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Abstract

We establish the asymptotic normality of the regression estimator
in a fixed-design setting when the errors are given by a field of depen-
dent random variables. The result applies to martingale-difference or
strongly mixing random fields. On this basis, a statistical test that
can be applied to image analysis is also presented.
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1 Introduction and notations

Our aim in this paper is to establish the asymptotic normality of a regression
estimator in a fixed-design setting when the errors are given by a station-
ary field of random variables which show spatial interaction. Let Z

d, d ≥ 1
denote the integer lattice points in the d-dimensional Euclidean space. By
a stationary random field we mean any family (εk)k∈Zd of real-valued ran-
dom variables defined on a probability space (Ω,F ,P) such that for any
(k, n) ∈ Z

d × N
∗ and any (i1, ..., in) ∈ (Zd)n, the random vectors (εi1, ..., εin)

and (εi1+k, ..., εin+k) have the same law. The regression model which we are
interested in is

Yi = g(i/n) + εi, i ∈ Λn = {1, ..., n}d (1)

where g is an unknown smooth function and (εi)i∈Zd is a zero mean and
square-integrable stationary random field. Let K be a probability kernel



defined on R
d and (hn)n≥1 a sequence of positive numbers which converges

to zero and which satisfies (nhn)n≥1 goes to infinity. We estimate the function
g by the kernel-type estimator gn defined for any x in [0, 1]d by

gn(x) =

∑

i∈Λn

YiK

(

x− i/n

hn

)

∑

i∈Λn

K

(

x− i/n

hn

) . (2)

In a previous paper, El Machkouri [10] obtained strong convergence of the
estimator gn(x) with optimal rate. However, most of existing theoretical
nonparametric results for dependent random variables pertain to time series
(see Bosq [4]) and relatively few generalisations to the spatial domain are
available. Key references on this topic are Biau [2], Carbon et al. [5], Carbon
et al. [6], Hallin et al. [12], [13], Tran [26], Tran and Yakowitz [27] and
Yao [29] who have investigated nonparametric density estimation for random
fields and Altman [1], Biau and Cadre [3], Hallin et al. [14] and Lu and
Chen [17], [18] who have studied spatial prediction and spatial regression
estimation.
Let µ be the law of the stationary real random field (εk)k∈Zd and consider
the projection f from R

Z
d

to R defined by f(ω) = ω0 and the family of
translation operators (T k)k∈Zd from R

Zd
to R

Zd
defined by (T k(ω))i = ωi+k

for any k ∈ Z
d and any ω in R

Z
d
. Denote by B the Borel σ-algebra of R.

The random field (f ◦ T k)k∈Zd defined on the probability space (RZ
d
,BZ

d
, µ)

is stationary with the same law as (εk)k∈Zd, hence, without loss of generality,
one can suppose that (Ω,F ,P) = (RZ

d
,BZ

d
, µ) and εk = f ◦ T k. An element

A of F is said to be invariant if T k(A) = A for any k ∈ Z
d. We denote by

I the σ-algebra of all measurable invariant sets. On the lattice Z
d we define

the lexicographic order as follows: if i = (i1, ..., id) and j = (j1, ..., jd) are
distinct elements of Z

d, the notation i <lex j means that either i1 < j1 or
for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q < p. Let the sets
{V k

i ; i ∈ Z
d , k ∈ N

∗} be defined as follows:

V 1
i = {j ∈ Z

d ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Z
d ; |i− j| ≥ k} where |i− j| = max

1≤l≤d
|il − jl|.

For any subset Γ of Z
d define FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV
|k|
i

), k ∈ V 1
i .
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Note that Dedecker [8] established the central limit theorem for any station-
ary square-integrable random field (εk)k∈Zd which satisfies the condition

∑

k∈V 1
0

‖εkE|k|(ε0)‖1 <∞. (3)

A real random field (Xk)k∈Zd is said to be a martingale-difference random
field if for any m in Z

d, E(Xm | σ(Xk ; k <lex m ) ) = 0 a.s. The condition
(3) is satisfied by martingale-difference random fields. Nahapetian and Pet-
rosian [21] defined a large class of Gibbs random fields (ξk)k∈Zd satisfying the
stronger martingale-difference property: E( ξm | σ( ξk ; k 6= m ) ) = 0 a.s. for
any m in Z

d. Moreover, for these models, phase transition may occur (see
[19],[20]).

