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Abstract

We investigate the nonparametric estimation for regression in a
fixed-design setting when the errors are given by a field of dependent
random variables. Sufficient conditions for kernel estimators to con-
verge uniformly are obtained. These estimators can attain the optimal
rates of uniform convergence and the results apply to a large class of
random fields which contains martingale-difference random fields and
mixing random fields.
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1 Introduction

Over the last few years nonparametric estimation for random fields (or spatial
processes) was given increasing attention stimulated by a growing demand
from applied research areas (see Guyon [18]). In fact, spatial data arise in
various areas of research including econometrics, image analysis, meterology,
geostatistics... Our aim in this paper is to investigate uniform strong con-
vergence rates of a regression estimator in a fixed design setting when the
errors are given by a stationary field of dependent random variables which
show spatial interaction. We are most interested in conditions which ensure
convergence rates to be identical to those in the case of independent errors
(see Stone [33]). Currently the author is working on extensions of the present
results to the random design framework. Let Z

d, d ≥ 1 denote the integer
lattice points in the d-dimensional Euclidean space. By a stationary real
random field we mean any family (εk)k∈Zd of real-valued random variables
defined on a probability space (Ω,F ,P) such that for any (k, n) ∈ Z

d×N
∗ and

any (i1, ..., in) ∈ (Zd)n, the random vectors (εi1, ..., εin) and (εi1+k, ..., εin+k)
have the same law. The regression model which we are interested in is

Yi = g(i/n) + εi, i ∈ Λn = {1, ..., n}d (1)

where g is an unknown smooth function and (εi)i∈Zd is a zero mean stationary
real random field. Note that this model was considered also by Bosq [8] and
Hall et Hart [19] for time series (d = 1). Let K be a probability kernel defined
on R

d and (hn)n≥1 a sequence of positive numbers which converges to zero
and which satisfies (nhn)n≥1 goes to infinity. We estimate the function g by
the kernel-type estimator gn defined for any x in [0, 1]d by

gn(x) =

∑

i∈Λn
YiK

(

x−i/n
hn

)

∑

i∈Λn
K
(

x−i/n
hn

) . (2)

Note that Assumption A1) in section 2 ensures that gn is well defined. Until
now, most of existing theoretical nonparametric results of dependent random
variables pertain to time series (see Bosq [9]) and relatively few generaliza-
tions to the spatial domain are available. Key references on this topic are
Biau [5], Carbon et al. [10], Carbon et al. [11], Hallin et al. [20], [21], Tran
[34], Tran and Yakowitz [35] and Yao [36] who have investigated nonpara-
metric density estimation for random fields and Altman [2], Biau and Cadre
[6], Hallin et al. [22] and Lu and Chen [25], [26] who have studied spatial
prediction and spatial regression estimation. The classical asymptotic theory
in statistics is built upon central limit theorems, law of large numbers and
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large deviations inequalities for the sequences of random variables. These
classical limit theorems have been extended to the setting of spatial pro-
cesses. In particular, some key results on the central limit theorem and its
functional versions are Alexander and Pyke [1], Bass [3], Basu and Dorea
[4], Bolthausen [7] and more recently Dedecker [12], [13], El Machkouri [16]
and El Machkouri and Volný [17]. For a survey on limit theorems for spa-
tial processes and some applications in statistical physics, one can refer to
Nahapetian [28]. Note also that the main results (section 3) of this work
are obtained via exponential inequalities for random fields discovered by El
Machkouri [16].
The paper is organized as follows. The next section sets up the notations
and the assumptions which will be considered in the sequel. In section 3, we
present our main results on both weak and strong consistencies rates of the
estimator gn. The last section is devoted to the proofs.

2 Notations and Assumptions

In the sequel we denote ‖x‖ = max1≤k≤d |xk| for any x = (x1, ..., xd) ∈ [0, 1]d.
With a view to obtain optimal convergence rates for the estimator gn defined
by (2), we have to make the following assumptions on the regression function
g and the probability kernel K:

A1) The probability kernel K is symmetric, nonnegative, supported by
[−1, 1]d and satisfies a Lipschitz condition |K(x) − K(y)| ≤ η‖x − y‖
for any x, y ∈ [−1, 1]d and some η > 0. In addition there exists c, C > 0
such that c ≤ K(x) ≤ C for any x ∈ [−1, 1]d.

