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Abstract. In this paper, under natural and easily verifiable conditions, we prove
the L1-convergence and the asymptotic normality of the Parzen-Rosenblatt density
estimator for stationary random fields of the form Xk = g

(

εk−s, s ∈ Z
d
)

, k ∈ Z
d,

where (εi)i∈Zd are independent and identically distributed real random variables

and g is a measurable function defined on R
Z
d

. Such kind of processes provides
a general framework for stationary ergodic random fields. A Berry-Esseen’s type
central limit theorem is also given for the considered estimator.

1. Introduction and main results

Let (Xi)i∈Z be a stationary sequence of real random variables defined on a prob-
ability space (Ω,F ,P) with an unknown marginal density f . The kernel density
estimator fn of f introduced by Rosenblatt (1956) and Parzen (1962) is defined for
all positive integer n and any real x by

fn(x) =
1

nbn

n
∑

i=1

K

(

x−Xi

bn

)

where K is a probability kernel and the bandwidth bn is a parameter which con-
verges slowly to zero such that nbn goes to infinity. The literature dealing with
the asymptotic properties of fn when the observations (Xi)i∈Z are independent is
very extensive (see Silverman (1986)). Parzen (1962) proved that when (Xi)i∈Z are
independent and identically distribut (i.i.d) and the bandwidth bn goes to zero such
that nbn goes to infinity then (nbn)

1/2(fn(x0)−Efn(x0)) converges in distribution
to the normal law with zero mean and variance f(x0)

∫

R
K2(t)dt. Under the same

conditions on the bandwidth, this result was extended byWu and Mielniczuk (2002)
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for causal linear processes with i.i.d. innovations and by Dedecker and Merlevède
(2002) for strongly mixing sequences.

In this paper, we are interested by the kernel density estimation problem in the
setting of dependent random fields indexed by Z

d where d is a positive integer.
The question is not trivial since Z

d does not have a natural ordering for d ≥ 2. In
recent years, there is a growing interest in asymptotic properties of kernel density
estimators for random fields. One can refer for example to Carbon et al. (1996,
1997), Cheng et al. (2008), El Machkouri (2011), Hallin et al. (2001), Tran (1990)
and Wang and Woodroofe (2014). In Tran (1990), the asymptotic normality of the
kernel density estimator for strongly mixing random fields was obtained using the
Bernstein’s blocking technique and coupling arguments. Using the same method,
the case of linear random fields with i.i.d. innovations was handled in Hallin et al.
(2001). In El Machkouri (2011), the central limit theorem for the Parzen-Rosenblatt
estimator given in Tran (1990) was improved using the Lindeberg’s method (see
Lindeberg (1922)) which seems to be better than the Bernstein’s blocking technique
approach. In particular, a simple criterion on the strong mixing coefficients is
provided and the only condition imposed on the bandwith is ndbn → ∞ which is
similar to the usual condition imposed in the independent case (see Parzen (1962)).
In El Machkouri (2011), the regions where the random field is observed are reduced
to squares but a carrefull reading of the proof allows us to state that the main
result in El Machkouri (2011) still holds for very general regions Λn, namely those
which the cardinality |Λn| goes to infinity such that |Λn|bn goes to zero as n goes
to infinity (see Assumption (A3) below). Cheng et al. (2008) investigated the
asymptotic normality of the kernel density estimator for linear random fields with
i.i.d. innovations using a martingale approximation method (initiated by Cheng
and Ho (2006)) but it seems that there is a mistake in their proof (see Remark 6 in
Wang and Woodroofe (2014)). Since the mixing property is often unverifiable and
might be too restrictive, it is important to provide limit theorems for nonmixing
and possibly nonlinear random fields. We consider in this work a field (Xi)i∈Zd of
identically distributed real random variables with an unknown marginal density f
such that

Xi = g
(

εi−s; s ∈ Z
d
)

, i ∈ Z
d, (1.1)

where (εj)j∈Zd are i.i.d. random variables and g is a measurable function defined

on R
Z
d

. In the one-dimensional case (d = 1), the class (1.1) includes linear as well
as many widely used nonlinear time series models as special cases. More impor-
tantly, it provides a very general framework for asymptotic theory for statistics of
stationary time series (see e.g. Wu (2005) and the review paper Wu (2011)).
We introduce the physical dependence measure first introduced by Wu (2005).

Let (ε
′

j)j∈Zd be an i.i.d. copy of (εj)j∈Zd and consider for all positive integer

n the coupled version X∗
i of Xi defined by X∗

i = g
(

ε∗i−s ; s ∈ Z
d
)

where ε∗j =

εj 11{j 6=0} + ε
′

0 11{j=0} for all j in Z
d. In other words, we obtain X∗

i from Xi by just

replacing ε0 by its copy ε
′

0. Let i in Z
d and p > 0 be fixed. If Xi belongs to Lp (that

is, E|Xi|p is finite), we define the physical dependence measure δi,p = ‖Xi −X∗
i ‖p

where ‖ . ‖p is the usual Lp-norm and we say that the random field (Xi)i∈Zd is
p-stable if

∑

i∈Zd δi,p < ∞. For d ≥ 2, the reader should keep in mind the following
two examples already given in El Machkouri et al. (2013) :
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Linear random fields : Let (εi)i∈Zd be i.i.d random variables with εi in L
p, p ≥ 2.

The linear random field X defined for all i in Z
d by

Xi =
∑

s∈Zd

asεi−s

with (as)s∈Zd in R
Z
d

such that
∑

i∈Zd a2i < ∞ is of the form (1.1) with a linear

functional g. For all i in Z
d, δi,p = |ai|‖ε0−ε

′

0‖p. So,X is p-stable if
∑

i∈Zd |ai| < ∞.
Clearly, if H is a Lipschitz continuous function, under the above condition, the
subordinated process Yi = H(Xi) is also p-stable since δi,p = O(|ai|).
Volterra field : Another class of nonlinear random field is the Volterra process which
plays an important role in the nonlinear system theory (Casti (1985), Rugh (1981)):
consider the second order Volterra process

Xi =
∑

s1,s2∈Zd

as1,s2εi−s1εi−s2 ,

where as1,s2 are real coefficients with as1,s2 = 0 if s1 = s2 and (εi)i∈Zd are i.i.d.
random variables with εi in L

p, p ≥ 2. Let

Ai =
∑

s1,s2∈Zd

(a2s1,i + a2i,s2) and Bi =
∑

s1,s2∈Zd

(|as1,i|p + |ai,s2 |p).

By the Rosenthal inequality, there exists a constant Cp > 0 such that

δi,p = ‖Xi −X∗
i ‖p ≤ CpA

1/2
i ‖ε0‖2‖ε0‖p + CpB

1/p
i ‖ε0‖2p.

