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Abstract

We prove the asymptotic normality of the kernel density estimator (introduced

by Rosenblatt (1956) and Parzen (1962)) in the context of stationary strongly

mixing random �elds. Our approach is based on the Lindeberg's method rather

than on Bernstein's small-block-large-block technique and coupling arguments

widely used in previous works on nonparametric estimation for spatial processes.

Our method allows us to consider only minimal conditions on the bandwidth pa-

rameter and provides a simple criterion on the strong mixing coe�cients which

do not depend on the bandwith.
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1 Introduction and main result

The kernel density estimator introduced by Rosenblatt [20] and Parzen [18] has received

considerable attention in nonparametric estimation of probability densities for time

series. If (Xi)i∈Z is a stationary sequence of real random variables with a marginal

density f then the kernel density estimator of f is de�ned for any positive integer n



and any x in R by

fn(x) =
1

nbn

n∑
i=1

K

(
x−Xi

bn

)
where K is a probability kernel and the bandwidth bn is a parameter which converges

slowly to zero such that nbn goes to in�nity (the bandwidth determines the amount

of smoothness of the estimator). For small bn we get a very rough estimate and for

large bn a smooth estimate. The literature dealing with the asymptotic properties of fn

when the observations (Xi)i∈Z are independent is very extensive (see Silverman [21]).

In particular, Parzen [18] proved that when (Xi)i∈Z is i.i.d. and the bandwidth bn

goes to zero such that nbn goes to in�nity then (nbn)1/2(fn(x0)−Efn(x0)) converges in

distribution to the normal law with zero mean and variance f(x0)
∫

R K
2(t)dt. Under

the same conditions on the bandwidth, this result was recently extended by Wu [24] for

causal linear processes with i.i.d. innovations and by Dedecker and Merlevède [7] for

strongly mixing sequences. Previously, Bosq, Merlevède and Peligrad [3] established a

central limit theorem for the kernel density estimator fn when the sequence (Xi)i∈Z is

assumed to be strongly mixing but the bandwith parameter bn is assumed to satisfy

bn ≥ Cn−1/3 log n (for some positive constant C) which is stronger than the bandwith

parameter assumption in [18], [7] and [24]. In this paper, we are going to establish

Parzen's central limit theorem (see Theorem 1) for random variables which show spatial

interaction (random �elds). The problem is not trivial since Zd does not have a natural

ordering for d ≥ 2. In particular, the martingale-di�erence method (Wu [24]) for time

series seems to be di�cult to apply for random �elds. In order to establish our main

result, we use the Lindeberg's method introduced in 1922 for the proof of the central

limit theorem for independent random variables and successfully adapted in the spatial

setting by Dedecker [6]. Our approach seems to be better than the Bernstein's small-

block-large-block technique and coupling arguments widely used in previous works on

nonparametric estimation for spatial processes (see [4], [5], [12], [22]) since we are able

to assume only minimal conditions on the bandwidth parameter and a simple criterion

on the strong mixing coe�cients which do not depend on the bandwith. Over the last

few years nonparametric estimation for random �elds (or spatial processes) was given

increasing attention (see Guyon [11]). In fact, spatial data arise in various areas of

research including econometrics, image analysis, meteorology and geostatistics. Some

key references on nonparametric estimation for random �elds are Biau [1], Carbon et

al. [4], Carbon et al. [5], Hallin et al. [12], [13], Tran [22], Tran and Yakowitz [23] and

Yao [25] who have investigated nonparametric density estimation for random �elds and
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Biau and Cadre [2], El Machkouri [9], El Machkouri and Stoica [10], Hallin et al. [14]

and Lu and Chen [15], [16] who have studied spatial prediction and spatial regression

estimation.

Let d be a positive integer and let (Xi)i∈Zd be a �eld of identically distributed real

random variables with a marginal density f . Given two σ-algebras U and V of F ,
di�erent measures of their dependence have been considered in the literature. We are

interested by one of them. The α-mixing coe�cient has been introduced by Rosenblatt

[20] de�ned by

α(U ,V) = sup{|P(A ∩B)− P(A)P(B)| , A ∈ U , B ∈ V}.