A2) There exists a constant B > 0 such that |g(x) − g(y)| ≤ B‖x− y‖ for
any x, y ∈ [0, 1]d, that is g is B-Lipschitz.

A Young function ψ is a real convex nondecreasing function defined on R
+

which satisfies limt→∞ ψ(t) = +∞ and ψ(0) = 0. We define the Orlicz space
Lψ as the space of real random variables Z defined on the probability space
(Ω,F ,P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space
Lψ equipped with the so-called Luxemburg norm ‖.‖ψ defined for any real
random variable Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }

is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [24]. Let β > 0. We denote by ψβ
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the Young function defined for any x ∈ R
+ by

ψβ(x) = exp((x + ξβ)
β) − exp(ξββ ) where ξβ = ((1 − β)/β)1/β 11{0<β<1}.

On the lattice Z
d we define the lexicographic order as follows: if i = (i1, ..., id)

and j = (j1, ..., jd) are distinct elements of Z
d, the notation i <lex j means

that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for
1 ≤ q < p. Let the sets {V k

i ; i ∈ Z
d , k ∈ N

∗} be defined as follows:

V 1
i = {j ∈ Z

d ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Z
d ; |i− j| ≥ k} where |i− j| = max

1≤l≤d
|il − jl|.

For any subset Γ of Z
d define FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV
|k|
i

), k ∈ V 1
i .

Denote β(q) = 2q/(2−q) for 0 < q < 2 and consider the following conditions:

C1) ε0 ∈ L∞ and
∑

k∈V 1
0

‖εkE|k|(ε0)‖∞ <∞.

C2) There exists 0 < q < 2 such that ε0 ∈ Lψβ(q)
and

∑

k∈V 1
0

∥

∥

∥

√

|εkE|k|(ε0)|
∥

∥

∥

2

ψβ(q)

<∞.

C3) There exists p > 2 such that ε0 ∈ Lp and

∑

k∈V 1
0

‖εkE|k|(ε0)‖ p

2
<∞.

C4) ε0 ∈ L2 and
∑

k∈Zd |E(ε0εk)| <∞.

Remark 1 Note that Dedecker [12] established the central limit theorem
for any stationary square-integrable random field (εk)k∈Zd which satisfies the
condition

∑

k∈V 1
0
‖εkE|k|(ε0)‖1 <∞.
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In classical statistical physics, there exists spatial processes which satisfy
conditions C1),...,C4). For example, Nahapetian and Petrosian [29] gave
sufficient conditions for a Gibbs field (εk)k∈Zd to possess the following mar-
tingale difference property: for any i in Z

d, E(εi|FV 1
i
) = 0 a.s. Another

examples of random fields which satisfy conditions C1),...,C4) can be found
also among the class of mixing random fields. More precisely, given two
sub-σ-algebras U and V of F , different measures of their dependence have
been considered in the literature. We are interested by two of them. The
α-mixing and φ-mixing coefficients had been introduced by Rosenblatt [31]
and Ibragimov [23] respectively and can be defined by

α(U ,V) = sup{|P(U ∩ V ) − P(U)P(V )|, U ∈ U , V ∈ V}
φ(U ,V) = sup{‖P(V |U) − P(V )‖∞ , V ∈ V}.

We have 2α(U ,V) ≤ φ(U ,V) and these coefficients equal zero if and only if
the σ-algebras U and V are independent. Denote by ]Γ the cardinality of any
subset Γ of Z

d. In the sequel, we shall use the following non-uniform mixing
coefficients defined for any (k, l, n) in (N∗ ∪ {∞})2 × N by

αk,l(n) = sup {α(FΓ1,FΓ2), ]Γ1 ≤ k, ]Γ2 ≤ l, ρ(Γ1,Γ2) ≥ n},
φk,l(n) = sup {φ(FΓ1,FΓ2), ]Γ1 ≤ k, ]Γ2 ≤ l, ρ(Γ1,Γ2) ≥ n},

where the distance ρ is defined by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}.
We say that the random field (εk)k∈Zd is α-mixing or φ-mixing if there exists a
pair (k, l) in (N∗∪{∞})2 such that limn→∞ αk,l(n) = 0 or limn→∞ φk,l(n) = 0
respectively. For more about mixing coefficients one can refer to Doukhan
[15]. We consider the following mixing conditions:

C
′
1) ε0 ∈ L∞ and

∑

k∈Zd

φ∞,1(|k|) <∞.