From now on, for all finite subset Λ of Zd, we denote |Λ| the number of elements
in Λ and we observe (Xi)i∈Zd on a sequence (Λn)n≥1 of finite subsets of Zd which
only satisfies |Λn| goes to infinity as n goes to infinity. It is important to note that
we do not impose any condition on the boundary of the regions Λn. The density
estimator fn of f is defined for all positive integer n and any real x by

fn(x) =
1

|Λn|bn
∑

i∈Λn

K

(

x−Xi

bn

)

where bn is the bandwidth parameter and K is a probability kernel. Our aim is to
provide sufficient conditions for the L1-distance between fn and f to converge to
zero (Theorem 1.1) and for (|Λn|bn)1/2(fn(xi)−Efn(xi))1≤i≤k, (xi)1≤i≤k ∈ R

k, k ∈
N\{0}, to converge in law to a multivariate normal distribution (Theorem 1.4)
under minimal conditions on the bandwidth parameter. We give also a Berry-
Esseen’s type central limit theorem for the considered estimator (Theorem 1.5). In
the sequel, we denote |i| = max1≤k≤d |ik| for all i = (i1, ..., id) ∈ Z

d and we denote
also δi for δi,2. The following assumptions are required.

(A1) The marginal density function f of each Xk is Lipschitz.
(A2) K is Lipschitz,

∫

R
K(u) du = 1,

∫

R
u2|K(u)| du < ∞ and

∫

R
K2(u) du < ∞.

(A3) bn → 0 and |Λn| → ∞ such that |Λn|bn → ∞.

(A4)
∑

i∈Zd |i| 5d2 δi < ∞.

Theorem 1.1. If (A1), (A2), (A3) and (A4) hold, then there exists κ > 0 such

that for all integer n ≥ 1,

E

∫

R

|fn(x)− f(x)| dx ≤ κ

(

bn +
1

√

|Λn|bn

)
2
3

. (1.2)
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Remark 1. One can optimize the inequality (1.2) by taking bn = |Λn|− 1
3 . Then,

we obtain E
∫

R
|fn(x) − f(x)| dx = O

(

|Λn|−
2
9

)

.

Remark 2. The convergence in probability of
∫

R
|fn(x)−f(x)| dx to 0 was obtained

(without rate) by Hallin et al. (Hallin et al. (2004), Theorem 2.1) for rectangular
region Λn. The authors defined the so-called stability coefficients (v(m))m≥1 by

v(m) = ‖X0 − X0‖22 where X0 = E (X0|Hm) and Hm = σ (εs , |s| ≤ m). Under
minimal conditions on the bandwidth bn, with our notations, their result holds as
soon as v(m) = o(m−4d). Arguing as in the proof of Lemma 3.3 below, one can
relate the stability coefficients with the physical dependence measure ones by the
inequality v(m) ≤ C

∑

|i|>m δ2i , m ≥ 1, C > 0.

In the sequel, we consider the sequence (mn)n≥1 defined by

mn = max











vn,











1

b3n

∑

|i|>vn

|i| 5d2 δi





1
3d






+ 1











(1.3)

where vn =
[

b
− 1

2d
n

]

and [ . ] denotes the integer part function. The following techni-
cal lemma is a spatial version of a result by Bosq et al. (Bosq et al. (1999), pages
88-89).

Lemma 1.2. If (A4) holds then

mn → ∞, md
nbn → 0 and

1

(md
nbn)

3/2

∑

|i|>mn

|i| 5d2 δi → 0.

For all z in R and all i in Z
d, we denote

Ki(z) = K

(

z −Xi

bn

)

and Ki(z) = E (Ki(z)|Fn,i) (1.4)

where Fn,i = σ (εi−s ; |s| ≤ mn). So, denoting Mn = 2mn + 1, (Ki(z))i∈Zd is

an Mn-dependent random field (i.e. Ki(z) and Kj(z) are independent as soon as
|i− j| ≥ Mn).

Lemma 1.3. For all p > 1, all x in R, all positive integer n and all (ai)i∈Zd in

R
Z
d

,
∥

∥

∥

∥

∥

∑

i∈Λn

ai
(

Ki(x)−Ki(x)
)

∥

∥

∥

∥

∥

p

≤ 8md
n

bn

(

p
∑

i∈Λn

a2i

)1/2
∑

|i|>mn

δi,p.

In order to establish the asymptotic normality of fn, we need additional assump-
tions:

(B1) The marginal density function of each Xk is positive, continuous and
bounded.

(B2) K is Lipschitz,
∫

R
K(u) du = 1,

∫

R
|K(u)| du < ∞ and

∫

R
K2(u) du < ∞.

(B3) There exists κ > 0 such that sup(x,y)∈R
2

i∈Z
d\{0}

f0,i(x, y) ≤ κ where f0,i is the

joint density of (X0, Xi).
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Theorem 1.4. Assume that (A3), (A4), (B1), (B2) and (B3) hold. For all

positive integer k and any distinct points x1, ..., xk in R,

(|Λn|bn)1/2






fn(x1)− Efn(x1)
...

fn(xk)− Efn(xk)







Law−−−−−−→
n→∞

N (0,Γ) (1.5)

where Γ is a diagonal matrix with diagonal elements γii = f(xi)
∫

R
K2(u)du.

Remark 3. A replacement of Efn(xi) by f(xi) for all 1 ≤ i ≤ k in (1.5) is a
classical problem in density estimation theory. Let s ≥ 2 be a positive integer and
κ > 0. If the sth derivative f (s) of f exists such that |f (s)| ≤ κ and the kernel K
satisfies

∫

R
urK(u)du = 0 for r = 1, 2, ..., s− 1 and 0 <

∫

R
|u|s|K(u)|du < ∞ then

|Efn(xi)− f(xi)| = O(bsn) and thus the centering Efn(xi) may be changed to f(xi)
without affecting the above result provided that |Λn|b2s+1

n converges to zero.

Remark 4. If (Xi)i∈Zd is a linear random field of the form Xi =
∑

j∈Zd ajεi−j

where (aj)j∈Zd are real numbers such that
∑

j∈Zd a2j < ∞ and (εj)j∈Zd are i.i.d.

real random variables with zero mean and finite variance then δi = |ai|‖ε0 − ε
′

0‖2
and Theorem 1.4 holds provided that

∑

i∈Zd |i| 5d2 |ai| < ∞. For Λn rectangu-
lar, Hallin et al. (2001) obtained the same result when |aj | = O (|j|−γ) with

γ > max{d + 3, 2d + 0.5} and |Λn|b(2γ−1+6d)/(2γ−1−4d)
n goes to infinity. So, in

the particular case of linear random fields, our assumption (A4) is more restrictive
than the condition obtained by Hallin et al. (2001) but our result is valid for a larger
class of random fields and under only minimal conditions on the bandwidth (see
Assumption (A3)). Finally, for causal linear random fields, Wang and Woodroofe
(2014) obtained also a sufficient condition on the coefficients (aj)j∈Nd for the kernel
density estimator to be asymptotically normal. Their condition is less restrictive

than the condition
∑

i∈Zd |i| 5d2 |ai| < ∞ but they assumed also E(|ε0|p) < ∞ for
some p > 2.