In the sequel, we consider the strong mixing coe�cients α1,∞(n) de�ned for each posi-

tive integer n by

α1,∞(n) = sup {α(σ(Xk),FΓ), k ∈ Zd, Γ ⊂ Zd, ρ(Γ, {k}) ≥ n},

where FΓ = σ(Xi ; i ∈ Γ) and the distance ρ is de�ned for any subsets Γ1 and Γ2

of Zd by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2} with |i − j| = max1≤s≤d |is − js|
for any i and j in Zd. We say that the random �eld (Xi)i∈Zd is strongly mixing if

limn→+∞ α1,∞(n) = 0. The class of mixing random �elds in the above sense is very

large (one can refer to Guyon [11] or Doukhan [8] for examples) and we recall that

Dedecker [6] obtained a central limit theorem for the stationary random �eld (Xi)i∈Zd

provided that X0 has zero mean and �nite variance and

∑
k∈Zd

∫ α1,∞(|k|)

0

Q2
X0

(u)du < +∞

where QX0 is the quantile function de�ned for any u in [0, 1] by

QX0(u) = inf{t ≥ 0 ; P(|X0| > t) ≤ u}.

We consider the density estimator of f de�ned for any positive integer n and any x in

R by

fn(x) =
1

ndbn

∑
i∈Λn

K

(
x−Xi

bn

)
where bn is the bandwidth parameter, Λn denotes the set {1, ..., n}d and K is a probabil-

ity kernel. Our aim is to provide a su�cient condition on the strong mixing coe�cients

α1,∞(n) for (ndbn)1/2(fn(xi)−Efn(xi))1≤i≤k, (xi)1≤i≤k ∈ Rk, k ∈ N∗, to converge in law
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to a multivariate normal distribution (Theorem 1) under minimal conditions on the

bandwidths (that is bn goes to zero and ndbn goes to in�nity).

We consider the following assumptions:

(A1) The marginal probability distribution of each Xk is absolutely continuous with

continuous positive density function f .

(A2) The joint probability distribution of each (X0, Xk) is absolutely continuous with

continuous joint density f0,k.

(A3) K is a probability kernel with compact support and
∫

R K
2(u) du <∞.

(A4) The bandwidth bn converges to zero and ndbn goes to in�nity.

Our main result is the following.

Theorem 1 Assume that (A1), (A2), (A3) and (A4) hold and

+∞∑
m=1

m2d−1 α1,∞(m) < +∞. (1)

Then for any positive integer k and any distinct points x1, ..., xk in R,

(ndbn)1/2

 fn(x1)− Efn(x1)
...

fn(xk)− Efn(xk)

 L−−−−−→
n→+∞

N (0, V ) (2)

where V is a diagonal matrix with diagonal elements vii = f(xi)
∫

R K
2(u)du.

Remark 1. A replacement of Efn(xi) by f(xi) for any 1 ≤ i ≤ k in (2) is a classical

problem in density estimation theory. For example, if f is assumed to be Lipschitz and

if
∫

R |u||K(u)|du < ∞ then |Efn(xi) − f(xi)| = O(bn) and thus the centering Efn(xi)

may be changed to f(xi) without a�ecting the above result provided that ndb3
n con-

verges to zero.

Remark 2. Theorem 1 is an extension of Theorem 3.1 by Bosq, Merlevède and

Peligrad [3]. In fact, using a di�erent approach, the authors obtained the same result

for d = 1 with an additional condition on the bandwith parameter (that is, there exists

a positive constant C such that bn ≥ C n−1/3 log n). However, the condition (1) with

d = 1 is slightly more restrictive than the condition
∑

m>n α1,∞(m) = o(n−1) obtained

by Dedecker and Merlevède ([7], Corollary 4). We conjecture that Theorem 1 still holds

under the condition
∑

m>nm
d−1 α1,∞(m) = o(n−d).
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2 Proofs

Proof of Theorem 1. Without loss of generality, we consider only the case k = 2

and we refer to x1 and x2 as x and y (x 6= y). Let λ1 and λ2 be two constants such

that λ2
1 + λ2

2 = 1 and denote

Sn = λ1(ndbn)1/2(fn(x)− Efn(x)) + λ2(ndbn)1/2(fn(y)− Efn(y)) =
∑
i∈Λn

∆i

nd/2

where ∆i = λ1Zi(x) + λ2Zi(y) and for any z in R,

Zi(z) =
1√
bn

(
K

(
z −Xi

bn

)
− EK

(
z −Xi

bn

))
.