C
′
2) There exists 0 < q < 2 such that ε0 ∈ Lψβ(q)

and

∑

k∈Zd

√

φ∞,1(|k|) <∞

or
∑

k∈Zd

c2k(β(q)) <∞

where for any β > 0

ck(β) = inf

{

c > 0
∣

∣

∫ α1,∞(|k|)

0

ψβ

(

Qε0(u)

c

)

du ≤ 1

}

. (3)

5



C
′
3) There exists p > 2 such that ε0 ∈ Lp and

∑

k∈Zd

(

∫ α1,∞(|k|)

0

Qp
ε0

(u) du

)2/p

<∞ (4)

where Qε0 is the inverse cadlag of the tail function t → P(|ε0| > t) (i.e. for
any u ≥ 0, Qε0(u) = inf {t > 0 |P(|ε0| > t) ≤ u}).

Remark 2 Let us note that if p = 2 + δ for some δ > 0 then the condition

∞
∑

m=1

md−1α
δ

2+δ
−ε

1,∞ (m) <∞ for some ε > 0

is more restrictive than condition (4) and is known to be sufficient for the ran-
dom field (εk)k∈Zd to satisfy a functional central limit theorem (cf. Dedecker
[13]).

In statistical physics, using the Dobrushin’s uniqueness condition (cf. [14]),
one can construct Gibbs fields satisfying a uniform exponential mixing con-
dition which is more restrictive than conditions C

′
1), C

′
2) and C

′
3) (see

Guyon [18], theorem 2.1.3, p. 52).

3 Main results

Let (Zn)n≥1 be a sequence of real random variables and (vn)n≥1 be a sequence
of positive numbers. We say that

Zn = Oa.s. [vn]

if there exists λ > 0 such that

lim sup
n→∞

|Zn|
vn

≤ λ a.s.

Our main result is the following.

Theorem 1 Assume that the assumption A1) holds.

1) If C1) holds then

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s.

[

(log n)1/2

(nhn)d/2

]

. (5)
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2) If C2) holds for some 0 < q < 2 then

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s.

[

(logn)1/q

(nhn)d/2

]

. (6)

3) Assume that C3) holds for some p > 2 and hn = n−θ2(log n)θ1 for some
θ1, θ2 > 0. Let a, b ≥ 0 be fixed and denote

vn =
na(log n)b

(nhn)d/2
and θ =

2a(d+ p) − d2 − 2

d(3d+ 2)
.

If θ ≥ θ2 and d(3d+ 2)θ1 + 2(d+ p)b > 2 then

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s. [vn] . (7)

Remark 3 Theorem 1 shows that the optimal uniform convergence rate
is obtained for bounded errors (cf. estimation (5)) and that it is “almost”
optimal if one considers errors with only finite exponential moments (cf.
estimation (6)).

Theorem 2 Assume that the assumption A1) holds.

1) Assume that C3) holds for some p > 2. Let a > 0 be fixed and denote

vn =
na

(nhn)d/2
and θ =

2a(d+ p) − d2

d(3d+ 2)
.

If θ > 0 and hn ≥ n−θ then
∥

∥

∥

∥

∥

sup
x∈[0,1]d

|gn(x) − Egn(x)|
∥

∥

∥

∥

∥

p

= O [vn] . (8)

2) If C4) holds then

sup
x∈[0,1]d

‖gn(x) − Egn(x)‖2 = O
[

(nhn)
−d/2

]

. (9)

In the sequel, we denote by Lip(B) the set of B-Lipschitz functions. The
following proposition gives the convergence of Egn(x) to g(x).

Proposition 1 Assume that the assumption A2) holds then

sup
x∈[0,1]d

sup
g∈Lip(B)

|Egn(x) − g(x)| = O [hn] .
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From Proposition 1 and Theorem 1 we derive the following corollary.

