
t ∈ ] −∞,−2ε]. Then

lim
ε→0

ϕε(t) = 1[0,∞[ · t, lim
ε→0

ϕ′ε(t) = 1[0,∞[. (6.4)

Hence, using Lebesgue’s Dominated Convergence Theorem we get for εn := 1/n,
n ∈ N, by Lemma 6.1(ii) and (iii):

(u+, LBu)L2(E;µ)

= lim
n→∞

∫∫
E×E

ϕεn(u)(x + y)

(
1

2
�H0u(x + y)

+
E′
〈
A∗
(
u′(x + y)

)
, x
〉
E

+
E′
〈
(u′(x + y), α + b(x + y)

〉
E

)
γ (dx)σ (dy)

+
∫∫

E×E
u+(x + y)

(
Su(x + y)+

E′
〈
A∗
(
u′(x + y)

)
, y
〉
E

)
γ (dx)σ (dy).
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For x ∈ E, let ux : E → E be defined by ux(y) := u(x + y), y ∈ E. Then by
Lemma 6.1(ii) and Fubini’s Theorem the second integral can be written as∫

E

∫
E

(ux)+(y)L2u
x(y)σ (dy)γ (dx),

which by [15, Theorem 1.7] is non-positive, since P
(2)
t is positivity preserving. We

therefore have(
u+, LBu

)
L2(E;µ)

� lim inf
n→∞

∫∫
E×E

ϕεn(u)(x + y)

(
1

2
�H0u(x + y)

+
E′
〈
A∗
(
u′(x + y)

)
, x
〉
E
+

E′
〈
u′(x + y), α + b(x + y)

〉
E

)
γ (dx)σ (dy).

Defining for k ∈ N

β
γ

k (x) := E′
〈
R−1
∞ (Rξk), x − a(1)

∞
〉
E

(which is well-defined by (H5)(ii)) we have the following integration by parts
formula (cf., e.g., [4, Proposition 5.1.6]) for all u ∈ W∫

E
E′
〈
u′(x), Rξk

〉
E
γ (dx) = −

∫
E

u(x)β
γ

k (x)γ (dx).

We set

βγ
u (x + y) :=

m∑
k=1

β
γ

k (x)∂kf
(〈ξ1, x + y〉, . . . , 〈ξm, x + y〉).

Then by (3.7) one has for fixed y ∈ E and all n ∈ N∫
E

ϕεn(u)(x + y)
1

2
�H0u(x + y)γ (dx)

= −1

2

∫
E

(∇H0ϕεn(u)(x + y),∇H0u(x + y)
)
H0
γ (dx)

−
∫
E

ϕεn(u)(x + y)βγ
u (x + y)γ (dx).

Hence, using Lebesgue’s Dominated Convergence Theorem again we obtain by
(6.4), since ∇H0ϕεn(u)(x + y) = ϕ′εn(u)(x + y)∇H0u(x + y), that(

u+, LBu
)
L2(E;µ)

�
∫∫

E×E
1[0,∞[

(
u(x + y)

)[−1

2

(∇H0u(x + y),∇H0u(x + y)
)
H0
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− u(x + y)

(
1

2
βγ
u (x + y)− 〈A∗(u′(x + y)

)
, x
〉

− 〈u′(x + y), α + b(x + y)
〉)]

γ (dx)σ (dy)

= lim
n→∞

∫∫
E×E

[
−ϕ′εn

(
u(x + y)

)2 1

2

(∇H0u(x + y),∇H0u(x + y)
)
H0

−ϕεn

(
u(x + y)

)
ϕ′εn
(
u(x + y)

)(1

2
βγ
u (x + y)− 〈A∗(u′(x + y)

)
, x
〉

− 〈u′(x + y), α + b(x + y)
〉)]

γ (dx)σ (dy)

= lim
n→∞

[
−
∫∫

E×E
1

2

[(∇H0
(
ϕεn(u)(x + y)

)
,∇H0

(
ϕεn(u)(x + y)

))
H0

+ϕεn(u)(x + y)βγ
ϕεn

(x + y)
]
γ (dx)σ (dy)

+
∫∫

E×E
ϕεn(u)(x + y)

(〈
A∗
(
ϕεn(u)

′(x + y)
)
, x
〉

+〈ϕεn(u)
′(x + y), α + b(x + y)

〉)
γ (dx)σ (dy)

]
.