Now, we are going to investigate the rate of convergence in (1.5). For all pos-
itive integer n and all x in R, we denote Dn(x) = supt∈R |P (Un(x) ≤ t)− Φ(t)|
where Φ is the distribution function of the standard normal law and

Un(x) =

√

|Λn|bn (fn(x)− Efn(x))
√

f(x)
∫

R
K2(t)dt

.

Theorem 1.5. Let n in N\{0} and x in R be fixed. Assume that
∫

R
|K(t)|τdt < ∞

for some 2 < τ ≤ 3. If there exist α > 1 and p ≥ 2 such that
∑

i∈Zd |i|dαδi,p < ∞
then there exists a constant κ > 0 such that Dn(x) ≤ κ|Λn|−θ where

θ = θ(α, τ, p) =

(

1

2
− 1

τ

)

3p(1− τ) + 2p(α− 1)

(τ − 1)(p+ 1) + p(α− 1)
.

Remark 5. If τ = 3, p = 2 and
∑

i∈Zd |i|dαδi < ∞ for some α > 4 then

Dn(x) ≤ κ|Λn|−θ(α) where θ(α) =
2α− 8

3(4 + 2α)
−−−−−−→

α→∞
1

3
.
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2. Numerical illustration

In this section, we give some simulations with a view to illustrate the results
given in this paper. We assume d = 2 and we consider the autoregressive random
field (Xi,j)(i,j)∈Z2 defined by

Xi,j = αXi−1,j + βXi,j−1 + εi,j (2.1)

where α = 0.2, β = 0.7 and (εi,j)(i,j)∈Z2 are iid random variables uniformly dis-
tributed over the interval [−5, 5]. Since |α| + |β| < 1, the equation (2.1) has a
stationary solution Xi,j (see Kulkarni (1992)) defined by

Xi,j =
∑

k1≥0

∑

k2≥0

(

k1 + k2
k1

)

αk1βk2εi−k1,j−k2 (2.2)

and each Xi,j is uniformly distributed over the interval [−5γ, 5γ] with

γ =
∑

k1≥0

∑

k2≥0

(

k1 + k2
k1

)

αk1βk2 =
1

1− (α+ β)
= 10.

We simulate the εi,j ’s over the rectangular grid [0, 2t]2 ∩ Z
2 where t is a positive

integer and the data Xi,j over the grid Λt = [t + 1, 2t]2 ∩ Z
2 following (2.2). We

take the data Xi,j for (i, j) in the region Λt as our data set and we calculate from
this data set the kernel density estimator

f̂t(x) =
1

t2 × bt

∑

(i,j)∈Λt

K

(

x−Xi,j

bt

)

(2.3)

where x is fixed in R, bt is the bandwith parameter and K is the Epanachnikov
kernel defined by K(s) = 3

4 (1 − s2) if s ∈]− 1, 1[ and K(s) = 0 if s /∈]− 1, 1[.
In order to illustrate the result obtained in Theorem 1.1, we calculate (Monte Carlo

method)
∫ 100

−100
|f̂t(x)− f(x)|dx where f is the true density function of X0,0 and the

bandwith bt is being set to |Λt|−1/3 with |Λt| denoting the number of elements in Λt.

Hence, we derive its expectation E
∫ 100

−100 |f̂t(x) − f(x)|dx by taking the arithmetic

mean value of 100 replications of
∫ 100

−100
|f̂t(x) − f(x)|dx. The results are given for

several values of t in the following table

t |Λt| = t2 bt = |Λt|−1/3
E
∫ 100

−100
|f̂t(x)− f(x)|dx

10 100 0.215 0.0171
20 400 0.136 0.0163
50 2500 0.074 0.0157
100 10000 0.046 0.0153

and we observe the L1-convergence of f̂t to the true density function f of X0,0. In
order to illustrate the asymptotic normality of the estimator (2.3), we put x = −1,

t = 20 and b20 = 0.7 and we calculate the expectation E

(

f̂t(−1)
)

of f̂t(−1) by

taking again the arithmetic mean value of 100 replications of f̂t(−1). Finally, noting
that

∫

R
K2(x)dx = 4/5 and f(−1) = 1/100, we consider 1500 replications of

√
400× 0.7

(

f̂20(−1)− E

(

f̂20(−1)
))

√

1/100× 4/5
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and we obtain the following histogram (see figure 2.1) which seems to fit well to
the target distribution, that is the standard normal law N (0, 1).

Figure 2.1. Asymptotic normality of the kernel density estimator.

In the simulation given in Figure 2.1, we fixed the bandwith b20 = 0.7 arbitrarily
since we do not investigate in this work any procedure for a data-driven choice of
the bandwith parameter. Such a study is an important task and will be done in a
forthcoming paper.

3. Proofs

The proof of all lemmas of this section are postponed to the appendix. In the
sequel, the letter κ denotes a positive constant which the value is not important.

3.1. Proof of Theorem 1.1. For all positive integer n, denote Jn =
∫

R
|fn(x) −

f(x)| dx. For all real A ≥ 1, we have Jn = Jn,1(A) + Jn,2(A) where

Jn,1(A) =

∫

|x|>A

|fn(x)− f(x)| dx and Jn,2(A) =

∫

|x|≤A

|fn(x) − f(x)| dx.

Moreover

EJn,1(A) ≤
∫

|x|>A

E|fn(x)|dx +
1

A2

∫

R

x2f(x)dx
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and
∫

|x|>A

E|fn(x)|dx ≤
∫

|x|>A

∫

R

|K(t)|f(x− bnt)dtdx

=

∫

|t|>A
2

|K(t)|
∫

|x|>A

f(x− bnt)dxdt

+

∫

|t|≤A
2

|K(t)|
∫

|x|>A

f(x− bnt)dxdt

≤
∫

|t|>A
2

|K(t)|
∫

|y+bnt|>A

f(y)dydt

+

∫

|t|≤A
2

|K(t)|
∫

|y|>A(1− bn
2 )

f(y)dydt

≤ 4

A2

∫

R

t2|K(t)|dt+ 4

A2

∫

R

|K(t)|dt
∫

R

y2f(y)dy.

Consequently, we obtain

EJn,1(A) ≤
κ

A2
. (3.1)

Now, Jn,2(A) ≤ J
(1)
n,2(A) + J

(2)
n,2(A) where

J
(1)
n,2(A) =

∫

|x|≤A

|fn(x) − Efn(x)| dx and J
(2)
n,2(A) =

∫

|x|≤A

|Efn(x)− f(x)| dx.

