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Abstract

This paper establishes a central limit theorem and an invariance

principle for a wide class of stationary random �elds under natural

and easily veri�able conditions. More precisely, we deal with random

�elds of the form Xk = g
(
εk−s, s ∈ Zd

)
, k ∈ Zd, where (εi)i∈Zd are

i.i.d random variables and g is a measurable function. Such kind of

spatial processes provides a general framework for stationary ergodic

random �elds. Under a short-range dependence condition, we show

that the central limit theorem holds without any assumption on the

underlying domain on which the process is observed. A limit theorem

for the sample auto-covariance function is also established.
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1 Introduction

Central limit theory plays a fundamental role in statistical inference of ran-

dom �elds. There have been a substantial literature for central limit theorems



of random �elds under various dependence conditions. See [1], [2], [3], [4],

[6], [7], [14], [16], [21], [22], [23], [24], [25], [26], among others. However,

many of them require that the underlying random �elds have very special

structures such as Gaussian, linear, Markovian or strong mixing of various

types. In applications those structural assumptions can be violated, or not

easily veri�able.

In this paper we consider stationary random �elds which are viewed as

nonlinear transforms of independent and identically distributed (iid) random

variables. Based on that representation we introduce dependence measures

and establish a central limit theorem and an invariance principle. We assume

that the random �eld (Xi)i∈Zd has the form

Xi = g
(
εi−s; s ∈ Zd

)
, i ∈ Zd, (1)

where (εj)j∈Zd are iid random variables and g is a measurable function. In

the one-dimensional case (d = 1) the model (1) is well known and includes

linear as well as many widely used nonlinear time series models as special

cases. In Section 2 based on (1) we shall introduce dependence measures.

It turns out that, with our dependence measure, central limit theorems and

moment inequalities can be established in a very elegant and natural way.

The rest of the paper is organized as follows. In Section 3 we present a

central limit theorem and an invariance principle for

SΓ =
∑
i∈Γ

Xi,

where Γ is a �nite subset of Zd which grows to in�nity. The proof of our The-

orem 1 is based on a central limit theorem for mn-dependent random �elds

established by Heinrich [15]. Unlike most existing results on central limit

theorems for random �elds which require certain regularity conditions on the

boundary of Γ, Heinrich's central limit theorem (and consequently our The-

orem 1) has the very interesting property that no condition on the boundary

2



of Γ is needed, and the central limit theorem holds under the minimal con-

dition that |Γ| → ∞, where |Γ| the cardinal of Γ. This is a very attractive

property in spatial applications in which the underlying observation domains

can be quite irregular. As an application, we establish a central limit theorem

for sample auto-covariances. Section 3 also present an invariance principle.

Proofs are provided in Section 4.

2 Examples and Dependence Measures

In (1), we can interpret (εs)s∈Zd as the input random �eld, g is a transform or

map and (Xi)i∈Zd as the output random �eld. Based on this interpretation,

we de�ne dependence measure as follows: let (ε
′
j)j∈Zd be an iid copy of (εj)j∈Zd

and consider for any positive integer n the coupled version X∗i of Xi de�ned

by

X∗i = g
(
ε∗i−s ; s ∈ Zd

)
,

where for any j in Zd,

ε∗j =

{
εj if j 6= 0
ε
′
0 if j = 0.

Recall that a Young function ψ is a real convex nondecreasing function de-

�ned on R+ which satis�es limt→∞ ψ(t) = ∞ and ψ(0) = 0. We de�ne the

Orlicz space Lψ as the space of real random variables Z de�ned on the prob-

ability space (Ω,F ,P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The

Orlicz space Lψ equipped with the so-called Luxemburg norm ‖.‖ψ de�ned

for any real random variable Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }

is a Banach space. For more about Young functions and Orlicz spaces one

can refer to Krasnosel'skii and Rutickii [17].

Following Wu [31], we introduce the following dependence measures which

are directly related to the underlying processes.
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De�nition 1 (Physical dependence measure). Let ψ be a Young function

and i in Zd be �xed. If Xi belongs to Lψ, we de�ne the physical dependence

measure δi,ψ by

δi,ψ = ‖Xi −X∗i ‖ψ.

If p ∈]0,+∞] and Xi belongs to Lp, we denote δi,p = ‖Xi −X∗i ‖p.