Corollary 1 Assume that A1) and A2) hold and let hn =
(

n−d logn
)1/(2+d)

.

1) If C1) holds then

sup
x∈[0,1]d

sup
g∈Lip(B)

|gn(x) − g(x)| = Oa.s.

[

(

logn

nd

)
1

2+d

]

. (10)

2) If C2) holds for some 0 < q < 2 then

sup
x∈[0,1]d

sup
g∈Lip(B)

|gn(x) − g(x)| = Oa.s.

[

u(n)

(

log n

nd

)
1

2+d

]

(11)

where u(n) = (logn)(2−q)/2q.

3) Let ε > 0 be fixed. If C3) holds for some p > 2 satisfying

p ≥ 4d3 + (4 − 2ε)d2 + (2 − 4ε)d+ 4

2ε(2 + d)
(12)

then

sup
x∈[0,1]d

sup
g∈Lip(B)

|gn(x) − g(x)| = Oa.s.

[

u(n)

(

log n

nd

)
1

2+d

]

(13)

where u(n) = nε.

Remark 4 Note that the consistency rate (n−d logn)1/(2+d) is known to be
the optimal one (see Stone [33]).

From Proposition 1 and Theorem 2 we derive the following corollary.

Corollary 2 Assume that A1) and A2) hold and let hn = n−d/(2+d).

1) Let ε > 0 be fixed. If C3) holds for some p > 2 satisfying

p ≥ 4d3 + (4 − 2ε)d2 − 4εd

2ε(2 + d)
(14)

then
∥

∥

∥

∥

∥

sup
x∈[0,1]d

sup
g∈Lip(B)

|gn(x) − g(x)|
∥

∥

∥

∥

∥

p

= O
[

n− d
2+d

+ε
]

. (15)
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2) If C4) holds then

sup
x∈[0,1]d

∥

∥

∥

∥

∥

sup
g∈Lip(B)

|gn(x) − g(x)|
∥

∥

∥

∥

∥

2

= O
[

n− d
2+d

]

. (16)

Finally the rates of convergence obtained above are valid when the errors
are given by a mixing random field. More precisely, we have the following
corollary.

Corollary 3 Theorems 1 and 2 and Corollaries 1 and 2 still hold if one
replace conditions C1), C2) and C3) by conditions C

′
1), C

′
2) and C

′
3)

respectively.

4 Proofs

For any x in [0, 1]d and any integer n ≥ 1 we define Bn(x) = Egn(x) − g(x)
and Vn(x) = gn(x) − Egn(x). More precisely

Bn(x) =

∑

i∈Λn
ai(x)g(i/n)

∑

i∈Λn
ai(x)

− g(x)

Vn(x) =

∑

i∈Λn
ai(x)εi

∑

i∈Λn
ai(x)

where ai(x) = K
(

x−i/n
hn

)

. In the sequel, we denote also Sn(x) =
∑

i∈Λn
ai(x)εi

for any x ∈ [0, 1]d. We start with the following lemma.

Lemma 1 There exists constants c, C > 0 such that for any x ∈ [0, 1]d and
any n ∈ N

∗,

c

d
∏

k=1

[n(xk + hn)] ≤
∑

i∈Λn

ai(x) ≤ C

d
∏

k=1

[n(xk + hn)] (17)

where [ . ] denote the integer part function.

Proof of Lemma 1. Since the kernel K is supported by [−1, 1]d, we have

∑

i∈Λn

ai(x) =

[n(x1+hn)]
∑

i1=1

. . .

[n(xd+hn)]
∑

id=1

ai(x).