We consider the notations

η = (λ2
1f(x) + λ2

2f(y))σ2 and σ2 =

∫
R
K2(u)du. (3)

The proof of the following technical result is postponed to the annex.

Lemma 1 E(∆2
0) converges to η and E|∆0∆i| = O(bn) for any i in Zd\{0}.

In order to prove the convergence in distribution of Sn to
√
ητ0 where τ0 ∼ N (0, 1),

we are going to follow the Lindeberg's method used in the proof of the central limit

theorem for stationary random �elds by Dedecker [6]. Let us note that several previ-

ous asymptotic results for kernel density estimates in the context of spatial processes

were established using the so-called Bernstein's small-block-large-block technique and

coupling arguments which lead to restrictive conditions on the bandwith parameter

(see for example [4], [5], [12], [22]). Our approach seems to be better since we obtain

a central limit theorem when the bandwith satis�es only Assumption (A4).

Let µ be the law of the stationary real random �eld (Xk)k∈Zd and consider the projec-

tion π0 from RZd
to R de�ned by π0(ω) = ω0 and the family of translation operators

(T k)k∈Zd from RZd
to RZd

de�ned by (T k(ω))i = ωi+k for any k ∈ Zd and any ω in RZd
.

Denote by B the Borel σ-algebra of R. The random �eld (π0 ◦ T k)k∈Zd de�ned on the

probability space (RZd
,BZd

, µ) is stationary with the same law as (Xk)k∈Zd , hence, with-

out loss of generality, one can suppose that (Ω,F ,P) = (RZd
,BZd

, µ) and Xk = π0 ◦T k.
On the lattice Zd we de�ne the lexicographic order as follows: if i = (i1, ..., id) and

j = (j1, ..., jd) are distinct elements of Zd, the notation i <lex j means that either
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i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q < p. Let the sets

{V M
i ; i ∈ Zd , M ∈ N∗} be de�ned as follows:

V 1
i = {j ∈ Zd ; j <lex i},

and for M ≥ 2

V M
i = V 1

i ∩ {j ∈ Zd ; |i− j| ≥M} where |i− j| = max
1≤l≤d

|il − jl|.

For any subset Γ of Zd de�ne FΓ = σ(Xi ; i ∈ Γ) and set

EM(Xi) = E(Xi|FVM
i

), M ∈ N∗.

Let g be a one to one map from [1,M ] ∩ N∗ to a �nite subset of Zd and (ξi)i∈Zd a real

random �eld. For all integers k in [1,M ], we denote

Sg(k)(ξ) =
k∑
i=1

ξg(i) and Scg(k)(ξ) =
M∑
i=k

ξg(i)

with the convention Sg(0)(ξ) = Scg(M+1)(ξ) = 0. To describe the set Λn = {1, ..., n}d, we
de�ne the one to one map g from [1, nd] ∩ N∗ to Λn by: g is the unique function such

that g(k) <lex g(l) for 1 ≤ k < l ≤ nd. From now on, we consider a �eld (τi)i∈Zd of

i.i.d. random variables independent of (Xi)i∈Zd such that τ0 has the standard normal

law N (0, 1). We introduce the �elds Y and γ de�ned for any i in Zd by

Yi =
∆i

nd/2
and γi =

τi
√
η

nd/2

where η is de�ned by (3).

Let h be any function from R to R. For 0 ≤ k ≤ l ≤ nd + 1, we introduce

hk,l(Y ) = h(Sg(k)(Y )+Scg(l)(γ)). With the above convention we have that hk,nd+1(Y ) =

h(Sg(k)(Y )) and also h0,l(Y ) = h(Scg(l)(γ)). In the sequel, we will often write hk,l instead

of hk,l(Y ). We denote by B4
1(R) the unit ball of C4

b (R): h belongs to B4
1(R) if and only

if it belongs to C4(R) and satis�es max0≤i≤4 ‖h(i)‖∞ ≤ 1.

It su�ces to prove that for all h in B4
1(R),

E
(
h
(
Sg(nd)(Y )

))
−−−−−→
n→+∞

E (h (τ0
√
η)) .
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We use Lindeberg's decomposition:

E
(
h
(
Sg(nd)(Y )

)
− h (τ0

√
η)
)

=
nd∑
k=1

E (hk,k+1 − hk−1,k) .