Physical dependence measure should be seen as a measure of the depen-

dence of the function g (de�ned by (1)) in the coordinate zero. In math-

ematical physics, various versions of similar ideas (local perturbation of a

con�guration) appear. One can refer for example to Liggett [20] or Stroock

and Zegarlinski [28].

De�nition 2 (Stability). We say that the random �eld X de�ned by (1) is

p-stable if

∆p :=
∑
i∈Zd

δi,p <∞.

As an illustration, we give some examples of p-stable spatial processes.

Example 1. (Linear random �elds) Let (εi)i∈Zd be i.i.d random variables

with εi in Lp, p ≥ 2. The linear random �eld X de�ned for any k in Zd by

Xk =
∑
s∈Zd

asεk−s

is of the form (1) with a linear functional g. For any i in Zd, δi,p = |ai|‖ε0 −
ε
′
0‖p. So, X is p-stable if ∑

i∈Zd
|ai| <∞.

Clearly, if K is a Lipschitz continuous function, under the above condition,

the subordinated process Yi = K(Xi) is also p-stable since δi,p = O(|ai|).

Example 2. (Volterra �eld) Another class of nonlinear random �eld is the

Volterra process which plays an important role in the nonlinear system theory
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(Casti [5], Rugh [27]): consider the second order Volterra process

Xk =
∑

s1,s2∈Zd
as1,s2εk−s1εk−s2 ,

where as1,s2 are real coe�cients with as1,s2 = 0 if s1 = s2 and εi in Lp, p ≥ 2.

Let

Ak =
∑

s1,s2∈Zd
(a2
s1,k

+ a2
k,s2

) and Bk =
∑

s1,s2∈Zd
(|as1,k|p + |ak,s2|p).

By the Rosenthal inequality, there exists a constant Cp > 0 such that

δk,p = ‖Xk −X∗k‖p ≤ CpA
1/2
k ‖ε0‖2‖ε0‖p + CpB

1/p
k ‖ε0‖2

p.

3 Main Results

To establish a central limit theorem for SΓ we need the following moment

inequality. With the physical dependence measure, it turns out that the

moment bound can have an elegant and concise form.

Proposition 1. Let Γ be a �nite subset of Zd and (ai)i∈Γ be a family of real

numbers. For any p ≥ 2, we have∥∥∥∥∥∑
i∈Γ

aiXi

∥∥∥∥∥
p

≤

(
2p
∑
i∈Γ

a2
i

) 1
2

∆p

where ∆p =
∑

i∈Zd δi,p.

In the sequel, for any i in Zd, we denote δi in place of δi,2.

Proposition 2. If ∆2 :=
∑

i∈Zd δi <∞ then
∑

k∈Zd |E(X0Xk)| <∞. More-

over, if (Γn)n≥1 is a sequence of �nite subsets of Zd such that |Γn| goes to

in�nity and |∂Γn|/|Γn| goes to zero then

lim
n→+∞

|Γn|−1E(S2
Γn) =

∑
k∈Zd

E(X0Xk). (2)
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3.1 Central Limit Theorem

Our �rst main result is the following central limit theorem.

Theorem 1. Let (Xi)i∈Zd be the stationary centered random �eld de�ned by

(1) satisfying ∆2 :=
∑

i∈Zd δi < ∞. Assume that σ2
n := E

(
S2

Γn

)
→ ∞. Let

(Γn)n≥1 be a sequence of �nite subsets of Zd such that |Γn| → ∞, then the

Levy distance

L[SΓn/
√
|Γn|, N(0, σ2

n/|Γn|)]→ 0 as n→∞. (3)

We emphasize that in Theorem 1 no condition on the domains Γn is

imposed other than the natural one |Γn| → ∞. Applying Proposition 2, if

|∂Γn|/|Γn| goes to zero and σ2 :=
∑

k∈Zd E(X0Xk) > 0 then

SΓn√
|Γn|

L−−−−−→
n→+∞

N (0, σ2).