Given two sub-σ-algebras U and V, different measures of their dependence
have been considered in the literature. We are interested by one of them. The
strong mixing (or α-mixing) coefficient has been introduced by Rosenblatt
[25] and is defined by

α(U ,V) = sup{|P(U ∩ V ) − P(U)P(V )|, U ∈ U , V ∈ V}.

Denote by ♯Γ the cardinality of any subset Γ of Z
d. In the sequel, we shall

use the following non-uniform mixing coefficients defined for any (k, l, n) in
(N∗ ∪ {∞})2 × N by

αk,l(n) = sup {α(FΓ1,FΓ2), ♯Γ1 ≤ k, ♯Γ2 ≤ l, ρ(Γ1,Γ2) ≥ n},

where the distance ρ is defined by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}.
We say that the random field (εk)k∈Zd is strongly mixing (or α-mixing) if
there exists a pair (k, l) in (N∗ ∪ {∞})2 such that limn→∞ αk,l(n) = 0.
The condition (3) is satisfied by strongly mixing random fields. For example,
one can construct stationary Gaussian random fields with a sufficiently large
polynomial decay of correlation such that (5) holds ([9], p. 59, Corollary 2).

2 Main results

First, we recall the concept of stability introduced by Rényi [22].

Definition. Let (Xn)n≥0 be a sequence of real random variables and let X be
defined on some extension of the underlying probability space (Ω,A,P). Let
U be a sub-σ-algebra of A. Then (Xn)n≥0 is said to converge U-stably to X
if for any continuous bounded function ϕ and any bounded and U-measurable
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variable Z we have limn→∞E (ϕ(Xn)Z) = E (ϕ(X)Z).

For any B > 0, we denote by C1(B) the set of real functions f continuously
differentiable on [0, 1]d such that

sup
x∈[0,1]d

max
α∈M

|Dα(f)(x)| ≤ B,

where

Dα(f) =
∂α̂f

∂xα1
1 ... ∂x

αd
d

and M = {α = (αi)i ∈ N
d ; α̂ =

d
∑

i=1

αi ≤ 1}.

In the sequel we denote ‖x‖ = max1≤k≤d |xk| for any x = (x1, ..., xd) ∈ [0, 1]d.
We make the following assumptions on the regression function g and the
probability kernel K:

A1) The probability kernel K fulfils
∫

K(u) du = 1 and
∫

K2(u) du < ∞.
K is also symmetric, non-negative, supported by [−1, 1]d and satisfies a
Lipschitz condition |K(x)−K(y)| ≤ r‖x−y‖ for any x, y ∈ [−1, 1]d and
some r > 0. In addition there exists c, C > 0 such that c ≤ K(x) ≤ C
for any x ∈ [−1, 1]d.

A2) There exists B > 0 such that g belongs to C1(B).

We consider also the notations:

σ2 =

∫

Rd

K2(u) du and η =
∑

k∈Zd

E(ε0εk|I).

The following proposition (see [10]) gives the convergence of Egn(x) to g(x).

Proposition 1 Assume that the assumption A2) holds then

sup
x∈[0,1]d

sup
g∈C1(B)

|Egn(x) − g(x)| = O [hn] .

By proposition 3 in [8], we know that under condition (3), the random vari-
able η belongs to L1. Our main result is the following.

Main theorem. If nhd+1
n → ∞ and the condition (3) holds then for any

k ∈ N
∗ and any distinct points x1, ..., xk in [0, 1]d, the sequence

(nhn)d/2







gn(x1) −Egn(x1)
...

gn(xk) −Egn(xk)







L−−−−−→
n→+∞

σ
√
η







τ (1)

...
τ (k)






(I-stably)
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where σ2 =
∫

Rd K
2(u) du and (τ (i))1≤i≤k ∼ N (0, Ik) where Ik is the identity

matrix. Moreover, (τ (i))1≤i≤k is independent of η =
∑

k∈Zd E(ε0εk|I).

