Uniform ergodicity and the one-sided ergodic Hilbert transform

Michael Lin, Ben-Gurion University of the Negev

Abstract

A bounded linear operator T on a (real or complex) Banach space X is called mean ergodic if its averages $M_n(T)x := \frac{1}{n} \sum_{k=1}^n T^k x$ converge in X for every $x \in X$. The operator T is called *uniformly ergodic* if the averages converge in operator norm.

Mean ergodicity implies that $\sup_n ||M_n(T)|| < \infty$ and $\frac{1}{n}T^n x \to 0$ for every x, and yields the *ergodic decomposition* $X = \{x \in X : Tx = x\} \oplus \overline{(I-T)X}$. By the Hahn-Banach theorem, $x \in \overline{(I-T)X}$ if and only if $\langle y^*, x \rangle = 0$ whenever $T^*y^* = y^*$. When T is mean ergodic, $M_n(T)x \to 0$ if and only if $x \in \overline{(I-T)X}$.

The one-sided ergodic Hilbert transform of T is the (unbounded) operator $Hx := \sum_{n=1}^{\infty} n^{-1}T^n x$, with domain $D(H) = \{x \in X : Hx \text{ exists}\}$. It follows that $D(H) \subset \overline{(I-T)X}$.

It was shown in 1974 that T is uniformly ergodic if and only if $\frac{1}{n}||T^n|| \to 0$ and (I - T)X is closed. It follows from a result of M.E. Becker (2011) that if T is uniformly ergodic, then $(I - T)X = D(H) = \overline{(I - T)X}$. In this talk we investigate conditions on D(H) which imply uniform ergodicity. We use the results to prove the following theorem Glück (2015):

Theorem. Let T be a bounded linear operator on a complex Banach space X. If for every $x \in X$ there is $p \in [1, \infty)$ such that $\sum_{n=1}^{\infty} ||T^n x||^p < \infty$, then $||T^n|| \to 0$.

Joint work with Guy Cohen