Theorem 1 can be applied to the mean estimation problem: suppose that

a stationary random �eld Xi with unknown mean µ = EXi is observed on

the domain Γ. Then µ can be estimated by the sample mean µ̂ = SΓ/|Γ| and
a con�dence interval for µ̂ can be constructed if there is a consistent estimate

for var(SΓ)/|Γ|.
Interestingly, the Theorem can also be applied to the estimation of auto-

covariance functions. For k ∈ Zd let

γk = cov(X0, Xk) = E(X0Xk)− µ2. (4)

Assume Xi is observed over i ∈ Γ and let Ξ = {i ∈ Γ : i + k ∈ Γ}. Then γk
can be estimated by

γ̂k =
1

|Ξ|
∑
i∈Ξ

XiXi+k − µ̂2. (5)

To apply Theorem 1, we need to compute the physical dependence measure

for the process Yi := XiXi+k, i ∈ Zd. It turns out that the dependence for Yi
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can be easily obtained from that of Xi. Note that

δi,p/2(Y ) = ‖XiXi+k −X∗iX∗i+k‖p/2
≤ ‖XiXi+k −XiX

∗
i+k‖p/2 + ‖XiX

∗
i+k −X∗iX∗i+k‖p/2

≤ ‖Xi‖pδi+k,p + δi,p‖X∗i+k‖p = ‖X0‖p(δi+k,p + δi,p).

Hence, if ∆4 =
∑

i∈Zd δi,4 < ∞, we have
∑

i∈Zd δi,2(Y ) < ∞ and the central

limit theorem for
∑

i∈Ξ XiXi+k/|Ξ| holds if |Ξ| → ∞.

3.2 Invariance Principles

Now, we are going to see that an invariance principle holds too. If A is a

collection of Borel subsets of [0, 1]d, de�ne the smoothed partial sum process

{Sn(A) ; A ∈ A} by

Sn(A) =
∑

i∈{1,...,n}d
λ(nA ∩Ri)Xi (6)

where Ri =]i1 − 1, i1] × ...×]id − 1, id] is the unit cube with upper corner

at i, λ is the Lebesgue measure on Rd and Xi is de�ned by (1). We equip

the collection A with the pseudo-metric ρ de�ned for any A,B in A by

ρ(A,B) =
√
λ(A∆B). To measure the size of A one considers the metric en-

tropy: denote by H(A, ρ, ε) the logarithm of the smallest number N(A, ρ, ε)
of open balls of radius ε with respect to ρ which form a covering of A. The
function H(A, ρ, .) is the entropy of the class A. Let C(A) be the space

of continuous real functions on A, equipped with the norm ‖.‖A de�ned by

‖f‖A = supA∈A |f(A)|.
A standard Brownian motion indexed by A is a mean zero Gaussian process

W with sample paths in C(A) and Cov(W (A),W (B)) = λ(A ∩ B). From

Dudley [10] we know that such a process exists if∫ 1

0

√
H(A, ρ, ε) dε < +∞. (7)
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We say that the invariance principle or functional central limit theorem

(FCLT) holds if the sequence {n−d/2Sn(A) ; A ∈ A} converges in distribu-

tion to an A-indexed Brownian motion in the space (A). The �rst weak

convergence results for Qd-indexed partial sum processes were established

for i.i.d. random �elds and for the collection Qd of lower-left quadrants in

[0, 1]d, that is to say the collection {[0, t1]× . . .× [0, td] ; (t1, . . . , td) ∈ [0, 1]d}.
They were proved by Wichura [30] under a �nite variance condition and

earlier by Kuelbs [18] under additional moment restrictions. When the di-

mension d is reduced to one, these results coincide with the original invari-

ance principle of Donsker [9]. Dedecker [8] gave an L∞-projective criterion

for the process {n−d/2Sn(A) ; A ∈ A} to converge in the space C(A) to a

mixture of A-indexed Brownian motions when the collection A satis�es only

the entropy condition (7). This projective criterion is valid for martingale-

di�erence bounded random �elds and provides a su�cient condition for φ-

mixing bounded random �elds. For unbounded random �elds, the result still

holds provided that the metric entropy condition on the class A is reinforced

(see [11]). It is shown in [13] that the FCLT may be not valid for p-integrable

martingale-di�erence random �elds (0 ≤ p < +∞) but it still holds if the

conditional variances of the martingale-di�erence random �eld are assumed

to be bounded a.s. (see [12]). In this paper, we are going to establish the

FCLT for random �elds of the form (1) (see Theorem 2).