By assumption, there exists constants c, C > 0 such that c ≤ K(y) ≤ C for
any y ∈ [−1, 1]d. The proof of Lemma 1 is complete.
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4.1 Proof of Theorem 1

Let (υn)n≥1 be a sequence of positive numbers going to zero. Following
Carbon and al. [11] the compact set [0, 1]d can be covered by rn cubes Ik
having sides of length ln = υnh

2d+1
n and center at ck. Clearly there exists

c > 0 such that rn ≤ c/ldn. Define

A1,n(g) = max
1≤k≤rn

sup
x∈Ik

|gn(x) − gn(ck)|

A2,n(g) = max
1≤k≤rn

sup
x∈Ik

|Egn(x) − Egn(ck)|

A3,n = max
1≤k≤rn

|gn(ck) − Egn(ck)|

then

sup
x∈[0,1]d

|gn(x) − Egn(x)| ≤ sup
g∈Lip(B)

[A1,n(g) + A2,n(g)] + A3,n. (18)

Lemma 2 For i = 1, 2 we have

sup
g∈Lip(B)

Ai,n(g) = Oa.s. [vn] .

Proof of Lemma 2. Since g ∈ Lip(B), we can assume without loss of gener-
ality that g is bounded by B on the set [0, 1]d. For any x ∈ Ik, we have

gn(x) − gn(ck) = σ1 + σ2

where

σ1 =

∑

i∈Λn
Yi(ai(x) − ai(ck))
∑

i∈Λn
ai(x)

and

σ2 =

∑

i∈Λn
(ai(ck) − ai(x))

∑

i∈Λn
ai(x) ×

∑

i∈Λn
ai(ck)

∑

i∈Λn

Yiai(ck).

Now, by Lemma 1 and Assumption A1), we derive that there exists constants
c, η > 0 such that for any n sufficiently large

|σ1| ≤
2dηln/hn
c(nhn)d

∑

i∈Λn

|Yi| ≤
ηvnh

d
n

c

(

B +
1

nd

∑

i∈Λn

|εi|
)

and

|σ2| ≤
4dηndln/hn
c2(nhn)2d

∑

i∈Λn

|Yi| ≤
ηvn
c2

(

B +
1

nd

∑

i∈Λn

|εi|
)

Since (εi) is a stationary ergodic random field the lemma easily follows from
the last inequalities and the Birkhoff ergodic theorem. The proof of Lemma
2 is complete.
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Lemma 3 Assume that either C1) holds and vn = (log n)1/2/(nhn)
d/2 or

C2) holds for some 0 < q < 2 and vn = (log n)1/q/(nhn)
d/2 then

A3,n = Oa.s.[vn]

Proof of Lemma 3. Let 0 < q ≤ 2 be fixed. We consider the exponential
Young function define for any x ∈ R

+ by ψq(x) = exp((x + ξq)
q) − exp(ξqq)

where ξq = ((1 − q)/q)1/q 11{0<q<1}. Let λ > 0 and x ∈ [0, 1]d be fixed

P (|Vn(x)| > λvn) = P

(

∣

∣Sn(x)
∣

∣ > λvn
∑

i∈Λn

ai(x)

)

≤ (1 + eξ
q
q ) exp

[

−
(

λvn
∑

i∈Λn
ai(x)

||
∑

i∈Λn
ai(x)εi||ψq

+ ξq

)q ]

.

For any i ∈ Λn and any 0 < q < 2 denote

bi,q(a(x)ε) =
∥

∥ai(x)εi
∥

∥

2

ψβ(q)
+
∑

k∈V 1
i

∥

∥

∥

∥

√

∣

∣ak(x)εkE|k−i|(ai(x)εi)
∣

∣

∥

∥

∥

∥

2

ψβ(q)

(19)

and
bi,2(a(x)ε) =

∥

∥ai(x)εi
∥

∥

2

∞
+
∑

k∈V 1
i

‖ak(x)εkE|k−i|(ai(x)εi)‖∞ (20)

where V 1
i = {j ∈ Z

d ; j <lex i}. Using Kahane-Khintchine inequalities (cf.
El Machkouri [16], Theorem 1) we derive that if Condition C2) holds for
some 0 < q < 2 then

P (|Vn(x)| > λvn) ≤ (1 + eξ
q
q ) exp

[

−
(

λ vn
∑

i∈Λn
ai(x)

M(
∑

i∈Λn
bi,q(a(x)ε))1/2

+ ξq

)q ]

(21)
where M is a positive constant depending only on q and on the probability
kernel K. Now using the definition (19) and Lemma 1 there exist constants
c,M > 0 such that

sup
x∈[0,1]d

P (|Vn(x)| > λvn) ≤ (1 + eξ
q
q ) exp

[

−
(

λ vn (
∑

i∈Λn
ai(x))