As a consequence of this theorem, we obtain the following result for strongly
mixing random fields.

Corollary. Let us consider the following assumption

∑

k∈Zd

∫ α1,∞(|k|)

0

Q2
ε0

(u) du <∞ (4)

where Qε0 denotes the cadlag inverse of the function Hε0 : t → P (|ε0| > t).
Then (4) implies (3) and also the main theorem.

Remark. If ε0 is (2 + δ)-integrable for some δ > 0 then the condition

∞
∑

m=1

md−1α
δ/(2+δ)
1,∞ (m) <∞ (5)

is more restrictive than condition (4).

In order to use the main theorem for establishing confidence intervals, one
needs to estimate η. It is done by the following result established in [8].

Proposition 2 Assume that the condition (3) holds. For any N ∈ N
∗, set

GN = {(i, j) ∈ Λn × Λn ; |i − j| ≤ N}. Let ρn be a sequence of positive
integers satisfying:

lim
n→+∞

ρn = +∞ and lim
n→+∞

ρ3d
n E(ε2

0(1 ∧ n−dε2
0) = 0

Then

1

nd
max



1,
∑

(i,j)∈Gρn

εiεj





P−−−−−→
n→+∞

η.

3 Proofs

3.1 Proof of the main theorem

Let x in [0, 1]d and n ≥ 1 be fixed. For any i in Λn, denote

ai(x) = K

(

x− i/n

hn

)

and bi(x) =
ai(x)

√

∑

j∈Λn
a2

j(x)
.
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Denote also

vn(x) =

√

(nhn)d

∑

i∈Λn
ai(x)

×
√

∑

i∈Λn
a2

i (x)
∑

i∈Λn
ai(x)

.

Without loss of generality, we consider the case k = 2 and we refer to x1 and
x2 as x and y. Let λ1 and λ2 be two real numbers such that λ2

1 + λ2
2 = 1 and

let x, y ∈ [0, 1]d such that x 6= y. One can notice that

(nhn)d/2

σ
[λ1(gn(x) −Egn(x)) + λ2(gn(y) −Egn(y))] =

∑

i∈Λn

s̃i(x, y) εi

where s̃i(x, y) = (λ1vn(x)bi(x) + λ2vn(y)bi(y))/σ.

Lemma 1 Let x, y ∈ [0, 1]d be fixed. If nhd+1
n → ∞ then

lim
n→+∞

1

(nhn)d

∑

i∈Λn

ai(x)ai(y) = δxy σ
2 (6)

and

lim
n→+∞

1

(nhn)d

∑

i∈Λn

ai(x) = 1 (7)

where δxy equals 1 if x = y and 0 if x 6= y.

Proof of Lemma 1. In the sequel, we denote ψ(u) = 1
hd

n
K
(

x−u
hn

)

K
(

y−u
hn

)

and In(x, y) =
∫

[0,1]d
ψ(u) du, we have

In(x, y) =
∑

i∈Λn

∫

Ri/n

ψ(u) du

=
∑

i∈Λn

λ(Ri/n)ψ(ci) with ci ∈ Ri/n

=
∑

i∈Λn

n−dψ(ci)

where Ri/n =](i1 − 1)/n, i1/n] × ...×](id − 1)/n, id/n] and λ is the Lebesgue
measure on R

d. Let ϕx(u) = (x− u)/hn, for any v in [0, 1]d, we have

d(K ◦ ϕx)(u)(v) =
−1

hn

d
∑

i=1

vi

d
∑

j=1

∂K

∂uj
(ϕx(u)).

Using the assumptions on the kernel K and noting that

dψ(u) =
1

hd
n

[

d(K ◦ ϕx)(u) ×K(ϕy(u)) + d(K ◦ ϕy)(u) ×K(ϕx(u))

]
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we derive that there exists c > 0 such that supu∈[0,1]d ‖dψ(u)‖ ≤ ch
−(d+1)
n .