Following [29], we recall the de�nition of Vapnik-Chervonenkis classes (V C-

classes) of sets: let C be a collection of subsets of a set X . An arbitrary set

of n points Fn := {x1, ..., xn} possesses 2n subsets. Say that C picks out a

certain subset from Fn if this can be formed as a set of the form C ∩Fn for a
C in C. The collection C is said to shatter Fn if each of its 2n subsets can be

picked out in this manner. The VC-index V (C) of the class C is the smallest

n for which no set of size n is shattered by C. Clearly, the more re�ned C is,
the larger is its index. Formally, we have

V (C) = inf

{
n ; max

x1,...,xn
∆n(C, x1, ..., xn) < 2n

}
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where ∆n(C, x1, ..., xn) = # {C ∩ {x1, ..., xn} ; C ∈ C}. Two classical exam-

ples of V C-classes are the collection Qd =
{

[0, t] ; t ∈ [0, 1]d
}
and Q′d ={

[s, t] ; s, t ∈ [0, 1]d, s ≤ t
}
with index d + 1 and 2d + 1 respectively (where

s ≤ t means si ≤ ti for any 1 ≤ i ≤ d). Fore more about Vapnik-

Chervonenkis classes of sets, one can refer to [29].

Let β > 0 and hβ = ((1− β)/β)
1
β 11{0<β<1}. We denote by ψβ the Young

function de�ned by ψβ(x) = e(x+hβ)β − eh
β
β for any x in R+.

Theorem 2. Let (Xi)i∈Zd be the stationary centered random �eld de�ned by

(1) and let A be a collection of regular Borel subsets of [0, 1]d. Assume that

one of the following condition holds:

(i) The collection A is a Vapnik-Chervonenkis class with index V and there

exists p > 2(V − 1) such that X0 belongs to Lp and ∆p :=
∑

i∈Zd δi,p <

∞.

(ii) There exists θ > 0 and 0 < q < 2 such that E[exp(θ|X0|β(q))] < ∞
where β(q) = 2q/(2− q) and ∆ψβ(q) :=

∑
i∈Zd δi,ψβ(q) <∞ and such that

the class A satis�es the condition∫ 1

0

(H(A, ρ, ε))1/q dε < +∞. (8)

(iii) X0 belongs to L∞, the class A satis�es the condition (7) and ∆∞ :=∑
i∈Zd δi,∞ <∞.

Then the sequence of processes {n−d/2Sn(A) ; A ∈ A} converges in distribu-

tion in C(A) to σW where W is a standard Brownian motion indexed by A
and σ2 =

∑
k∈Zd E(X0Xk).
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4 Proofs

Proof of Proposition 1. Let τ : Z→ Zd be a bijection. For any i ∈ Z, for any
j ∈ Zd,

PiXj := E(Xj|Fi)− E(Xj|Fi−1) (9)

where Fi = σ
(
ετ(l); l ≤ i

)
.

Lemma 1. For any i in Z and any j in Zd, we have ‖PiXj‖p ≤ δj−τ(i),p.

Proof of Lemma 1.

‖PiXj‖p = ‖E(Xj|Fi)− E(Xj|Fi−1)‖p
=
∥∥E(X0|T jFi)− E(X0|T jFi−1)

∥∥
p

where T jFi = σ
(
ετ(l)−j; l ≤ i

)
=
∥∥∥E (g ((ε−s)s∈Zd) |T jFi

)
− E

(
g
(

(ε−s)s∈Zd\{j−τ(i)}; ε
′

τ(i)−j

)
|T jFi

)∥∥∥
p

≤
∥∥∥g ((ε−s)s∈Zd)− g

(
(ε−s)s∈Zd\{j−τ(i)}; ε

′

τ(i)−j

)∥∥∥
p

=
∥∥∥g ((εj−τ(i)−s)s∈Zd

)
− g

(
(εj−τ(i)−s)s∈Zd\{j−τ(i)}; ε

′

0

)∥∥∥
p

=
∥∥Xj−τ(i) −X∗j−τ(i)

∥∥
p

= δj−τ(i),p.

The proof of Lemma 1 is complete.

For all j in Zd,
Xj =

∑
i∈Z

PiXj.