1/2

M
+ ξq

)q
]

≤ (1 + eξ
q
q ) exp

[

− cq λq vqn ([nhn])
dq/2

M q

]

So if vn = (logn)1/q/(nhn)
d/2 and n is sufficiently large then

sup
x∈[0,1]d

P (|Vn(x)| > λvn) ≤ (1 + eξ
q
q ) exp

[

− cq λq log n

2dq/2M q

]

. (22)
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If Condition C1) holds then (21) still hold with q = 2 (cf. El Machkouri [16],
Theorem 1). So if vn = (log n)1/2/(nhn)

d/2 and n is large it follows that

sup
x∈[0,1]d

P (|Vn(x)| > λvn) ≤ 2 exp

[

− c2 λ2 log n

2dM2

]

. (23)

Since
P (|A3,n| > λvn) ≤ rn sup

x∈[0,1]d
P (|Vn(x)| > λvn) ,

using (22) and (23), choosing λ sufficiently large and applying Borel-Cantelli’s
lemma, we derive

P

(

lim sup
n→∞

{|A3,n| > λvn}
)

= 0

and

P

(

lim sup
n→∞

|A3,n|
vn

≤ λ

)

= 1.

The proof of points 1) and 2) of Theorem 1 are completed by combining
Inequality (18) with Lemmas 2 and 3.

Lemma 4 Assume that C3) holds for some p > 2 and hn = n−θ2(logn)θ1

for some θ1, θ2 > 0. Let a, b ≥ 0 be fixed and denote

vn =
na(log n)b

(nhn)d/2
and θ =

2a(d+ p) − d2 − 2

d(3d+ 2)
.

If θ ≥ θ2 and d(3d+ 2)θ1 + 2(d+ p)b > 2 then

lim
n→+∞

|A3,n|
vn

= 0 a.s.

Proof of Lemma 4. Let p > 2 be fixed. For any λ > 0

P (|Vn(x)| > λvn) = P

(

|Sn(x)| > λvn
∑

i∈Λn

ai(x)

)

≤ λ−pE|Sn(x)|p
vpn(
∑

i∈Λn
ai(x))p

≤ λ−p

vpn(
∑

i∈Λn
ai(x))p

(

2p
∑

i∈Λn

ci(x)

)p/2

where ci(x) = ai(x)
2‖εi‖2

p + ai(x)
∑

k∈V 1
i
ak(x)‖εkE|k−i|(εi)‖ p

2
. The last es-

timate follows from a Marcinkiewicz-Zygmund type inequality by Dedecker

12



(see [13]) for real random fields. Noting that there exists γ > 0 such that
ci(x) ≤ γai(x), x ∈ [0, 1]d and using Lemma 1, we derive that there exists
γ

′
> 0 such that

P (|A3,n| > λvn) ≤ rn sup
x∈[0,1]d

P (|Vn(x)| > λvn) ≤
γ

′

τnλp

where τn = ldnv
p
n([nhn])

dp/2. Since vn = na(log n)b/(nhn)
d/2 and ln = vnh

2d+1
n

it follows
1

τn
=

(nhn)
d(d+p)/2

h
d(2d+1)
n na(d+p)(log n)b(d+p)([nhn])dp/2

.

If n is sufficiently large, we derive

1

τn
≤ 2dp/2(nhn)

d(d+p)/2

h
d(2d+1)
n na(d+p)(logn)b(d+p)(nhn)dp/2

=
2dp/2

h
d(3d+2)/2
n na(d+p)−d2/2(log n)b(d+p)

≤ 2dp/2

n(log n)b(d+p)+θ1d(3d+2)/2
since θ ≥ θ2.

Now b(d + p) + θ1d(3d + 2)/2 > 1 implies
∑

n≥1 τ
−1
n < ∞. Applying Borel-

Cantelli’s lemma, it follows that for any λ > 0

P

(

lim sup
n→∞

{|A3,n| > λvn}
)

= 0,

that is for any λ > 0

P

(

lim sup
n→∞

|A3,n|
vn

≤ λ

)

= 1.