Since

|Efn(x) − f(x)| =
∣

∣

∣

∣

∫

R

K(t) (f(x− bnt)− f(x)) dt

∣

∣

∣

∣

≤
∫

R

|K(t)| |f(x− bnt)− f(x)| dt

≤ κbn

∫

R

|t||K(t)|dt,

we obtain

J
(2)
n,2(A) ≤ κAbn. (3.2)

Keeping in mind the notation (1.4) and denoting fn(x) =
1

|Λn|bn
∑

i∈Λn
Ki(x), we

have J
(1)
n,2(A) ≤ In,1(A) + In,2(A) where

In,1(A) =

∫

|x|≤A

|fn(x)− fn(x)| dx and In,2(A) =

∫

|x|≤A

|fn(x)− Efn(x)| dx.

By Lemma 1.3, we have

∥

∥fn(x)− fn(x)
∥

∥

2
≤

κ
∑

|i|>mn
|i| 5d2 δi

√

|Λn|bn(md
nbn)

3/2
.

Applying Lemma 1.2, we obtain

EIn,1(A) ≤
κA

√

|Λn|bn
. (3.3)
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Now,
∥

∥fn(x)− Efn(x)
∥

∥

2

2
equals to

1

|Λn|2bn











|Λn|E
(

Z
2

0(x)
)

+
∑

j∈Z
d\{0}

|j|<Mn

|Λn ∩ (Λn − j)|E
(

Z0(x)Zj(x)
)











(3.4)

where we recall that Zi(x) =
1√
bn

(

Ki(x)− EKi(x)
)

and Mn = 2mn + 1.

Lemma 3.1. Let x, s and t be fixed in R. Then E

(

Z
2

0(x)
)

converges to

f(x)
∫

R
K2(u)du and supi∈Zd\{0} E|Z0(s)Zi(t)| = o(M−d

n ).

Combining (3.4) and Lemma 3.1, we derive
∥

∥fn(x)− Efn(x)
∥

∥

2

2
=O

(

(|Λn|bn)−1
)

.

Hence,

EIn,2(A) ≤
κA

√

|Λn|bn
. (3.5)

Combining (3.1), (3.2), (3.3) and (3.5), we obtain

EJn ≤ κ

(

1

A2
+A

(

bn +
1

√

|Λn|bn

))

.

Optimizing in A, we derive (1.2). The proof of Theorem 1.1 is complete.

3.2. Proof of Theorem 1.4. Without loss of generality, we consider only the case
k = 2 and we refer to x1 and x2 as x and y (x 6= y). Let λ1 and λ2 be two constants
such that λ2

1 + λ2
2 = 1 and note that

λ1(|Λn|bn)1/2(fn(x) − Efn(x)) + λ2(|Λn|bn)1/2(fn(y)− Efn(y)) =
∑

i∈Λn

∆i

|Λn|1/2
,

λ1(|Λn|bn)1/2(fn(x) − Efn(x)) + λ2(|Λn|bn)1/2(fn(y)− Efn(y)) =
∑

i∈Λn

∆i

|Λn|1/2
,

where ∆i = λ1Zi(x) + λ2Zi(y) and ∆i = λ1Zi(x) + λ2Zi(y) and for all z in R,

Zi(z) =
1√
bn

(Ki(z)− EKi(z)) and Zi(z) =
1√
bn

(

Ki(z)− EKi(z)
)

where Ki(z) and Ki(z) are defined by (1.4). Applying Lemma 1.2 and Lemma 1.3,
we know that

1

|Λn|1/2

∥

∥

∥

∥

∥

∑

i∈Λn

(

∆i −∆i

)

∥

∥

∥

∥

∥

2

≤ κ(|λ1|+ |λ2|)
(md

nbn)
3/2

∑

|i|>mn

|i| 5d2 δi = o(1). (3.6)

So, it suffices to prove the asymptotic normality of the sequence
(

|Λn|−1/2
∑

i∈Λn
∆i

)

n≥1
. We are going to follow the Lindeberg’s type proof of

Theorem 1 in Dedecker (1998). We consider the notations

η = (λ2
1f(x) + λ2

2f(y))σ
2 and σ2 =

∫

R

K2(u)du. (3.7)

Lemma 3.2. E(∆
2

0) converges to η and supi∈Zd\{0} E|∆0∆i| = o(M−d
n ).
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On the lattice Z
d we define the lexicographic order as follows: if i = (i1, ..., id)

and j = (j1, ..., jd) are distinct elements of Zd, the notation i <lex j means that
either i1 < j1 or for some k in {2, 3, ..., d}, ik < jk and il = jl for 1 ≤ l < k. We let
ϕ denote the unique function from {1, ..., |Λn|} to Λn such that ϕ(k) <lex ϕ(l) for
1 ≤ k < l ≤ |Λn|. For all real random field (ζi)i∈Zd and all integer k in {1, ..., |Λn|},
we denote

Sϕ(k)(ζ) =

k
∑

i=1

ζϕ(i) and Sc
ϕ(k)(ζ) =

|Λn|
∑

i=k

ζϕ(i)

with the convention Sϕ(0)(ζ) = Sc
ϕ(|Λn|+1)(ζ) = 0. From now on, we consider a field

(ξi)i∈Zd of i.i.d. standard normal random variables independent of (Xi)i∈Zd . We
introduce the fields Y and γ defined for all i in Z

d by

Yi =
∆i

|Λn|1/2
and γi =

√
ηξi

|Λn|1/2

where η is defined by (3.7). Note that Y is an Mn-dependent random field where
Mn = 2mn+1 and mn is defined by (1.3). Let h be any function from R to R. For
0 < k ≤ l ≤ |Λn|, we introduce hk,l(Y ) = h(Sϕ(k)(Y ) + Sc

ϕ(l)(γ)). With the above

convention we have that hk,|Λn|+1(Y ) = h(Sϕ(k)(Y )) and also h0,l(Y ) = h(Sc
ϕ(l)(γ)).

In the sequel, we will often write hk,l instead of hk,l(Y ). We denote by B4
1(R) the

unit ball of C4
b (R): h belongs to B4

1(R) if and only if it belongs to C4(R) and

satisfies max0≤i≤4 ‖h(i)‖∞ ≤ 1. It suffices to prove that for all h in B4
1(R),

E
(

h
(

Sϕ(|Λn|)(Y )
))

−−−−−−→
n→∞

E (h (
√
ηξ0)) .

We use Lindeberg’s decomposition:

E
(

h
(

Sϕ(|Λn|)(Y )
)

− h (
√
ηξ0)

)

=

|Λn|
∑

k=1

E (hk,k+1 − hk−1,k) .