Consequently,∥∥∥∥∥∑
j∈Γ

ajXj

∥∥∥∥∥
p

=

∥∥∥∥∥∑
j∈Γ

aj
∑
i∈Z

PiXj

∥∥∥∥∥
p

=

∥∥∥∥∥∑
i∈Z

∑
j∈Γ

ajPiXj

∥∥∥∥∥
p

.
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Since
(∑

j∈Γ ajPiXj

)
i∈Z

is a martingale-di�erence sequence, by Burkholder

inequality, we have∥∥∥∥∥∑
j∈Γ

ajXj

∥∥∥∥∥
p

≤

2p
∑
i∈Z

∥∥∥∥∥∑
j∈Γ

ajPiXj

∥∥∥∥∥
2

p

 1
2

≤

2p
∑
i∈Z

(∑
j∈Γ

|aj| ‖PiXj‖p

)2
 1

2

(10)

By the Cauchy-Schwarz inequality, we have(∑
j∈Γ

|aj| ‖PiXj‖p

)2

≤

(∑
j∈Γ

a2
j ‖PiXj‖p

)
×

(∑
j∈Γ

‖PiXj‖p

)
and by Lemma 1, ∑

j∈Zd
‖PiXj‖p ≤

∑
j∈Zd

δj−τ(i),p = ∆p.

So, we obtain ∥∥∥∥∥∑
j∈Γ

ajXj

∥∥∥∥∥
p

≤

(
2p∆p

∑
j∈Γ

a2
j

∑
i∈Z

‖PiXj‖p

) 1
2

.

Applying again Lemma 1, for any j in Zd, we have∑
i∈Z

‖PiXj‖p ≤
∑
i∈Z

δj−τ(i),p = ∆p,

Finally, we derive ∥∥∥∥∥∑
j∈Γ

ajXj

∥∥∥∥∥
p

≤

(
2p
∑
j∈Γ

a2
j

) 1
2

∆p.

The proof of Proposition 1 is complete.

Proof of Proposition 2. Let k in Zd be �xed. Since Xk =
∑

i∈Z PiXk where

Pi is de�ned by (9) and E((PiX0)(PjXk)) = 0 if i 6= j, we have

E(X0Xk) =
∑
i∈Z

E((PiX0)(PiXk)).
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Thus, we obtain∑
k∈Zd
|E(X0Xk)| ≤

∑
i∈Z

‖PiX0‖2

∑
k∈Zd
‖PiXk‖2.

Applying again Lemma 1, we derive
∑

k∈Zd |E(X0Xk)| ≤ ∆2
2 <∞.

In the other part, since (Xk)k∈Zd is stationary, we have

|Γn|−1E(S2
Γn) =

∑
k∈Zd
|Γn|−1|Γn ∩ (Γn − k)|E(X0Xk)

where Γn − k = {i− k ; i ∈ Γn}. Moreover

|Γn|−1|Γn ∩ (Γn − k)||E(X0Xk)| ≤ |E(X0Xk)| and
∑
k∈Zd
|E(X0Xk)| <∞.

Since limn→+∞ |Γn|−1|Γn ∩ (Γn− k)| = 1, applying the Lebesgue convergence

theorem, we derive

lim
n→+∞

|Γn|−1E(S2
Γn) =

∑
k∈Zd

E(X0Xk).

The proof of Proposition 2 is complete.

Proof of Theorem 1. We �rst assume that lim infn σ
2
n/|Γn| > 0. Let (mn)n≥1

be a sequence of positive integers going to in�nity. In the sequel, we denote

Xj = E (Xj|Fmn(j)) where Fmn(j) = σ(εj−s ; |s| ≤ mn). By factorization,

there exists a measurable function h such that Xj = h(εj−s ; |s| ≤ mn). So,

we have

X
∗
j = h(ε∗j−s ; |s| ≤ mn) = E

(
X∗j |F∗mn(j)

)
(11)

where F∗mn(j) = σ(ε∗j−s ; |s| ≤ mn). We denote also for any j in Zd,

δ
(mn)
j,p =

∥∥(Xj −Xj)− (Xj −Xj)
∗∥∥

p
.