So, it follows that

∣

∣

∣

∣

1

(nhn)d

∑

i∈Λn

ai(x)ai(y) − In(x, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i∈Λn

n−d(ψ(i/n) − ψ(ci))

∣

∣

∣

∣

≤ sup
u∈[0,1]d

‖dψ(u)‖
∑

i∈Λn

n−d‖i/n− ci‖∞

≤ c

hd+1
n

∑

i∈Λn

n−(d+1)

=
c

nhd+1
n

−−−−−→
n→+∞

0.

Moreover,

In(x, y) =

∫

[0,1]d

1

hd
n

K

(

x− u

hn

)

K

(

y − u

hn

)

du

=

∫

ϕx([0,1]d)

K(u)K

(

u+
y − x

hn

)

du.

So, by the dominated convergence theorem, we obtain

lim
n→+∞

In(x, y) = δxy σ
2

and consequently (6) holds. The proof of (7) follows the same lines. The
proof of Lemma 1 is complete. �

Using Lemma 1 and denoting κ2
xy = (λ1 + λ2)

2δxy + 1 − δxy, we derive

lim
n→+∞

∑

i∈Λn

s̃2
i (x, y) = κ2

xy = 1 (since x 6= y).

So, denoting

si(x, y) =
s̃i(x, y)

√

∑

j∈Λn
s̃2

j(x, y)
,

it suffices to prove the convergence I-stably of
∑

i∈Λn
si(x, y) εi to

√
ητ0 where

τ0 ∼ N (0, 2). In fact, we are going to adapt the proof of the central limit
theorem by Dedecker [8].
For any i in Z

d, let us define the tail σ-algebra Fi,−∞ = ∩k∈N∗FV k
i

(we are
going to note F−∞ in place of F0,−∞) and consider the following proposition
established in [8].
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Proposition The σ-algebra I is included in the P-completion of F−∞.

Let f be a one to one map from [1, N ]∩N
∗ to a finite subset of Z

d and (ξi)i∈Zd

a real random field. For all integers k in [1, N ], we denote

Sf(k)(ξ) =
k
∑

i=1

ξf(i) and Sc
f(k)(ξ) =

N
∑

i=k

ξf(i)

with the convention Sf(0)(ξ) = Sc
f(N+1)(ξ) = 0. To describe the set Λn =

{1, ..., n}d, we define the one to one map fn from [1, nd] ∩ N
∗ to Λn by: fn

is the unique function such that for 1 ≤ k < l ≤ nd, f(k) <lex f(l). From

now on, we consider two independent fields (τ
(1)
i )i∈Zd and (τ

(2)
i )i∈Zd of i.i.d.

random variables independent of (εi)i∈Zd and I such that τ
(1)
0 and τ

(2)
0 have

the standard normal law N (0, 1). We introduce the two sequences of fields

Xi = si(x, y)εi and γi = si(x, y)τi
√
η where τi = τ

(1)
i + τ

(2)
i ∼ N (0, 2). Let

h be any function from R to R. For 0 ≤ k ≤ l ≤ nd + 1, we introduce
hk,l(X) = h(Sf(k)(X) + Sc

f(l)(γ)). With the above convention we have that

hk,nd+1(X) = h(Sf(k)(X)) and also h0,l(X) = h(Sc
f(l)(γ)). In the sequel, we

will often write hk,l instead of hk,l(X) and si instead of si(x, y). We denote
by B4

1(R) the unit ball of C4
b (R): h belongs to B4

1(R) if and only if it belongs
to C4(R) and satisfies max0≤i≤4 ‖h(i)‖∞ ≤ 1.

3.1.1 Lindeberg’s decomposition

Let Z be a I-measurable random variable bounded by 1. It suffices to prove
that for all h in B4

1(R),

lim
n→+∞

E
(

Zh(Sf(nd)(X))
)

= E
(

Zh
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
))

.

We use Lindeberg’s decomposition:

E
(

Z
[

h(Sf(nd)(X)) − h
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
)])

= E
(

Z
[

h(Sf(nd)(X)) − h
(

Sf(nd)(γ)
)])

= E
(

Z[hnd,nd+1 − h0,1]
)

=
nd
∑

k=1

E (Z[hk,k+1 − hk−1,k]) .