Integrating by parts again and due to the fact that

1

2
ϕεn(u)�

H0ϕεn(u) =
1

4
�H0

(
ϕ2
εn
(u)
)− 1

2

(∇H0ϕεn(u),∇H0ϕεn(u)
)
H0

we get(
u+, LBu

)
L2(E;µ)

� lim
n→∞

[
1

2

∫∫
E×E

(
1

2
�H0

(
ϕ2
εn
(uy)

)
(x)+ 〈A∗((ϕ2

εn
(uy)

)′
(x)
)
, x
〉

+ 〈(ϕ2
εn
(uy)

)′
(x), a

〉)
γ (dx)σ (dy)

+
∫∫

E×E

[
−1

2

(∇H0ϕεn(u)(x + y),∇H0ϕεn(u)(x + y)
)
H0

+ϕεn(u)(x + y)
〈
ϕεn(u)

′(x + y), b(x + y)
〉]
γ (dx)σ (dy)

]
.

The first integral above is equal to zero, since the integrand is just equal to
L1(ϕ

2
εn
(u)) and γ is invariant under P

(1)
t for all t > 0. To estimate the second,

we note that by Lemma 6.1(i)∣∣ϕεn(u)(x + y)
〈
ϕεn(u)

′(x + y), b(x + y)
〉∣∣

= ∣∣ϕεn(u)(x + y)
〈
b(x + y),∇H0ϕεn(u)(x + y)

〉
H0

∣∣
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�
∣∣ϕεn(u)(x + y)

∣∣ ∥∥ |b|H0

∥∥∞∣∣∇H0ϕεn(u)(x + y)
∣∣
H0

� 1

2

∥∥ |b|H0

∥∥2
∞ϕ2

εn
(u)(x + y)+ 1

2

∣∣∇H0ϕεn(u)(x + y)
∣∣2
H0
.

Hence by dominated convergence it follows that

(
u+, LBu

)
L2(E;µ) � 1

2

∥∥ |b|H0

∥∥2
∞ lim

n→∞

∫
E

ϕ2
εn

(
u(x)

)
µ(dx)

= 1

2

∥∥ |b|H0

∥∥2
∞(u+, u+)L2(E;µ) = c′(u+, u)L2(E;µ),

where c′ = 1
2‖ |b|H0‖2∞. ✷

7. Construction of the Associated Process

We still consider the situation of the previous section, so assumptions (H1), (H3)–
(H5) are still in force. We want to use a general result from [20] to construct a
process whose transition probabilities are given by (P B

t )t�0.
According to [19, Corollary 10.6, p. 41], the adjoint semigroup (P̂ B

t )t�0

of (P B
t )t�0 is a C0-semigroup on L2(E;µ). Let L̂Bdenote its generator. Define

E(u, v) :=
{−(LBu, v) for u ∈ D(LB), v ∈ L2(E;µ),
−(u, L̂Bv) for u ∈ L2(E;µ), v ∈ D(L̂B).

(7.1)

Then by [20, Example I.4.9(ii), p. 26] E is a generalized Dirichlet form. Since
obviously W is an algebra and since W is a core for the generator of (P B

t )t�0

(cf. Corollaries 5.2 and 5.4), we can apply Proposition IV.21 with Y := W and
Theorem IV.2.2 from [20] to conclude that an associated cadlag strong Markov
process exists, if we can prove that E is quasi-regular in the sense of generalized
Dirichlet forms [20, Definition IV.1.7, p. 77].

It is easy to see that W contains a countable subset separating the points of E.
Since, as already mentioned, W ⊆ F C∞b (E) is dense in D(LB), it remains to show
the existence of an E-nest (again in the sense of [20, Definition III.2.3(i), p. 66]) of
compact sets.

To prove this, we need an extra condition on the (2,2)-capacity of our initial
generalized Mehler semigroup (Pt )t�0 (see (3.3)) which, however, is not so restric-
tive (cf. Remark 7.1 below). First, we recall the definition of the (r, p)-capacities
determined by (Pt )t�0.

Let r > 0, p � 1. The gamma transform of (Pt )t�0 is defined by

Vrf := 1

;( r2)

∫ ∞

0
t
r
2−1e−tPtf dt, f ∈ Lp(E;µ), r > 0,
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where the Lp(E;µ)-valued integral is taken in the sense of Bochner. Define the
Banach space (Fr,p, ‖ · ‖r,p) by

Fr,p := Vr

(
Lp(E;µ)), ‖Vrf ‖r,p := ‖f ‖Lp(E;µ).