Now, we have hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k and by
Taylor’s formula we obtain

hk,k+1 − hk−1,k+1 = Yϕ(k)h
′

k−1,k+1 +
1

2
Y 2
ϕ(k)h

′′

k−1,k+1 +Rk

hk−1,k+1 − hk−1,k = −γϕ(k)h
′

k−1,k+1 −
1

2
γ2
ϕ(k)h

′′

k−1,k+1 + rk

where |Rk| ≤ Y 2
ϕ(k)(1 ∧ |Yϕ(k)|) and |rk| ≤ γ2

ϕ(k)(1 ∧ |γϕ(k)|). Since (Y, ξi)i6=ϕ(k) is

independent of ξϕ(k), it follows that

E

(

γϕ(k)h
′

k−1,k+1

)

= 0 and E

(

γ2
ϕ(k)h

′′

k−1,k+1

)

= E

(

η

|Λn|
h

′′

k−1,k+1

)
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Hence, we obtain

E
(

h(Sϕ(|Λn|)(Y ))− h (
√
ηξ0)

)

=

|Λn|
∑

k=1

E(Yϕ(k)h
′

k−1,k+1)

+

|Λn|
∑

k=1

E

(

(

Y 2
ϕ(k) −

η

|Λn|

)

h
′′

k−1,k+1

2

)

+

|Λn|
∑

k=1

E (Rk + rk) .

Let 1 ≤ k ≤ |Λn| be fixed. Since E|∆0| = O
(√

bn
)

and
(

∆
2

0bn

)

n≥1
is uniformly

integrable, we derive

|Λn|
∑

k=1

E|Rk| ≤ E

(

∆
2

0

(

1 ∧ |∆0|
|Λn|1/2

))

= o(1)

and
|Λn|
∑

k=1

E|rk| ≤
η3/2E|ξ0|3
|Λn|1/2

= O
(

|Λn|−1/2
)

.

Consequently, we obtain

|Λn|
∑

k=1

E (|Rk|+ |rk|) = o(1).

Now, it is sufficient to show

lim
n→∞

|Λn|
∑

k=1

(

E(Yϕ(k)h
′

k−1,k+1) + E

(

(

Y 2
ϕ(k) −

η

|Λn|

)

h
′′

k−1,k+1

2

))

= 0. (3.8)

First, we focus on
∑|Λn|

k=1 E

(

Yϕ(k)h
′

k−1,k+1

)

. Let the sets {V k
i ; i ∈ Z

d , k ∈ N\{0}}
be defined as follows: V 1

i = {j ∈ Z
d ; j <lex i} and for k ≥ 2, V k

i = V 1
i ∩ {j ∈

Z
d ; |i− j| ≥ k}. For all n in N\{0} and all k in {1, ..., |Λn|}, we define

E
(n)
k = ϕ({1, .., k}) ∩ V Mn

ϕ(k) and SMn

ϕ(k)(Y ) =
∑

i∈E
(n)
k

Yi.

For all function h from R to R, we define hMn

k−1,l = h
(

SMn

ϕ(k)(Y ) + Sc
ϕ(l)(γ)

)

. Our

aim is to show that

lim
n→∞

|Λn|
∑

k=1

E

(

Yϕ(k)h
′

k−1,k+1 − Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

h
′′

k−1,k+1

)

= 0. (3.9)

First, we use the decomposition

Yϕ(k)h
′

k−1,k+1 = Yϕ(k)h
′Mn

k−1,k+1 + Yϕ(k)

(

h
′

k−1,k+1 − h
′Mn

k−1,k+1

)

.

Applying again Taylor’s formula,

Yϕ(k)(h
′

k−1,k+1 − h
′Mn

k−1,k+1) = Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

h
′′

k−1,k+1 +R
′

k,
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where

|R′

k| ≤ 2
∣

∣

∣Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)(

1 ∧ |Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )|
)∣

∣

∣ .

Since (Yi)i∈Zd is Mn-dependent, we have E

(

Yϕ(k)h
′Mn

k−1,k+1

)

= 0 and consequently

(3.9) holds if and only if limn→∞
∑|Λn|

k=1 E|R
′

k| = 0. In fact, considering the sets

Wn = {−Mn + 1, ...,Mn − 1}d and W ∗
n = Wn\{0}, it follows that

|Λn|
∑

k=1

E|R′

k| ≤ 2E



|∆0|





∑

i∈W∗

n

|∆i|







1 ∧ 1

|Λn|1/2
∑

i∈W∗

n

|∆i|









≤ 2Md
n sup

i∈Zd\{0}
E(|∆0∆i|)

= o(1) (by Lemma 3.2).

In order to obtain (3.8) it remains to control

F1 = E





|Λn|
∑

k=1

h
′′

k−1,k+1

(

Y 2
ϕ(k)

2
+ Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

− η

2|Λn|

)



 .

Applying again Lemma 3.2, we have

F1 ≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

+
∣

∣

∣η − E

(

∆
2

0

)∣

∣

∣+ 2
∑

j∈V 1
0 ∩Wn

E|∆0∆j |

≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

+ o(1).

So, it suffices to prove that

F2 =

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

goes to zero as n goes to infinity. In fact, we have F2 ≤ 1
|Λn|

∑|Λn|
k=1

(

J
(1)
k (n) + J

(2)
k (n)

)

where J
(1)
k (n) =

∣

∣

∣E

(

h
′′Mn

k−1,k+1

(

∆
2

ϕ(k) − E

(

∆
2

0

)))∣

∣

∣ = 0 since h
′′Mn

k−1,k+1 and ∆ϕ(k)
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are independent. Moreover,

J
(2)
k (n) =

∣

∣

∣E

((

h
′′

k−1,k+1 − h
′′Mn

k−1,k+1

)(

∆
2

ϕ(k) − E

(

∆
2

0

)))∣

∣

∣

≤ E

















2 ∧
∑

|i|<Mn

i6=0

|∆i|
|Λn|1/2









∆
2

0









≤ 1
√

|Λn|bn
E









|∆0|
√

bn ×
∑

|i|<Mn

i6=0

|∆0∆i|









= o(1)

since (|∆0|
√
bn)n≥1 is uniformly integrable and

∑

|i|<Mn

i6=0

E|∆0∆i| = o(1) by Lemma

3.2. The proof of Theorem 1.4 is complete.

3.3. Proof of Theorem 1.5. Let n be a fixed positive integer and let x be fixed in
R. We have Un(x) = Un(x) +Rn(x) where

Un(x) =

√

|Λn|bn
(

fn(x) − Efn(x)
)

√

f(x)
∫

R
K2(t)dt

and Rn(x) =

√

|Λn|bn
(

fn(x) − fn(x)
)

√

f(x)
∫

R
K2(t)dt

.

Denote Dn(x) = supt∈R |P(Un(x) ≤ t) − Φ(t)| and let p ≥ 2 be fixed. Arguing as
in Theorem 2.2 in El Machkouri (2010), we have

Dn(x) ≤ Dn(x) + ‖Rn‖
p

p+1
p . (3.10)

Denoting σ2 = f(x)
∫

R
K2(t)dt and σ2

n = E

(

U
2

n

)

, we have

Dn(x) = sup
t∈R

|P(Un(x) ≤ t)− Φ(t)|

≤ sup
t∈R

|P(Un(x) ≤ t)− Φ (t/σn) |+ sup
t∈R

|Φ (t/σn)− Φ (t) |

= sup
t∈R

|P(Un(x) ≤ tσn)− Φ (t) |+ sup
t∈R

|Φ (t/σn)− Φ (t) |.