Now,
hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k.
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Applying Taylor’s formula we get that:

hk,k+1 − hk−1,k+1 = Xf(k)h
′

k−1,k+1 +
1

2
X2

f(k)h
′′

k−1,k+1 +Rk

and

hk−1,k+1 − hk−1,k = −γf(k)h
′

k−1,k+1 −
1

2
γ2

f(k)h
′′

k−1,k+1 + rk

where |Rk| ≤ X2
f(k)(1∧|Xf(k)|) and |rk| ≤ γ2

f(k)(1∧|γf(k)|). Since (X, τi)i6=f(k)

is independent of τf(k), it follows that

E
(

Zγf(k)h
′

k−1,k+1

)

= 0 and E
(

Zγ2
f(k)h

′′

k−1,k+1

)

= E
(

Zs2
f(k)ηh

′′

k−1,k+1

)

Hence, we obtain

E
(

Z
[

h(Sn(X)) − h
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
)])

=
nd
∑

k=1

E(ZXf(k)h
′

k−1,k+1)

+

nd
∑

k=1

E

(

Z
(

X2
f(k) − s2

f(k)η
) h

′′

k−1,k+1

2

)

+

nd
∑

k=1

E (Rk + rk) .

Arguing as in Rio [24], it is easily proved that

lim
n→+∞

nd
∑

k=1

E (|Rk| + |rk|) = 0.

Let us denote CN = [−N,N ]d ∩ Z
d for any positive integer N . If we define

ηN =
∑

k∈CN−1
E (ε0εk|I), the upper bound E|η−ηN | ≤ 2

∑

k∈V N
0
E|E (ε0εk|I) |

holds. Hence according to condition (3) and the above proposition, we derive
limN→+∞E|η − ηN | = 0 and consequently we have only to show

lim
N→+∞

lim sup
n→+∞

nd
∑

k=1

(

E(ZXf(k)h
′

k−1,k+1) + E

(

Z
(

X2
f(k) − s2

f(k)ηN

) h
′′

k−1,k+1

2

))

= 0.

(8)
3.1.2 First reduction

First, we focus on
∑nd

k=1E
(

ZXf(k)h
′

k−1,k+1

)

. For all N in N
∗ and all integer

k in [1, nd], we define

EN
k = f([1, k] ∩ N

∗) ∩ V N
f(k) and SN

f(k)(X) =
∑

i∈EN
k

Xi.
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For any function Ψ from R to R, we define ΨN
k−1,l = Ψ(SN

f(k)(X) + Sc
f(l)(γ))

(we shall apply this notation to the successive derivatives of the function h).
Our aim is to show that

lim
N→+∞

lim sup
n→+∞

nd
∑

k=1

E
(

Z
(

Xf(k)h
′

k−1,k+1 −Xf(k)

(

Sf(k−1)(X) − SN
f(k)(X)

)

h
′′

k−1,k+1

))

= 0.

(9)
First, we use the decomposition

Xf(k)h
′

k−1,k+1 = Xf(k)h
′N
k−1,k+1 +Xf(k)

(

h
′

k−1,k+1 − h
′N
k−1,k+1

)

.

We consider a one to one map m from [1, |EN
k |] ∩ N

∗ to EN
k and such that

|m(i) − f(k)| ≤ |m(i − 1) − f(k)|. This choice of m ensures that Sm(i)(X)
and Sm(i−1)(X) are F

V
|m(i)−f(k)|
f(k)

-measurable. The fact that γ is independent

of X together with proposition 3 in [8] imply that

E
(

ZXf(k)h
′ (

Sc
f(k+1)(γ)

)

)

= E
(

h
′ (

Sc
f(k+1)(γ)

)

)

E
(

ZE
(

Xf(k)|F−∞

))

= 0.

Therefore |E
(

ZXf(k)h
′N
k−1,k+1

)

| equals

∣

∣

∣

∣

|EN
k |
∑

i=1

E

(

ZXf(k)

[

h
′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

]) ∣

∣

∣

∣

.