The (r, p)-capacity Cr,p is defined for an open set U ⊆ E by

Cr,p(U) := inf
{‖u‖pr,p | u ∈ Fr,p, u � 1 on U

}
(7.2)

and for arbitrary A ⊆ U by

Cr,p(A) := inf
{
Cr,p(U) | A ⊆ U, U ⊆ E, U open

}
. (7.3)

Cr,p is called tight if there exist compact Kn ⊆ E, n ∈ N, such that Cr,p(E\Kn)→
0 as n→∞ (cf. [9] for classical references on these capacities). We now assume:

(H6) Cr,p is tight.

REMARK 7.1. Let Ẽ be the Hilbert space defined in [9, Remark 6.5] which con-
tains E as a dense subspace. Then Corollary 6.4 in [9] gives very general conditions
on (Tt )t�0 and λ so that Cr,p is tight on Ẽ for all r > 0, p � 1. Note that if A is
self-adjoint, then, as is easy to check, ξk ∈ (Ẽ)′ (⊆ E′) and (H2) will still be valid
for Ẽ. So, under the assumptions of [9, Corollary 6.4] we can pass to Ẽ and (H6)
would be fulfilled. This works, in particular, in the case of the concrete example in
the next section.

From now on we shall follow very closely the reasoning in [20, p. 67 ff.]. For
U ⊆ E,U open let

gU := inf
{
u ∈ L2(E;µ) | u � 1 on U, u � 0 and e−tP B

t u � u for all t > 0
}
.

Let (GB
λ )λ>0 denote the resolvent of (P B

t )t�0, i.e. GB
λ = (λ Id − LB)−1. Con-

sider the increasing sequence (Kn)n∈N of compact sets in E from (H6). By [20,
Proposition IV.2.10, p. 69], (Kn)n∈N is an E-nest if

Cap1(K
c
n) −→

n→∞ 0,

where

Cap1(K
c
n) := (gKc

n
, 1)L2(E;µ).

Therefore, it suffices to prove:

PROPOSITION 7.2. gKc
n
−→
n→∞ 0 in L2(E;µ).

Proof. By definition, there are un ∈ F2,2, n ∈ N, with un � 1Kc
n
, such that

‖un‖2,2 � 1

2n
+ C2,2(K

c
n).
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But since (Id − L)−1 = V2, we have ‖un‖2,2 = ‖(Id − L)un‖L2(E;µ), so that from
Proposition 5.1 and Corollary 5.2 we obtain∥∥(L− LB)un

∥∥
L2(E;µ) = ‖Bun‖L2(E;µ)

� K(−Lun, un)
1/2
L2(E;µ)

� K
(
(Id− L)un, un

)1/2
L2(E;µ)

� K
∥∥(Id− L)un

∥∥1/2
L2(E;µ)‖un‖1/2

L2(E;µ)
� K

∥∥(Id− L)un

∥∥
L2(E;µ),

since for all v ∈ D(L), ‖v − Lv‖L2(E;µ) � ‖v‖L2(E;µ) since (v, Lv)L2(E;µ) � 0 as
(Pt )t�0 are contractions on L2(E;µ). Thus,∥∥(Id− LB)un

∥∥
L2(E;µ) � (K + 1)

∥∥(Id− L)un

∥∥
L2(E;µ)

� (K + 1)

(
1

2n
+ C2,2(K

c
n)

)
.

Let vn := GB
1 (((Id− LB)un)

+). Then vn is 1-excessive and

vn � GB
1

(
(Id− LB)un

) = un � 1Kc
n
,

hence vn � gKc
n
(� 0), and for some constant c > 0

Cap1(K
c
n) = (gKc

n
, 1)L2(E;µ)

� (vn, 1)L2(E;µ)
� ‖vn‖L2(E;µ)
= ∥∥GB

1

((
(Id− LB)un

)+)∥∥
L2(E;µ)

� c
∥∥((Id− LB)un

)+∥∥
L2(E;µ)

� c
∥∥(Id− LB)un

∥∥
L2(E;µ)

� c(K + 1)

(
1

2n
+ C2,2(K

c
n)

)
−→
n→∞ 0. ✷

We now obtain:

THEOREM 7.3. (i) There exists a conservative strong Markov process

M = (9,F , (Ft )t�0, (Xt )t�0, (Px)x∈E
)

with cadlag sample paths such that its transition probabilities, defined by 

pB
t f (x) :=

∫
9

f (Xt) dPx, f ∈ Bb(E), x ∈ E,

 Bb(E) denotes the set of all bounded Borel measurable functions on E.
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are given by (P B
t )t�0, i.e. pB

t f is a µ-version of PB
t f for all t > 0, f ∈ Bb(E).