Applying the Berry-Esseen’s type theorem for mn-dependent random fields estab-
lished by Chen and Shao (Chen and Shao (2004), Theorem 2.6), we obtain

sup
t∈R

|P(Un(x) ≤ tσn)− Φ (t) | ≤ κ
∫

R
|K(t)|τf(x− tbn)dt m

(τ−1)d
n

στ (|Λn|bn) τ
2 −1

. (3.11)
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Arguing as in Yang et al. (Yang et al. (2012), p. 456), we have

sup
t∈R

|Φ (t/σn)− Φ (t) | ≤ (2πe)−
1
2 (σn − 1) 11σn≥1 + (2πe)−

1
2

(

1

σn
− 1

)

110<σn<1

≤ (2πe)−
1
2 max

{

|σn − 1|, |σn − 1|
σn

}
}

≤ κmax

{

|σn − 1|, |σn − 1|
σn

}
}

× (σn + 1)

≤ κ|σ2
n − 1|.

So, we derive

Dn(x) ≤
κ
∫

R
|K(t)|τf(x− tbn)dt m

(τ−1)d
n

στ (|Λn|bn) τ
2 −1

+ κ|σ2
n − 1|. (3.12)

Using (3.4), we have also

|σ2
n − 1| ≤ 1

σ2

∣

∣

∣E(Z
2

0(x))− σ2
∣

∣

∣+
∑

j∈Z
d\{0}

|j|<Mn

∣

∣E
(

Z0(x)Zj(x)
)∣

∣ . (3.13)

Noting that ‖K0(x)‖1 = O(bn) and ‖K0(x)‖2 = O(
√
bn) and using the following

lemma,

Lemma 3.3. For all p > 1, any positive integer n and any x in R,

‖K0(x) −K0(x)‖p ≤
√
2p

bn

∑

|j|>mn

δj,p,

we obtain
∣

∣

∣E(Z
2

0(x)) − E(Z2
0 (x))

∣

∣

∣ =
1

bn

∣

∣

∣E(K
2

0(x)) − E(K2
0(x))

∣

∣

∣

≤ 1

bn
‖K0(x)‖2‖K0(x)−K0(x)‖2

≤ κ

b
3/2
n

∑

|j|>mn

δj

and
∣

∣E(Z2
0 (x)) − σ2

∣

∣ =

∣

∣

∣

∣

1

bn

(

E(K2
0(x)) − (E(K0(x))

2
)

− f(x)

∫

R

K2(t)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

bn
E(K2

0(x)) − f(x)

∫

R

K2(t)dt

∣

∣

∣

∣

+
1

bn
(E(K0(x))

2

≤
∫

R

K2(v)|f(x− vbn)− f(x)|dv +O(bn)

≤ κ bn

∫

R

|v|K2(v)dv +O(bn)

= O(bn).

Hence,
∣

∣

∣E(Z
2

0(x)) − σ2
∣

∣

∣ ≤ κ

b
3/2
n

∑

|j|>mn

δj +O(bn). (3.14)
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Now, let i 6= 0 be fixed. We have

E|Z0(x)Z i(x)| ≤
1

bn
E|K0(x)Ki(x)| +

3

bn
(E|K0(x)|)2 . (3.15)

Moreover, keeping in mind that ||α|−|β|| ≤ |α−β| for all (α, β) in R
2 and applying

the Cauchy-Schwarz inequality, we obtain
∣

∣E|K0(x)Ki(x)| − E|K0(x)Ki(x)|
∣

∣ ≤ 2‖K0(x)‖2‖K0(x)−K0(x)‖2
and applying Lemma 3.3, we derive

∣

∣E|K0(x)Ki(x)| − E|K0(x)Ki(x)|
∣

∣ ≤ κ√
bn

∑

|j|>mn

δj. (3.16)

Combining (3.15) and (3.16), we have

E|Z0(x)Z i(x)| ≤
κ

b
3/2
n

∑

|j|>mn

δj +
1

bn
E|K0(x)Ki(x)| +

3

bn
(E|K0(x)|)2 . (3.17)

Using Assumption (B3), we obtain

E
∣

∣K0(x)Ki(x)
∣

∣ =

∫∫

R2

∣

∣

∣

∣

K

(

x− u

bn

)

K

(

x− v

bn

)∣

∣

∣

∣

f0,i(u, v)dudv

≤ κb2n

(∫

R

|K(w)|dw
)2

.

Since E|K0(x)| = O(bn), we derive from (3.17) that

∑

j∈Z
d\{0}

|j|<Mn

∣

∣E
(

Z0(x)Zj(x)
)∣

∣ ≤ κMd
n

b
3/2
n

∑

|j|>mn

δj +O(Md
nbn). (3.18)

Finally, combining (3.12), (3.13), (3.14) and (3.18), for all α > 1, we obtain

Dn(x) ≤
κm

d(τ−1)
n

στ (|Λn|bn) τ
2 −1

+
κ

m
d(α−1)
n b

3/2
n

∑

|j|>mn

|j|dαδj +O(md
nbn). (3.19)

Since there exist α > 1 and p ≥ 2 such that
∑

i∈Zd |i|dαδi,p < ∞, we derive from
Lemma 1.3 that

‖Rn(x)‖p ≤ κ
√
p

σm
d(α−1)
n b

3/2
n

∑

i∈Zd

|i|dαδi,p. (3.20)

Combining (3.10), (3.19) and (3.20), we obtain

Dn(x) ≤ κ

(

md(τ−1)
n

(

bn +
1

(|Λn|bn) τ
2 −1

)

+

(

1

m
d(α−1)
n b

3/2
n

)
p

p+1

)

(3.21)

for all 2 < τ ≤ 3, all p ≥ 2 and all α > 1 such that
∑

i∈Zd |i|dαδi,p < ∞. Optimizing
in mn we derive

Dn(x) ≤ κ bθ1n

(

bn +
1

(|Λn|bn) τ
2 −1

)θ2

where

θ1 =
3p(1− τ)

2(τ − 1)(p+ 1) + 2p(α− 1)
and θ2 =

p(α− 1)

(τ − 1)(p+ 1) + p(α− 1)
.
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Finally, choosing bn = |Λn| 2τ −1, we obtain Dn(x) ≤ κ|Λn|−θ where

θ =

(

1

2
− 1

τ

)

3p(1− τ) + 2p(α− 1)

(τ − 1)(p+ 1) + p(α− 1)
.

The proof of Theorem 1.5 is complete.