Since Sm(i)(X) and Sm(i−1)(X) are F
V

|m(i)−f(k)|
f(k)

-measurable, we can take the

conditional expectation of Xf(k) with respect to F
V

|m(i)−f(k)|
f(k)

in the right hand

side of the above equation. On the other hand the function h
′
is 1-Lipschitz,

hence

|h′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

| ≤ |Xm(i)|.

Consequently, the term
∣

∣

∣

∣

E

(

ZXf(k)

[

h
′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

]) ∣

∣

∣

∣

is bounded by
E|Xm(i)E|m(i)−f(k)|

(

Xf(k)

)

|
and

|E
(

ZXf(k)h
′N
k−1,k+1

)

| ≤
|EN

k |
∑

i=1

E|Xm(i)E|m(i)−f(k)|(Xf(k))|.
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Hence,

∣

∣

∣

∣

nd
∑

k=1

E
(

ZXf(k)h
′N
k−1,k+1

)

∣

∣

∣

∣

≤
nd
∑

k=1

|sf(k)|
|EN

k |
∑

i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

≤
nd
∑

k=1

|sf(k)|
∑

j∈V N
0

|sj+f(k)|E|εjE|j|(ε0)|

≤ A
∑

j∈V N
0

‖εjE|j|(ε0)‖1 < +∞ (A ∈ R
∗
+)

where (by Lemma 1) we used the fact that

sup
i∈Λn

|si| = O

(

1

(nhn)d/2

)

(10)

and
∑

i∈Λn

|si| = O
(

(nhn)d/2
)

. (11)

Since (3) is satisfied, this last term is as small as we wish by choosing N
large enough. Applying again Taylor’s formula, it remains to consider

Xf(k)(h
′

k−1,k+1 − h
′N
k−1,k+1) = Xf(k)(Sf(k−1)(X) − SN

f(k)(X))h
′′

k−1,k+1 +R
′

k,

where |R′

k| ≤ 2|Xf(k)(Sf(k−1)(X)−SN
f(k)(X))(1∧|Sf(k−1)(X)−SN

f(k)(X)|)|. It
follows that

nd
∑

k=1

E|R′

k| ≤ 2





nd
∑

k=1

|sf(k)|



E

(

|ε0|
(

∑

i∈ΛN

|si||εi|
)(

1 ∧
∑

i∈ΛN

|si||εi|
))

≤ 2AE

(

|ε0|
(

∑

i∈ΛN

|εi|
)(

1 ∧
∑

i∈ΛN

|si||εi|
))

(A ∈ R
∗
+).

Keeping in mind that si → 0 as n → ∞ and applying the dominated con-
vergence theorem, this last term converges to zero as n tends to infinity and
(9) follows.

3.1.3 The second order terms

It remains to control

W1 = E



Z

nd
∑

k=1

h
′′

k−1,k+1

(

X2
f(k)

2
+Xf(k)

(

Sf(k−1)(X) − SN
f(k)(X)

)

−
s2

f(k)ηN

2

)



 .

(12)

11



We consider the following sets:

ΛN
n = {i ∈ Λn ; d(i, ∂Λn) ≥ N} and IN

n = {1 ≤ i ≤ nd ; f(i) ∈ ΛN
n },

and the function Ψ from R
Zd

to R such that

Ψ(ε) = ε2
0 +

∑

i∈V 1
0 ∩CN−1

2ε0εi.

For k in [1, nd], we set DN
k = ηN −Ψ ◦T f(k)(ε). By definition of Ψ and of the

set IN
n , we have for any k in IN

n

Ψ ◦ T f(k)(ε) = ε2
f(k) + 2εf(k)(Sf(k−1)(ε) − SN

f(k)(ε)).

Therefore for k in IN
n

s2
f(k)D

N
k = s2

f(k)ηN −X2
f(k) − 2Xf(k)(Sf(k−1)(X) − SN

f(k)(X)).