(ii) For E-q.e. x ∈ E (i.e. every x outside a fixed E-nest, cf. above) and all
u ∈ W

u(Xt)− u(X0)−
∫ t

0
LBu(Xs) ds, t � 0,

is an (Ft )-martingale under Px with X0 = xPx-a.s.
Proof. Since we proved above that E as given by (7.1) is a generalized Dirichlet

form, [20, Theorem IV.2.2] implies (i) apart from the conservativity, which in turn
follows immediately, since PB

t 1 = 1 for all t � 0.
(ii) follows from [23, Section 2.2]. ✷

REMARK 7.4. In fact, the process M in Theorem 7.3 is even more regular, namely
it is “special standard” and its resolvent maps functions from Bb(E) to E-quasi-
continuous functions (cf. [20, Theorem IV.2.2]).

We also have the following uniqueness result:

THEOREM 7.5. Suppose that M̃ = (9̃, F̃ , (F̃t )t�0, (X̃t )t�0, (̃Px)x∈E) is another
Markov process satisfying 7.3(ii), but even only under P̃µ :=

∫
P̃xµ(dx) (hence

P̃µ ◦ X̃−1
0 = µ), such that its transition probabilities (p̃B

t )t�0, considered as linear
operators on L2(E;µ) (with domain Bb(E)), are continuous.

Then for µ-a.e. x ∈ E, P̃x has the same finite-dimensional distributions as Px

(from Theorem 7.3).
Proof. From the assumption that P̃µ solves the martingale problem one con-

cludes by a standard argument that the L2(E;µ)-generator of (p̃B
t )t�0 must co-

incide with LB on W . Since W is a core for (LB,D(LB)), it must coincide with
LB on all of D(LB). Hence, (p̃B

t )t�0 and (pB
t )t�0 (from Theorem 7.3) coincide

µ-a.e. ✷
REMARK 7.6. Theorem 7.5 can be summarized as follows: We have µ-a.e. unique-
ness of Markovian selections that solve our martingale problems under the con-
straint that their transition semigroups are continuous on L2(E;µ).

REMARK 7.7. The link of the martingale problem with the stochastic differential
equation

dXt = dYt +
(
AXt + b(Xt)

)
dt

is worked out, in the finite-dimensional case, in the classical paper [13]. On an
infinite-dimensional space, the reasoning is more elaborate, as will be explained in
a subsequent paper.
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8. A Stochastic Heat Equation

In this section we want to apply our results to a stochastic heat equation, i.e. to

dXt = dYt + [�Xt + b(Xt)] dt, (8.1)

where � denotes the Laplacian on ]0, 1[ with Dirichlet boundary conditions, and
(Yt)t�0 is a Levy process on (an extension E of) L2(]0, 1[) with characteristic
function

λ(ξ) := ‖ξ‖2
L2([0,1[) + ‖ξ‖αL2([0,1[), (8.2)

for some fixed α ∈ ]0, 2[. In other words, we are studying a stochastic heat equa-
tion with Levy noise, the noise being composed of a (standard) white noise and an
α-stable noise.

By Bochner’s Theorem for all t ∈ ]0,∞] there exists a cylindrical measure µt

on (the Borel σ -algebra of) L2(]0, 1[) with Fourier transform given by

µ̂t (ξ ) = exp

{
−
∫ t

0

(‖es�ξ‖2
L2(]0,1[) + ‖es�ξ‖αL2(]0,1[)

)
ds

}
(8.3)

for all ξ ∈ L2(]0, 1[) (# L2(]0, 1[)′). Moreover, one has:

PROPOSITION 8.1. For every t ∈ ]0,∞], µt extends to a Borel probability mea-
sure on L2(]0, 1[).

Proof. Let t ∈ ]0,∞] be fixed. It suffices to show that ξ �→ µ̂t (ξ ) is Sazonov
continuous on L2(]0, 1[). The eigenvalues of � on L2(]0, 1[) are λj = −j 2π2, j �
1, each with multiplicity one, thus the eigenvalues of et� are e−tj2π2

, j � 1. It will
appear that ξ �→ N(ξ) := − ln(µ̂t (ξ )) is Sazonov continuous.