4. Appendix

Proof of Lemma 1.2. We follow the proof by Bosq et al. (Bosq et al. (1999),

pages 88-89). First, mn goes to infinity since vn =
[

b
− 1

2d
n

]

goes to infinity and

mn ≥ vn. For all positive integer m, we consider r(m) =
∑

|i|>m |i| 5d2 δi. Since

(A4) holds, r(m) converges to zero as m goes to infinity. Moreover, md
nbn ≤

max
{√

bn, κ
(

r(vn)
1/3 + bn

)}

−−−−−−→
n→∞

0 and md
n ≥ 1

bn
(r (vn))

1/3 ≥ 1
bn

(r (mn))
1/3

since vn ≤ mn. Finally, we obtain

1

(md
nbn)

3/2

∑

|i|>mn

|i| 5d2 δi ≤
√

r(mn) −−−−−−→
n→∞

0.

The proof of Lemma 1.2 is complete.

Proof of Lemma 1.3. Let p > 1 be fixed. We follow the proof of Proposi-
tion 1 in El Machkouri et al. (2013). For all i in Z

d and all x in R, we de-
note Ri = Ki(x) − Ki(x). Since there exists a measurable function H such that
Ri = H(εi−s; s ∈ Z

d), we are able to define the physical dependence measure

coefficients (δ
(n)
i,p )i∈Zd associated to the random field (Ri)i∈Zd . We recall that

δ
(n)
i,p = ‖Ri − R∗

i ‖p where R∗
i = H(ε∗i−s; s ∈ Z

d) and ε∗j = εj 11{j 6=0} + ε
′

0 11{j=0}
for all j in Z

d. In other words, we obtain R∗
i from Ri by just replacing ε0 by

its copy ε
′

0 (see Wu (2005)). Let τ : Z → Z
d be a bijection. For all l ∈ Z, for

all i ∈ Z
d, we denote PlRi := E(Ri|Fl) − E(Ri|Fl−1) where Fl = σ

(

ετ(s); s ≤ l
)

and Ri =
∑

l∈Z
PlRi. Consequently,

∥

∥

∑

i∈Λn
aiRi

∥

∥

p
=
∥

∥

∑

l∈Z

∑

i∈Λn
aiPlRi

∥

∥

p
and

applying the Burkholder inequality (cf. Hall and Heyde (1980), page 23) for the
martingale difference sequence

(
∑

i∈Λn
aiPlRi

)

l∈Z
, we obtain

∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤



2p
∑

l∈Z

∥

∥

∥

∥

∥

∑

i∈Λn

aiPlRi

∥

∥

∥

∥

∥

2

p





1
2

≤



2p
∑

l∈Z

(

∑

i∈Λn

|ai| ‖PlRi‖p

)2




1
2

.

(4.1)
Moreover, by the Cauchy-Schwarz inequality, we have

(

∑

i∈Λn

|ai| ‖PlRi‖p

)2

≤
∑

i∈Λn

a2i ‖PlRi‖p ×
∑

i∈Λn

‖PlRi‖p. (4.2)

Let l in Z and i in Z
d be fixed.

‖PlRi‖p = ‖E(Ri|Fl)− E(Ri|Fl−1)‖p =
∥

∥E(R0|T iFl)− E(R0|T iFl−1)
∥

∥

p



Kernel density estimation for random fields 275

where T iFl = σ
(

ετ(s)−i; s ≤ l
)

. Hence,

‖PlRi‖p =
∥

∥

∥E
(

H((ε−s)s∈Zd) |T iFl

)

− E

(

H
(

(ε−s)s∈Zd\{i−τ(l)}; ε
′

τ(l)−i

)

|T iFl

)∥

∥

∥

p

≤
∥

∥

∥H((ε−s)s∈Zd)−H
(

(ε−s)s∈Zd\{i−τ(l)}; ε
′

τ(l)−i

)∥

∥

∥

p

=
∥

∥

∥H
(

(εi−τ(l)−s)s∈Zd

)

−H
(

(εi−τ(l)−s)s∈Zd\{i−τ(l)}; ε
′

0

)∥

∥

∥

p

=
∥

∥

∥
Ri−τ(l) −R∗

i−τ(l)

∥

∥

∥

p

= δ
(n)
i−τ(l),p.

Consequently,
∑

i∈Zd ‖PlRi‖p ≤∑j∈Zd δ
(n)
j,p and combining (4.1) and (4.2), we ob-

tain
∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤



2p
∑

j∈Zd

δ
(n)
j,p

∑

i∈Λn

a2i
∑

l∈Z

‖PlRi‖p





1
2

.

Similarly, for all i in Z
d, we have

∑

l∈Z
‖PlRi‖p ≤∑j∈Zd δ

(n)
j,p and we derive

∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤
(

2p
∑

i∈Λn

a2i

)
1
2
∑

i∈Zd

δ
(n)
i,p . (4.3)

Since K
∗
i = E

(

K∗
i (x)

∣

∣F∗
n,i

)

where F∗
n,i = σ

(

ε∗i−s ; |s| ≤ mn

)

and
(

Ki(x) −Ki(x)
)∗=

K∗
i (x)−K

∗
i (x), we derive δ

(n)
i,p ≤ 2‖Ki(x)−K∗

i (x)‖p. Since K is Lipschitz, we obtain

δ
(n)
i,p ≤ 2δi,p

bn
(4.4)

where δi,p = ‖Xi −X∗
i ‖p. Morever, we have also

δ
(n)
i,p ≤ 2‖K0(x) −K0(x)‖p. (4.5)

Combining (4.5) and Lemma 3.3, we derive

δ
(n)
i,p ≤

√
8p

bn

∑

|j|>mn

δj,p. (4.6)

Combining (4.4) and (4.6), we obtain

∑

i∈Zd

δ
(n)
i,p ≤ md

n

√
8p

bn

∑

|j|>mn

δj,p +
2

bn

∑

|j|>mn

δj,p ≤ 2
√
8pmd

n

bn

∑

|j|>mn

δj,p.

The proof of Lemma 1.3 is complete.

Proof of Lemma 3.1. Let s and t be fixed in R. Since

E
(

K0(s)K0(t)
)

= E
(

K0(s)K0(t)
)

,

we have
∣

∣E
(

K0(s)K0(t)
)

− E (K0(s)K0(t))
∣

∣ ≤ ‖K0(s)‖2‖K0(t)−K0(t)‖2.
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Keeping in mind that ‖K0(s)‖2 = O(
√
bn) and using Lemma 3.3, we have

∣

∣E
(

K0(s)K0(t)
)

− E (K0(s)K0(t))
∣

∣ ≤ κ√
bn

∑

|j|>mn

δj .

Since bn|E(Z0(s)Z0(t)) − E(Z0(s)Z0(t)| = |E (K0(s)K0(t)) − E
(

K0(s)K0(t)
)

|, we
have

Md
n|E(Z0(s)Z0(t)) − E(Z0(s)Z0(t)| ≤

κ

(md
nbn)

3/2

∑

|j|>mn

|j| 5d2 δj . (4.7)

Moreover, keeping in mind Assumptions (A1), (A2) and (A4), we have

lim
n

1

bn
E (K0(s)K0(t)) = lim

n

∫

R

K(v)K

(

v +
t− s

bn

)

f(s− vbn)dv

= u(s, t) f(s)

∫

R

K2(u)du

(4.8)

where u(s, t) = 1 if s = t and u(s, t) = 0 if s 6= t. We have also

lim
n

1

bn
EK0(s)EK0(t) = lim

n
bn

∫

R

K(v)f(s− vbn)dv

∫

R

K(w)f(t − wbn)dw = 0.