Now,

hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k.

Applying Taylor's formula we get that:

hk,k+1 − hk−1,k+1 = Yg(k)h
′

k−1,k+1 +
1

2
Y 2
g(k)h

′′

k−1,k+1 +Rk

and

hk−1,k+1 − hk−1,k = −γg(k)h
′

k−1,k+1 −
1

2
γ2
g(k)h

′′

k−1,k+1 + rk

where |Rk| ≤ Y 2
g(k)(1∧ |Yg(k)|) and |rk| ≤ γ2

g(k)(1∧ |γg(k)|). Since (Y, τi)i 6=g(k) is indepen-

dent of τg(k), it follows that

E
(
γg(k)h

′

k−1,k+1

)
= 0 and E

(
γ2
g(k)h

′′

k−1,k+1

)
= E

( η
nd
h
′′

k−1,k+1

)
Hence, we obtain

E
(
h(Sg(nd)(Y ))− h (τ0

√
η)
)

=
nd∑
k=1

E(Yg(k)h
′

k−1,k+1)

+
nd∑
k=1

E

((
Y 2
g(k) −

η

nd

) h′′k−1,k+1

2

)

+
nd∑
k=1

E (Rk + rk) .

Let 1 ≤ k ≤ nd be �xed. Noting that ∆0 is bounded by 4‖K‖∞/
√
bn and applying

Lemma 1, we derive

E|Rk| ≤
E|∆0|3

n3d/2
= O

(
1

(n3d bn)1/2

)
and

E|rk| ≤
E|γ0|3

n3d/2
≤ η3/2E|τ0|3

n3d/2
= O

(
1

n3d/2

)
.

Consequently, we obtain

nd∑
k=1

E (|Rk|+ |rk|) = O

(
1

(ndbn)1/2
+

1

nd/2

)
= o(1).
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Now, it is su�cient to show

lim
n→+∞

nd∑
k=1

(
E(Yg(k)h

′

k−1,k+1) + E

((
Y 2
g(k) −

η

nd

) h′′k−1,k+1

2

))
= 0. (4)

First, we focus on
∑nd

k=1 E
(
Yg(k)h

′

k−1,k+1

)
. For all M in N∗ and all integer k in [1, nd],

we de�ne

EM
k = g([1, k] ∩ N∗) ∩ V M

g(k) and SMg(k)(Y ) =
∑
i∈EM

k

Yi.

For any function Ψ from R to R, we de�ne ΨM
k−1,l = Ψ(SMg(k)(Y ) + Scg(l)(γ)) (we are

going to apply this notation to the successive derivatives of the function h).

For any integer n, we de�ne

mn = max


[
b
−1
2d
n

]
,


 1

b2
n

∑
|i|>

»
b
−1
2d

n

– |i|d α1,∞(|i|)


1
2d

+ 1


where [ . ] denotes the integer part function. The following technical lemma is the

spatial version of a result by Bosq, Merlevède and Peligrad ([3], pages 88-89). In order

to be self-contained, the proof is done in the appendix.

Lemma 2 Under Assumption (A4) and the mixing condition (1), we have

md
n →∞, md

nbn → 0 and
1

md
nbn

∑
|i|>mn

|i|d α1,∞(|i|)→ 0. (5)

Our aim is to show that

lim
n→+∞

nd∑
k=1

E
(
Yg(k)h

′

k−1,k+1 − Yg(k)

(
Sg(k−1)(Y )− Smn

g(k)(Y )
)
h
′′

k−1,k+1

)
= 0.

First, we use the decomposition

Yg(k)h
′

k−1,k+1 = Yg(k)h
′mn
k−1,k+1 + Yg(k)

(
h
′

k−1,k+1 − h
′mn
k−1,k+1

)
.

We consider a one to one map m from [1, |Emn
k |] ∩ N∗ to Emn

k and such that |m(i) −
g(k)| ≤ |m(i − 1) − g(k)|. This choice of m ensures that Sm(i)(Y ) and Sm(i−1)(Y ) are

F
V
|m(i)−g(k)|
g(k)

-measurable. The fact that γ is independent of Y imply that

E
(
Yg(k)h

′ (
Scg(k+1)(γ)

))
= 0.
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Therefore ∣∣∣E(Yg(k)h
′mn
k−1,k+1

)∣∣∣ =

∣∣∣∣∣∣
|Emn

k |∑
i=1

E
(
Yg(k) (θi − θi−1)

)∣∣∣∣∣∣ (6)

where θi = h
′
(
Sm(i)(Y ) + Scg(k+1)(γ)

)
.

