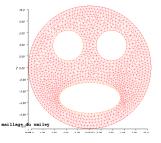
Vos fichiers seront copiés sur la clé USB du professeur. Toute connexion à la messagerie électronique est strictement interdite pendant l'examen. Les documents sont autorisés.

Rattrapage du 20 Juin 2017 (durée 1h30.)



Exercice 1 Maillage d'un smiley (programme ex1.edp)

Considérons un domaine Ω sous la forme d'un *smiley* (voir figure).

(Q1) Construire le maillage du *smiley* en définissant :

- -la tête : frontière Γ_1 , un cercle de rayon R, centré en (0,0);
- -les yeux : frontières Γ_2 et Γ_3 , cercles de rayon r = R/4;
- -la bouche : frontière Γ_4 , une ellipse de demi-axes ax=R/2, ay=R/4. Choisir la position des yeux et de la bouche pour obtenir un maillage comme dans la figure. Tracer le maillage du smiley et sauvegarder l'image.

- (Q2) Calculer l'aire du domaine Ω .
- (Q3) Calculer le périmètre de la bouche du smiley. Comparer avec une formule approchée.

Exercice 2 Equilibre thermique dans un *smiley*

Considérons le domaine Ω du *smiley* construit à l'exercice précédent.

Le *smiley* est chauffé à T_c par les yeux, et refroidi à T_f au niveau de la tête et isolé au niveau de la bouche. La température à l'équilibre est la solution de l'EDP :

$$-\Delta\theta = f$$
 pour $(x, y) \in \Omega$. (1)

La variable $\theta = (T - T_a)/T_a$ est la température adimensionnée par rapport à l'ambiance T_a . Les conditions aux limites sont imposées comme suit :

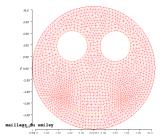
- (Q1) Ecrire la formulation variationnelle correspondante.
- (Q2) (programme ex2A.edp)

Résoudre le problème pour la fonction f(x,y)=0. Tracer la distribution de température T (en oC) (iso-contours et en 3D). Données numériques : $T_a=20^oC, T_c=300^oC, T_f=5^oC$.

(Q2) (programme ex2B.edp)

Dans le problème précédent on change la modélisation des conditions aux limites sur Γ_4 (la bouche). Si on tient compte des pertes latérales par convection thermique, la condition à la limite s'écrit :

sur
$$\Gamma_4$$
 $\partial \theta / \partial n + \alpha \theta = 0$ (cond. mixte ou de Fourier ou de Robin)


Ecrire la nouvelle formulation variationnelle (Attention, des intégrales 1D vont apparaître!).

Résoudre ce problème pour $\alpha = 100$ et tracer la distribution de température T (en ^{o}C) dans le *smiley* (isocontours et en 3D).

(Q3) (programme ex2C.edp)

Modifier le maillage du *smiley* (domaine Ω) pour que la bouche soit un sous-domaine $\Omega_b \subset \Omega$ (voir figure).

A l'intérieur de la bouche se trouve une résistance électrique qui sera modélisée par la fonction f(x,y) qui est constante sur Ω_b et nulle ailleurs. Résoudre le problème (??) avec f(x,y)=0.5. Pour la tête et les yeux, on prendra les conditions aux limites définies à la question $\mathbf{Q2}$.

Programmes à préparer à la fin de l'examen : ex1.edp, ex2A.edp et l'image du maillage, ex2B.edp et la visualisation de la température en ^{o}C ,

ex2C.edp et la visualisation de la température en ${}^{o}C$,