The proof of Lemma 4 is complete and the point 3) of Theorem 1 is obtained
by combining Inequality (18) with Lemmas 2 and 4. The proof of Theorem
1 is complete.

4.2 Proof of Theorem 2

We follow the first part of the proof of Theorem 1 and we consider the
estimation (18).

13



Lemma 5 Assume that C3) holds for some p > 2. Let a > 0 be fixed and
denote

vn =
na

(nhn)d/2
and θ =

2a(d+ p) − d2

d(3d+ 2)
.

If θ > 0 and hn ≥ n−θ then

‖A3,n‖p = O [vn] .

Proof of Lemma 5. Let p > 2 and x ∈ [0, 1]d be fixed. Using the Marcinkiewicz-
Zygmund type inequality by Dedecker (see [13]) as in the proof of Lemma 4
there exist γ

′′
, c > 0 such that

‖Vn(x)‖p =

(

E|Sn(x)|p
(
∑

i∈Λn
ai(x)

)p

)1/p

≤ γ
′′

(

∑

i∈Λn

ai(x)

)−1/2

≤ γ
′′

√
c
([nhn])

−d/2 by Lemma 1.

It follows that

r1/p
n sup

x∈[0,1]d
‖Vn(x)‖p = O

[

vn
τn

]

where τn = l
d/p
n vn([nhn])

d/2. If n is sufficiently large then τn ≥ 2−d/2l
d/p
n vn(nhn)

d/2,
hence using hn ≥ n−θ we obtain τn ≥ 2−d/2. Finally, we derive

‖A3,n‖p = ‖ max
1≤k≤rn

|Vn(xk)|‖p ≤ r1/p
n sup

x∈[0,1]d
‖Vn(x)‖p = O [vn] .

The proof of Lemma 5 is complete. The point 1) of Theorem 2 is obtained
by combining inequality (18) and lemmas 2 and 5.

Now, we are going to prove the point 2) of Theorem 2. We have

E(Sn(x)
2) =

∑

k,l∈Λn

ak(x) al(x)E(εkεl)

=
∑

k∈Λn

ak(x)
2E(ε2

k) +
∑

k 6=l

ak(x)al(x)E(εkεl)

= E(ε2
0)
∑

k∈Λn

ak(x)
2 +

∑

k∈Λn

ak(x)
∑

l∈Λn\{k}

al(x)E(εkεl)

≤
∑

l∈Zd

|E(ε0εl)| ×
∑

k∈Λn

ak(x).

14



If Condition C4) holds then using Lemma 1 there exists γ > 0 such that for
any x ∈ [0, 1]d we have E(Sn(x)

2) ≤ γ
∏d

k=1[n(xk + hn)]. Let x ∈ [0, 1]d be
fixed, using Lemma 1, there exists c > 0 such that

‖Vn(x)‖2 =
‖Sn(x)‖2
∑

i∈Λn
ai(x)

≤
√
γ

c

(

d
∏

k=1

[n(xk + hn)]

)−1/2

≤
√
γ

c ([nhn])d/2

≤ 2d/2
√
γ

c (nhn)d/2
for n sufficiently large.

The proof of Theorem 2 is complete.

4.3 Proof of Proposition 1

Since g ∈ Lip(B), it follows that

|Bn(x)| =

∣

∣

∣

∣

∑

i∈Λn
(g(i/n) − g(x))ai(x)
∑

i∈Λn
ai(x)

∣

∣

∣

∣

≤ Bhn

∑

i∈Λn
‖(i/n− x)/hn‖ai(x)
∑

i∈Λn
ai(x)

≤ Bhn.

The proof of Proposition 1 is complete.

4.4 Proof of Corollary 1

Let hn = (n−d logn)1/(2+d) then Proposition 1 gives

sup
x∈[0,1]d

sup
g∈Lip(B)

|Egn(x) − g(x)| = O

[

(

log n

nd

)
1

2+d

]

. (24)

Assume that C1) holds. Noting that

(log n)1/2

(nhn)d/2
=

(

log n

nd

)
1

2+d

15



and using (5) we obtain

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s.

[

(

log n

nd

)
1

2+d

]

. (25)

Combining (24) and (25) we derive (10).