(4.9)
Let x be fixed in R. Choosing s = t = x and combining (4.7), (4.8), (4.9) and

Lemma 1.2, we obtain E(Z
2

0(x)) goes to f(x)
∫

R
K2(u)du as n goes to infinity.

In the other part, let i 6= 0 be fixed in Z
d and let s and t be fixed in R. We have

E|Z0(s)Zi(t)| ≤
1

bn
E
∣

∣K0(s)Ki(t)
∣

∣+
3

bn
E
∣

∣K0(s)
∣

∣E
∣

∣K0(t)
∣

∣. (4.10)

Keeping in mind that ||α| − |β|| ≤ |α − β| for all (α, β) in R
2 and applying the

Cauchy-Schwarz inequality, we obtain
∣

∣E|K0(s)Ki(t)| − E|K0(s)Ki(t)|
∣

∣ ≤ ‖K0(s)‖2‖K0(t)−K0(t)‖2
+ ‖K0(t)‖2‖K0(s)−K0(s)‖2

(4.11)

Applying again Lemma 3.3, we obtain

Md
n

bn

∣

∣E|K0(s)Ki(t)| − E|K0(s)Ki(t)|
∣

∣ ≤ κ

(md
nbn)

3/2

∑

|j|>mn

|j| 5d2 δj. (4.12)

Since Assumptions (A1) and (A4) hold and Md
nbn = o(1), we have

Md
n

bn
E
∣

∣K0(s)
∣

∣E
∣

∣K0(t)
∣

∣ = Md
nbn

∫

R

|K(u)|f(s− ubn)du

∫

R

|K(v)|f(t− vbn)dv = o(1).

(4.13)
Moreover, using Assumption (B3), we have

E
∣

∣K0(s)Ki(t)
∣

∣ =

∫∫

R2

∣

∣

∣

∣

K

(

s− u

bn

)

K

(

t− v

bn

)∣

∣

∣

∣

f0,i(u, v)dudv

≤ κb2n

(∫

R

|K(w)|dw
)2

.

So, using again Assumption (A4) and Md
nbn = o(1), we derive

Md
n

bn
E
∣

∣K0(s)Ki(t)
∣

∣ = o(1). (4.14)
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Combining (4.10), (4.12), (4.13), (4.14) and Lemma 1.2, we obtain

Md
n sup

i∈Zd\{0}
E|Z0(s)Zi(t)| = o(1). (4.15)

The proof of Lemma 3.1 is complete.

Proof of Lemma 3.2. Let x and y be two distinct real numbers. Noting that

E(∆2
0) = λ2

1E(Z
2
0 (x)) + λ2

2E(Z
2
0 (y)) + 2λ1λ2E(Z0(x)Z0(y))

E(∆
2

0) = λ2
1E(Z

2

0(x)) + λ2
2E(Z

2

0(y)) + 2λ1λ2E(Z0(x)Z0(y))

and using (4.7) and Lemma 1.2, we obtain

lim
n→∞

Md
n|E(∆2

0)− E(∆
2

0)| = 0. (4.16)

Combining (4.8) and (4.16), we derive that E(∆
2

0) converges to

η =
(

λ2
1f(x) + λ2

2f(y)
)

∫

R

K2(u)du.

Let i 6= 0 be fixed in Z
d. Combining (4.15) and

E|∆0∆i| ≤ λ2
1E|Z0(x)Z i(x)|+ λ2

2E|Z0(y)Zi(y)|
+ λ1λ2E|Z0(x)Zi(y)|+ λ1λ2E|Z0(y)Zi(x)|,

(4.17)

we obtain Md
n supi∈Zd\{0} E|∆0∆i| = o(1). The proof of Lemma 3.2 is complete.

Proof of Lemma 3.3. Let p > 1 be fixed. We consider the sequence (Γn)n≥0 of
finite subsets of Zd defined by Γ0 = {(0, ..., 0)} and for all n in N\{0}, Γn = {i ∈
Z
d ; |i| = n}. For all integer n, let an =

∑n
j=0 |Γj | and let τ : N\{0} → Z

d be the

bijection defined by τ(1) = (0, ..., 0) and

• for all n in N\{0}, if l ∈ ]an−1, an] then τ(l) ∈ Γn,

• for all n in N\{0}, if (i, j) ∈ ]an−1, an]
2
and i < j then τ(i) <lex τ(j)

Let (mn)n≥1 be the sequence of positive integers defined by (1.3). For all n in
N\{0}, we recall that Fn,0 = σ (ε−s ; |s| ≤ mn) (see (1.4)) and we consider also
the σ-algebra Gn := σ

(

ετ(j) ; 1 ≤ j ≤ n
)

. By the definition of the bijection τ ,
we have 1 ≤ j ≤ an if and only if |τ(j)| ≤ n. Consequently Gamn

= Fn,0 and

K0(x) − K0(x) =
∑

l>amn
Dl with Dl = E (K0(x)|Gl) − E (K0(x)|Gl−1) for all l in

Z. Let p > 1 be fixed. Since (Dl)l∈Z
is a martingale-difference sequence, applying

Burkholder’s inequality (cf. Hall and Heyde (1980), page 23), we derive

‖K0(x)−K0(x)‖p ≤



2p
∑

l>amn

‖Dl‖2p





1/2

.
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Denoting K
′

0(x) = K
(

b−1
n

(

x− g
(

(ε−s)s∈Zd\{−τ(l)}; ε
′

τ(l)

)))

, we obtain

‖Dl‖p = ‖E (K0(x)|Gl)− E

(

K
′

0(x)|Gl

)

‖p ≤ ‖K0(x)−K
′

0(x)‖p

≤ 1

bn

∥

∥

∥g ((ε−s)s∈Zd)− g
(

(ε−s)s∈Zd\{−τ(l)}; ε
′

τ(l)

)∥

∥

∥

p

=
1

bn

∥

∥

∥g
(

(ε−τ(l)−s)s∈Zd

)

− g
(

(ε−τ(l)−s)s∈Zd\{−τ(l)}; ε
′

0

)∥

∥

∥

p

=
1

bn

∥

∥

∥X−τ(l) −X∗
−τ(l)

∥

∥

∥

p
=

δ−τ(l),p

bn

and finally

‖K0(x)−K0(x)‖p ≤ 1

bn



2p
∑

l>amn

δ2−τ(l),p





1/2

≤
√
2p

bn

∑

|j|>mn

δj,p.

The proof of Lemma 3.3 is complete.
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