The following result is a direct consequence of Proposition 1.
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Proposition 3. Let Γ be a �nite subset of Zd and (ai)i∈Γ be a family of real

numbers. For any n in N∗ and any p ∈ [2,+∞], we have∥∥∥∥∥∑
j∈Γ

aj(Xj −Xj)

∥∥∥∥∥
p

≤

(
2p
∑
i∈Γ

a2
i

) 1
2

∆(mn)
p

where ∆
(mn)
p =

∑
j∈Zd δ

(mn)
j,p .

We need also the following lemma.

Lemma 2. Let p ∈]0,+∞] be �xed. If ∆p <∞ then ∆
(mn)
p → 0 as n→∞.

Proof of Lemma 2. Let j in Zd be �xed. Since (Xj − Xj)
∗ = X∗j − X

∗
j ,

we have

δ
(mn)
j,p =

∥∥(Xj −Xj)− (Xj −Xj)
∗∥∥

p
≤ ‖Xj −X∗j ‖p + ‖Xj −X

∗
j‖p

= δj,p + ‖E(Xj|Fmn(j) ∨ F∗mn(j))− E(X∗j |F∗mn(j) ∨ Fmn(j))‖p
≤ 2δj,p.

Moreover, limn→+∞ δ
(mn)
j,p = 0. Finally, applying the Lebesgue convergence

theorem, we obtain limn→+∞∆
(mn)
p = 0. The proof of Lemma 2 is complete.

Let (Γn)n≥1 be a sequence of �nite subsets of Zd such that limn→+∞ |Γn| =∞
and lim infn

σ2
n

|Γn| > 0 and recall that ∆2 is assumed to be �nite. Combining

Proposition 3 and Lemma 2, we have

lim sup
n→+∞

∥∥Sn − Sn∥∥2

σn
= 0. (12)

We are going to apply the following central limit theorem due to Heinrich

([15], Theorem 2).

Theorem 3 (Heinrich (1988)). Let (Γn)n≥1 be a sequence of �nite subsets

of Zd with |Γn| → ∞ as n → ∞ and let (mn)n≥1 be a sequence of positive

integers. For each n ≥ 1, let {Un(j), j ∈ Zd} be an mn-dependent random
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�eld with EUn(j) = 0 for all j in Zd. Assume that E
(∑

j∈Γn
Un(j)

)2

→ σ2

as n → ∞ with σ2 < ∞. Then
∑

j∈Γn
Un(j) converges in distribution to a

Gaussian random variable with mean zero and variance σ2 if there exists a

�nite constant c > 0 such that for any n ≥ 1,∑
j∈Γn

EU2
n(j) ≤ c

and for any ε > 0 it holds that

lim
n→+∞

Ln(ε) := m2d
n

∑
j∈Γn

E
(
U2
n(j) 11|Un(j)|≥εm−2d

n

)
= 0.

Since lim infn
σ2
n

|Γn| > 0, there exists c0 > 0 and n0 ∈ N such that |Γn|
σ2
n
≤ c0

for any n ≥ n0. Consider Sn =
∑

i∈Γn
Xi, Sn =

∑
i∈Γn

X i and Un(j) :=
Xj

σn
.

We have

E

(∑
j∈Γn

Un(j)

)2

=
E(S

2

n)− σ2
n

σ2
n

+ 1.

So, for any n ≥ n0 we derive∣∣∣σ2
n − E(S

2

n)
∣∣∣

σ2
n

=
1

σ2
n

∣∣∣∣∣E
((∑

j∈Γn

(Xj −Xj)

)(∑
j∈Γn

(Xj +Xj)

))∣∣∣∣∣
≤ 1

σ2
n

∥∥∥∥∥∑
j∈Γn

(Xj −Xj)

∥∥∥∥∥
2

∥∥∥∥∥∑
j∈Γn

(Xj +Xj)

∥∥∥∥∥
2

≤ 2|Γn|∆(mn)
2

σ2
n

(
4∆2 + 2∆

(mn)
2

)
≤ 4c0∆

(mn)
2

(
2∆2 + ∆

(mn)
2

)
−−−−−→
n→+∞

0.

Consequently,

lim
n→+∞

E

(∑
j∈Γn

Un(j)

)2

= 1.

14



Moreover, for any n ≥ n0,∑
j∈Γn

EU2
n(j) =

|Γn|E(X
2

0)

σ2
n

≤ c0E(X2
0 ) <∞.