Let (ej )j�1 be an othonormal basis of L2(]0, 1[), consisting of eigenvectors of
� (i.e. ej (x) =

√
2 sin(jπx)). Then one has

N(ξ) =
∫ t

0

[ ∞∑
j=1

e−2sj2π2〈ξ, ej 〉2 +
( ∞∑

j=1

e−2sj2π2〈ξ, ej 〉2
)α/2]

ds

=: N1(ξ)+N2(ξ).

Obviously,

N1(ξ) =
∞∑
j=1

(∫ t

0
e−2sj2π2

ds

)
〈ξ, ej 〉2

=
∞∑
j=1

1

2j 2π2

(
1− e−2tj2π2)〈ξ, ej 〉2 = ‖Uξ‖2,

where U : L2(]0, 1[)→ L2(]0, 1[) is defined by

U(ej ) := (1− e−2tj2π2
)1/2

jπ
√

2
ej , j � 1.
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As U is Hilbert–Schmidt, N1 is Sazonov continuous by definition of the Sazonov
topology.

Therefore, we only have to show the same for N2. But

N2(ξ) =
∫ t

0

( ∞∑
j=1

e−2sj2π2〈ξ, ej 〉2
)α/2

ds

� 1

απ2

∫ ∞

0

( ∞∑
j=1

e−2s(j2−1)π2〈ξ, ej 〉2
)α/2

απ2e−απ
2s ds.

Applying Jensen’s Inequality to the probability measure ρ(dt) := απ2e−απ2t dt on
[0,+∞[ and the exponent p = 2/α > 1, we therefore get

(
απ2N2(ξ)

)2/α �
[∫ ∞

0

( ∞∑
j=1

e−2s(j2−1)π2〈ξ, ej 〉2
)α/2

ρ(ds)

]2/α

�
∫ ∞

0

(( ∞∑
j=1

e−2s(j2−1)π2〈ξ, ej 〉2
)α/2)2/α

ρ(ds)

�
∫ ∞

0

( ∞∑
j=1

e−2s(j2−1)π2〈ξ, ej 〉2
)
ρ(ds)

=
∞∑
j=1

〈ξ, ej 〉2
∫ ∞

0
e−2s(j2−1)π2

απ2e−απ
2s ds

=
∞∑
j=1

απ2〈ξ, ej 〉2 1

π2(2j 2 + α − 2)
= α‖V ξ‖2,

where V : L2(]0, 1[)→ L2(]0, 1[) is defined by

V (ej ) := 1√
2j 2 + α − 2

ej , j � 1.

As V is Hilbert–Schmidt, N2 is a norm on L2(]0, 1[), and

0 � N2(ξ) � αα/2−1

π2
‖V ξ‖α,

it follows that also N2 is Sazonov continuous. ✷
We now set

µ := µ∞. (8.4)
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By [9, Proposition 2.3] there exists a separable Hilbert space E such that
L2(]0, 1[) ↪→ E is Hilbert–Schmidt and the C0 semigroup on L2(]0, 1[) given
by

Tt := et�, t � 0,

extends to a C0-semigroup on E which we again denote by (Tt)t�0. For any such
Hilbert space E by [9, Lemma 2.7] the restriction of λ to E′ (⊆ H ′) is Sazonov con-
tinuous. So, we are in the situation described in Section 3. In particular, (H1) holds
and we can consider the corresponding generalized Mehler semigroup (Pt )t�0.
Considering µ as a measure on E via the natural embedding H ↪→ E, it follows
by [9, Lemma 6.2] that µ is invariant for (Pt )t�0, so (H2) holds.

Taking instead of E the enlargement Ẽ described in Remark 7.1 we have that
(H6) holds. It is easy to check that (H3) and (H5)(ii) also hold. Note that for our
special λ in (8.2) a

(1)
t in (H2)′ is identically equal to zero for all t � 0. This

easily follows from the fact that µ̂t is real-valued and the uniqueness of the Levy–
Khinchin representation. The same holds for a(2)

t in (H2)′.
Hence, also (H5) is fulfilled if we take b̂ ≡ 0 and b satisfying (H4). So, all

results in this paper apply to this case. In particular, we have:

COROLLARY 8.2. The stochastic partial differential equation (8.1) has a solu-
tion in the sense of Theorem 7.3.
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