Since Sm(i)(Y ) and Sm(i−1)(Y ) are F
V
|m(i)−g(k)|
g(k)

-measurable, we can take the conditional

expectation of Yg(k) with respect to F
V
|m(i)−g(k)|
g(k)

in the right hand side of (6). On the

other hand the function h
′
is 1-Lipschitz, hence

|θi − θi−1| ≤ |Ym(i)|.

Consequently, ∣∣E (Yg(k) (θi − θi−1)
)∣∣ ≤ E|Ym(i)E|m(i)−g(k)|

(
Yg(k)

)
|

and ∣∣∣E(Yg(k)h
′mn
k−1,k+1

)∣∣∣ ≤ |Emn
k |∑
i=1

E|Ym(i)E|m(i)−g(k)|(Yg(k))|.

Hence, ∣∣∣∣∣∣
nd∑
k=1

E
(
Yg(k)h

′mn
k−1,k+1

)∣∣∣∣∣∣ ≤ 1

nd

nd∑
k=1

|Emn
k |∑
i=1

E|∆m(i)E|m(i)−g(k)|(∆g(k))|

≤
∑
|j|≥mn

‖∆jE|j|(∆0)‖1.

For any j in Zd, we have

‖∆jE|j|(∆0)‖1 = Cov
(
|∆j|

(
IE|j|(∆0)≥0 − IE|j|(∆0)<0

)
,∆0

)
.

So, applying Rio's covariance inequality (cf. [19], Theorem 1.1), we obtain

‖∆jE|j|(∆0)‖1 ≤ 4

∫ α1,∞(|j|)

0

Q2
∆0

(u)du

where Q∆0 is de�ned by Q∆0(u) = inf{t ≥ 0 ; P(|∆0| > t) ≤ u} for any u in [0, 1].

Since ∆0 is bounded by 4‖K‖∞/
√
bn, we have

Q∆0(u) ≤ 4‖K‖∞√
bn

and ‖∆jE|j|(∆0)‖1 ≤
64‖K‖2

∞
bn

α1,∞(|j|).
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Finally, we derive∣∣∣∣∣∣
nd∑
k=1

E
(
Yg(k)h

′mn
k−1,k+1

)∣∣∣∣∣∣ ≤ 64‖K‖2
∞

bn

∑
|j|≥mn

α1,∞(|j|)

≤ 64‖K‖2
∞

md
nbn

∑
|j|≥mn

|j|d α1,∞(|j|)

= o(1) by (5).

Applying again Taylor's formula, it remains to consider

Yg(k)(h
′

k−1,k+1 − h
′mn
k−1,k+1) = Yg(k)(Sg(k−1)(Y )− Smn

g(k)(Y ))h
′′

k−1,k+1 +R
′

k,

where |R′k| ≤ 2|Yg(k)(Sg(k−1)(Y ) − Smn

g(k)(Y ))(1 ∧ |Sg(k−1)(Y ) − Smn

g(k)(Y )|)|. Denoting

Wn = {−mn + 1, ...,mn − 1}d and W ∗
n = Wn\{0}, it follows that

nd∑
k=1

E|R′k| ≤ 2E

(
|∆0|

(∑
i∈Wn

|∆i|

)(
1 ∧ 1

nd/2

∑
i∈Wn

|∆i|

))

= 2E

∆2
0 +

∑
i∈W ∗n

|∆0∆i|

(1 ∧ 1

nd/2

∑
i∈Wn

|∆i|

)
≤ 2

nd/2

∑
i∈Wn

E(∆2
0|∆i|) + 2

∑
i∈W ∗n

E|∆0∆i|

≤ 8‖K‖∞
(ndbn)1/2

∑
i∈Wn

E(|∆0∆i|) + 2
∑
i∈W ∗n

E|∆0∆i| since ∆0 ≤
4‖K‖∞√

bn
a.s.