Let ε > 0 be �xed. We have

Ln(ε) ≤ c0m
2d
n E

(
X

2

0 11
{
|X0|≥ εσn

m2d
n

}
)
≤ c0m

2d
n E

(
X2

0 11{
|X0|≥ εσn

m2d
n

}
)

≤ c0m
2d
n σnP

(
|X0| ≥

εσn
m2d
n

)
+ c0m

2d
n E

(
X2

0 11{|X0|≥
√
σn}
)

≤ c0E(X2
0 )m6d

n

ε2σn
+ c0m

2d
n ψ(
√
σn)

where ψ(x) = E
(
X2

0 11{|X0|≥x}
)
.

Lemma 3. If the sequence (mn)n≥1 is de�ned for any integer n ≥ 1 by

mn = min
{[
ψ
(√

σn
)−1

4d

]
,
[
σ

1
12d
n

]}
if ψ(

√
σn) 6= 0 and by mn =

[
σ

1
12d
n

]
if

ψ(
√
σn) = 0 where [ . ] is the integer part function then

mn →∞,
m6d
n

σn
→ 0 and m2d

n ψ (
√
σn)→ 0.

Proof of Lemma 3. Since σn →∞ and ψ(
√
σn)→ 0, we derive mn →∞.

Moreover,

m6d
n

σn
≤ 1
√
σn
→ 0 and m2d

n ψ (
√
σn) ≤

√
ψ (
√
σn)→ 0.

The proof of Lemma 3 is complete.

Consequently, we obtain limn→∞ Ln(ε) = 0. So, applying Theorem 3, we

derive that
Sn
σn

Law−−−−−→
n→+∞

N (0, 1). (13)

Combining (12) and (13), we deduce

Sn
σn

Law−−−−−→
n→+∞

N (0, 1).
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Hence (3) holds if lim infn σ
2
n/|Γn| > 0. In the general case, we argue as

follows: If (3) does not hold then there exists a subsequence n′ → ∞ such

that

L

[
Sn′√
|Γn′ |

, N

(
0,

σ2
n′

|Γn′ |

)]
converges to some l in ]0,+∞]. (14)

Assume that
σ2

n
′

|Γ
n
′ | does not converge to zero. Then there exists a subsequence

n
′′
such that lim infn

σ2

n
′′

|Γ
n
′′ | > 0. By the �rst part of the proof of Theorem 1,

we obtain

L

[
Sn′′√
|Γn′′ |

, N

(
0,

σ2
n′′

|Γn′′ |

)]
converges to 0. (15)

Since (15) contradicts (14), we have
σ2

n
′

|Γ
n
′ | converges to zero. Consequently

Sn′/
√
|Γn′ | converges to zero in probability and L

[
S
n
′√
|Γ
n
′ |
, N

(
0,

σ2

n
′

|Γ
n
′ |

)]
con-

verges to 0 which contradicts again (14). Consequently, (3) holds. The proof

of Theorem 1 is then complete.

Proof of Theorem 2. As usual, we have to prove the convergence of

the �nite-dimensional laws and the tightness of the partial sum process

{n−d/2Sn(A) ; A ∈ A} in C(A). For any Borel subset A of [0, 1]d, we de-

note by Γn(A) the �nite subset of Zd de�ned by Γn(A) = nA ∩ Zd. We say

that A is a regular Borel set if λ(∂A) = 0.

Proposition 4. Let A be a regular Borel subset of [0, 1]d with λ(A) > 0. We

have

lim
n→+∞

|Γn(A)|
nd

= λ(A) and lim
n→+∞

|∂Γn(A)|
|Γn(A)|

= 0.

Moreover, if ∆2 is �nite then

lim
n→+∞

n−d/2‖Sn(A)− SΓn(A)‖2 = 0 (16)

where SΓn(A) =
∑

i∈Γn(A) Xi.
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Proof of Proposition 4. The �rst part of Proposition 4 is the �rst part of

Lemma 2 in Dedecker [8]. So, we are going to prove only the second part.