Assume that C2) holds for some 0 < q < 2. Noting that

(logn)1/q

(nhn)d/2
=

(

logn

nd

)
1

2+d

× (logn)(2−q)/2q

and using (6) we obtain

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s.

[

(

logn

nd

)
1

2+d

× (logn)(2−q)/2q

]

. (26)

Combining (24) and (26) we derive (11).

Let ε > 0 be fixed and assume that C3) holds for some p > 2 which satisfies
condition (12). Applying the point 3) of Theorem 1 with θ1 = 1/(2 + d) and
θ2 = d/(2 + d) and noting that

vn =
na(log n)b

(nhn)d/2
= nε

(

logn

nd

)
1

2+d

⇐⇒
{

a = ε and b =
1

2

}

it follows

sup
x∈[0,1]d

|gn(x) − Egn(x)| = Oa.s.

[

nε
(

log n

nd

)
1

2+d

]

. (27)

Combining (24) and (27) we derive (13). The proof of Corollary 1 is complete.

4.5 Proof of Corollary 2

Let hn = n−d/(2+d) then Proposition 1 gives

sup
x∈[0,1]d

sup
g∈Lip(B)

|Egn(x) − g(x)| = O
[

n− d
2+d

]

. (28)

Let ε > 0 be fixed and assume that C3) holds for some p > 2 which satisfies
condition (14). Applying the point 1) of Theorem 2 and noting that

vn =
na

(nhn)d/2
= n− d

2+d
+ε ⇐⇒ a = ε

16



it follows that
∥

∥

∥

∥

∥

sup
x∈[0,1]d

|gn(x) − Egn(x)|
∥

∥

∥

∥

∥

p

= O
[

n− d
2+d

+ε
]

. (29)

Combining (28) and (29) we derive (15).

Since hn = n−d/(2+d) then (nhn)
−d/2 = hn. So, if C4) holds then combining

(28) and (9) we derive (16). The proof of Corollary 2 is complete.

4.6 Proof of Corollary 3

Let p > 2 be fixed. Using Rio’s inequality [30] (see also Dedecker [13]) we
obtain the bound

‖εkE|k|(ε0)‖ p

2
≤ 4

(

∫ α1,∞(|k|)

0

Qp
ε0

(u) du

)2/p

(30)

hence condition C
′
3) is more restrictive than condition C3).

By Serfling’s inequality (see McLeish [27] or Serfling [32]) we know that

‖εkE|k|(ε0)‖∞ ≤ 2‖ε0‖2
∞φ∞,1(|k|)

so condition C
′
1) is more restrictive than condition C1).

Now for 0 < q < 2 there exists C(q) > 0 (cf. Inequality (17) in [16]) such
that

∥

∥

∥

√

|εkE|k|(ε0)|
∥

∥

∥

2

ψβ(q)

≤ C(q)
√

φ∞,1(|k|). (31)

In [16] we used the following lemma which can be obtain by the expansion
of the exponential function.

Lemma 6 Let β be a positive real number and Z be a real random variable.
There exist positive universal constants Aβ and Bβ depending only on β such
that

Aβ sup
p>2

‖Z‖p
p1/β

≤ ‖Z‖ψβ
≤ Bβ sup

p>2

‖Z‖p
p1/β

.

Consider the coefficient ck(β) given by (3) and denote

dk(p) =

(

∫ α1,∞(|k|)

0

Qp
ε0(u) du

)1/p

then the following version of lemma 6 holds.

17



Lemma 7 Let β be a positive real number. There exist positive universal
constants Aβ and Bβ depending only on β such that for any k ∈ Z

d

Aβ sup
p>2

dk(p)

p1/β
≤ ck(β) ≤ Bβ sup

p>2

dk(p)

p1/β
.

Now combining lemmas 6 and 7 and inequality (30) there exists C
′
(q) > 0

such that
∥

∥

∥

√

|εkE|k|(ε0)|
∥

∥

∥

2

ψβ(q)

≤ C
′

(q) c2k(β(q)). (32)

Finally condition C
′
2) is more restrictive than condition C2) and the proof

of Corollary 3 is complete.
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