=
8E(∆2

0)‖K‖∞
(ndbn)1/2

+ 2

(
1 +

4‖K‖∞
(ndbn)1/2

) ∑
i∈W ∗n

E(|∆0∆i|)

= O

(
1

(ndbn)1/2
+md

nbn

(
1 +

1

(ndbn)1/2

))
(by Lemma 1)

= o(1) by (5).

So, we have shown that

lim
n→+∞

nd∑
k=1

E
(
Yg(k)h

′

k−1,k+1 − Yg(k)(Sg(k−1) − Smn

g(k))h
′′

k−1,k+1

)
= 0.

In order to obtain (4) it remains to control

F0 = E

 nd∑
k=1

h
′′

k−1,k+1

(
Y 2
g(k)

2
+ Yg(k)

(
Sg(k−1)(Y )− Smn

g(k)(Y )
)
− η

2nd

) .
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We consider the following sets:

Λmn
n = {i ∈ Λn ; ρ({i}, ∂Λn) ≥ mn} and Imn

n = {1 ≤ i ≤ nd ; g(i) ∈ Λmn
n },

and the function Ψ from RZd
to R such that

Ψ(∆) = ∆2
0 +

∑
i∈V 1

0 ∩Wn

2∆0∆i where Wn = {−mn + 1, ...,mn − 1}d.

For 1 ≤ k ≤ nd, we set D
(n)
k = η−Ψ ◦ T g(k)(∆). By de�nition of Ψ and of the set Imn

n ,

we have for any k in Imn
n

Ψ ◦ T g(k)(∆) = ∆2
g(k) + 2∆g(k)(Sg(k−1)(∆)− Smn

g(k)(∆)).

Therefore for k in Imn
n

D
(n)
k

nd
=

η

nd
− Y 2

g(k) − 2Yg(k)(Sg(k−1)(Y )− Smn

g(k)(Y )).

Since limn→+∞ n
−d|Imn

n | = 1, it remains to consider

F1 =

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1D
(n)
k

∣∣∣∣∣∣ .
Applying Lemma 1, we have

F1 ≤

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1(∆2
g(k) − E(∆2

0))

∣∣∣∣∣∣+ |η − E(∆2
0)|+ 2

∑
j∈V 1

0 ∩Wn

E|∆0∆j|

≤

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1(∆2
g(k) − E(∆2

0))

∣∣∣∣∣∣+ o(1) +O(md
nbn),

it su�ces to prove that

F2 =

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1(∆2
g(k) − E(∆2

0))

∣∣∣∣∣∣
goes to zero as n goes to in�nity. Let M > 0 be �xed. We have F2 ≤ F

′
2 + F

′′
2 where

F
′

2 =

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1

(
∆2
g(k) − EM

(
∆2
g(k)

))∣∣∣∣∣∣
11



and

F
′′

2 =

∣∣∣∣∣∣E
 1

nd

nd∑
k=1

h
′′

k−1,k+1

(
EM

(
∆2
g(k)

)
− E(∆2

0)
)∣∣∣∣∣∣

where we recall the notation EM

(
∆2
g(k)

)
= E

(
∆2
g(k)|FVM

g(k)

)
. The following result is a

Ser�ing type inequality which can be found in [17].

Lemma 3 Let U and V be two σ-algebras and let X be a random variable measurable

with respect to U . If 1 ≤ p ≤ r ≤ ∞ then

‖E(X|V)− E(X)‖p ≤ 2(21/p + 1) (α(U ,V))
1
p
− 1

r ‖X‖r.

Applying Lemma 3 and keeping in mind that ∆0 is bounded by 4‖K‖∞/
√
bn, we derive

F
′′

2 ≤ ‖EM

(
∆2

0

)
− E(∆2

0)‖1 ≤
96‖K‖2

∞
bn

α1,∞(M)

In the other part,

F
′

2 ≤
1

nd

nd∑
k=1

(
J1
k (M) + J2

k (M)
)

where

J1
k (M) =

∣∣∣E(h′′Mk−1,k+1 ◦ T−g(k)
(
∆2

0 − EM

(
∆2

0

)))∣∣∣ = 0

since h
′′M
k−1,k+1 ◦ T−g(k) is FV M

0
-measurable and

J2
k (M) =

∣∣∣E((h′′k−1,k+1 ◦ T−g(k) − h′′Mk−1,k+1 ◦ T−g(k)
) (

∆2
0 − EM

(
∆2

0

)))∣∣∣
≤ E

2 ∧
∑
|i|<M

|∆i|
nd/2

∆2
0


≤ 4‖K‖∞ E(∆2

0)

(ndbn)1/2
+

4‖K‖∞
(ndbn)1/2

∑
|i|<M
i 6=0

E|∆i∆0| since ∆0 ≤
4‖K‖∞√

bn
a.s.