Let n be a positive integer. Arguing as in Dedecker [8], we have

Sn(A)− SΓn(A) =
∑
i∈Wn

aiXi (17)

where ai = λ(nA∩Ri)− 11i∈Γn(A) and Wn is the set of all i in {1, .., n}d such
that Ri ∩ (nA) 6= ∅ and Ri ∩ (nA)c 6= ∅. Noting that |ai| ≤ 1 and applying

Proposition 1, we obtain

‖Sn(A)− SΓn(A)‖2 ≤ 2∆2

√∑
i∈Wn

a2
i ≤ 2∆2

√
|Wn|. (18)

Following the proof of Lemma 2 in [8], we have |Wn| = o(nd) and we derive

(16). The proof of Proposition 4 is complete.

The convergence of the �nite-dimensional laws follows from Proposition 4

and Theorem 1.

So, it su�ces to establish the tightness property.

Proposition 5. Assume that Assumption (i), (ii) or (iii) in Theorem 2

holds. Then for any x > 0, we have

lim
δ→0

lim sup
n→+∞

P

 sup
A,B∈A
ρ(A,B)<δ

∣∣n−d/2Sn(A)− n−d/2Sn(B)
∣∣ > x

 = 0. (19)

Proof of Proposition 5. Let A and B be �xed in A and recall that

ρ(A,B) =
√
λ(A∆B). We have

Sn(A)− Sn(B) =
∑
i∈Λn

aiXi

where Λn = {1, ..., n}d and ai = λ(nA ∩Ri)− λ(nB ∩Ri). Applying Propo-

17



sition 1, we have

n−d/2 ‖Sn(A)− Sn(B)‖p ≤ ∆p

(
2p

nd

∑
i∈Λn

λ(n(A∆B) ∩Ri)

) 1
2

≤
√

2p∆pρ(A,B).

(20)

Assume that Assumption (i) in Theorem 2 holds. Then there exists a positive

constant K such that for any 0 < ε < 1, we have (see Van der Vaart and

Wellner [29], Theorem 2.6.4)

N(A, ρ, ε) ≤ KV (4e)V
(

1

ε

)2(V−1)

where N(A, ρ, ε) is the smallest number of open balls of radius ε with respect

to ρ which form a covering of A. So, since p > 2(V − 1), we have∫ 1

0

(N(A, ρ, ε))
1
p dε < +∞. (21)

Combining (20) and (21) and applying Theorem 11.6 in Ledoux and Tala-

grand [19], we infer that the sequence {n−d/2Sn(A) ; A ∈ A} satis�es the

following property: for each positive ε there exists a positive real δ, depend-

ing on ε and on the value of the entropy integral (21) but not on n, such

that

E

 sup
A,B∈A

ρ(A,B)<δ

|n−d/2Sn(A)− n−d/2Sn(B)|

 < ε. (22)

The condition (19) is then satis�ed under Assumption (i) in Theorem 2 and

the sequence of processes {n−d/2Sn(A) ; A ∈ A} is tight in C(A).

Now, we assume that Assumption (ii) in Theorem 2 holds. The follow-

ing technical lemma can be obtained using the expansion of the exponential

function.

Lemma 4. Let β be a positive real number and Z be a real random variable.

There exist positive universal constants Aβ and Bβ depending only on β such

18



that

Aβ sup
p>2

‖Z‖p
p1/β

≤ ‖Z‖ψβ ≤ Bβ sup
p>2

‖Z‖p
p1/β

.

Combining Lemma 4 with (20), for any 0 < q < 2, there exists Cq > 0

such that

n−d/2 ‖Sn(A)− Sn(B)‖ψq ≤ Cq∆ψβ(q)ρ(A,B) (23)

where β(q) = 2q/(2− q). Applying Theorem 11.6 in Ledoux and Talagrand

[19], for each positive ε there exists a positive real δ, depending on ε and on

the value of the entropy integral (8) but not on n, such that (22) holds. The

condition (19) is then satis�ed and the process {n−d/2Sn(A) ; A ∈ A} is tight
in C(A).

Finally, if Assumption (iii) in Theorem 2 holds then combining Lemma 4

with (20), there exists C > 0 such that∥∥n−d/2Sn(A)− n−d/2Sn(B)
∥∥
ψ2
≤ C∆∞ρ(A,B). (24)

Applying again Theorem 11.6 in Ledoux and Talagrand [19], we obtain the

tightness of the process {n−d/2Sn(A) ; A ∈ A} in C(A). The proofs of Propo-

sition 5 and Theorem 2 are complete. �
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