= O

(
1

(ndbn)1/2
+
Md
√
bn

nd/2

)
(by Lemma 1)

So, putting M = b
−1

2d−1
n and keeping in mind that

∑
m≥0m

2d−1 α1,∞(m) < +∞, we

derive

F2 = O
(
M2d−1 α1,∞(M)

)
+O

1 + b
d−1
2d−1
n

(ndbn)1/2

 = o(1).

The proof of Theorem 1 is complete.
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3 Appendix

Proof of Lemma 1. For any i in Zd and any z in R, we note Ki(z) = K
(
z−Xi

bn

)
. So, if

s and t belongs to R, we have

E(Z0(s)Z0(t)) =
1

bn

(
E (K0(s)K0(t))− EK0(s)EK0(t)

)
and

lim
n→+∞

1

bn
E (K0(s)K0(t)) = lim

n→+∞

∫
R
K (v)K

(
v +

t− s
bn

)
f(s− vbn)dv = δst f(s)σ2

where δst = 1 if s = t and δst = 0 if s 6= t. We have also

lim
n→+∞

1

bn
EK0(s)EK0(t) = lim

n→+∞
bn

∫
R
K(v)f(s− vbn)dv

∫
R
K(w)f(t− wbn)dw = 0.

So, we obtain

E(∆2
0) = λ2

1E(Z2
0(x)) + λ2

2E(Z2
0(y)) + 2λ1λ2E(Z0(x)Z0(y)) −−−−−→

n→+∞
η.

Let i 6= 0 be �xed in Zd. We have

E|∆0∆i| ≤ λ2
1E|Z0(x)Zi(x)|+λ2

2E|Z0(y)Zi(y)|+λ1λ2E|Z0(x)Zi(y)|+λ1λ2E|Z0(y)Zi(x)|.
(7)

For any s and t in R,

E|Z0(s)Zi(t)| ≤
1

bn
E
∣∣K0(s)Ki(t)

∣∣+
1

bn
E
∣∣K0(s)

∣∣E∣∣K0(t)
∣∣.

Moreover, using Assumptions (A2) and (A3), we have

1

bn
E
∣∣K0(s)

∣∣E∣∣K0(t)
∣∣ = bn

∫
R
|K(u)|f(s− ubn)du

∫
R
|K(v)|f(t− vbn)dv = O(bn)

and

1

bn
E
∣∣K0(s)Ki(t)

∣∣ = bn

∫∫
R2

∣∣K (w1)K (w2)
∣∣f0,i(s− w1bn, t− w2bn)dw1dw2 = O(bn).

So, we obtain for any s and t in R

E|Z0(s)Zi(t)| = O(bn). (8)

The proof of Lemma 1 is completed by combining (7) and (8).
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Proof of Lemma 2. We follow the proof by Bosq, Merlevède and Peligrad ([3], pages

88-89). First, md
n goes to in�nity since bn goes to zero and mn ≥

[
b
− 1

2d
n

]
. For any

positive integer m, we consider

ψ(m) =
∑
|i|>m

|i|d α1,∞(|i|).

Since the mixing condition (1) is equivalent to
∑

k∈Zd |k|d α1,∞(|k|) <∞, we know that

ψ(m) converges to zero as m goes to in�nity. Moreover, we have

md
nbn ≤ max

{√
bn, Cd

(√
ψ
([
b
− 1

2d
n

])
+ 2dbn

)}
−−−−−→
n→+∞

0

where Cd is some positive constant depending on the dimension d. We have also

md
n ≥

1

bn

√
ψ
([
b
− 1

2d
n

])
≥ 1

bn

√
ψ (mn) since

[
b
− 1

2d
n

]
≤ mn.

Finally, we obtain

1

md
nbn

∑
|i|>mn

|i|d α1,∞(|i|) ≤
√
ψ(mn) −−−−−→

n→+∞
0.

The proof of Lemma 2 is complete.
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