Since limn→+∞ n−d|IN
n | = 1, it remains to prove that

lim
N→+∞

lim sup
n→+∞

E



Z

nd
∑

k=1

s2
f(k)h

′′

k−1,k+1D
N
k



 = 0. (13)

3.1.4 Conditional expectation with respect to the tail σ-algebra

Now, we are going to replace DN
k by E

(

DN
k |Ff(k),−∞

)

. We introduce the
expression

HN
n =

nd
∑

k=1

E
(

s2
f(k)Zh

′′

k−1,k+1[Ψ ◦ T f(k)(ε) − E(Ψ ◦ T f(k)(ε)|Ff(k),−∞)]
)

.

For sake of brevity, we have written h
′′

k−1,k+1 instead of h
′′

k−1,k+1(X). Using
the stationarity of the field we get that

HN
n =

nd
∑

k=1

E
(

s2
f(k)Z(h

′′

k−1,k+1 ◦ T−f(k))(X)[Ψ(ε) −E(Ψ(ε)|F−∞)]
)

.

For any positive integer p, we decompose HN
n in two parts

HN
n =

nd
∑

k=1

J1
k(p) +

nd
∑

k=1

J2
k(p),

12



where

J1
k (p) = E

(

s2
f(k)Z(h

′′p
k−1,k+1 ◦ T−f(k))[Ψ(ε) − E(Ψ(ε)|F−∞)]

)

and J2
k (p) equals to

E
(

s2
f(k)Z[h

′′

k−1,k+1 ◦ T−f(k) − h
′′p
k−1,k+1 ◦ T−f(k)](X)[Ψ(ε) − E(Ψ(ε)|F−∞)]

)

.

From the definition of h
′′p
k−1,k+1, we infer that the variable h

′′p
k−1,k+1◦T−f(k)(X)

is FV p
0
-measurable. Therefore, we can take the conditional expectation of

Ψ(ε) − E(Ψ(ε)|F−∞) with respect to FV p
0

in the expression of J1
k(p). Now,

the backward martingale limit theorem implies that

lim
p→+∞

E|E(Ψ(ε)|FV p
0
) − E(Ψ(ε)|F−∞)| = 0

and consequently

lim
p→+∞

lim sup
n→+∞

∣

∣

∣

∣

nd
∑

k=1

J1
k (p)

∣

∣

∣

∣

= 0.

On the other hand

∣

∣

∣

∣

nd
∑

k=1

J2
k(p)

∣

∣

∣

∣

≤ E

[



2 ∧
∑

|i|<p

s2
f(i)|εi|



 |Ψ(ε) −E(Ψ(ε)|F−∞)|
]

.

Hence, applying the dominated convergence theorem, we conclude that HN
n

tends to zero as n tends to infinity. It remains to consider

W2 = E



Z

nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)E(DN

k |Ff(k),−∞)



 .

3.1.5 Truncation

For any integer k in [1, nd] and any M in R
+ we introduce the two sets

BN
k (M) = E(DN

k |Ff(k),−∞) 11|ηN−E(Ψ◦T f(k)(ε)|Ff(k),−∞)|≤M

and
B

N

k (M) = E(DN
k |Ff(k),−∞) −BN

k (M).

13



The stationarity of the field ensures that E|BN

k (M)| = E|BN

1 (M)| for any
k in [1, nd]. Now, applying the dominated convergence theorem, we have

limM→+∞E|BN

1 (M)| = 0. It follows that

lim
M→+∞

nd
∑

k=1

E
(

h
′′

k−1,k+1s
2
f(k)B

N

k (M)
)

= 0.

Therefore instead of W2 it remains to consider

W3 = E



Z
nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)B

N
k (M)



 .

3.1.6 An ergodic lemma

The next result is the central point of the proof.

Lemma 2 For all M in R
+, we introduce

βN (M) = E
(

[ηN − E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M

∣

∣I
)

.

Then

lim
M→+∞

βN(M) = 0 a.s. and lim
n→+∞

E

∣

∣

∣

∣

βN(M) −
nd
∑

k=1

s2
f(k)B

N
k (M)

∣

∣

∣

∣

= 0.

Proof of Lemma 2. Let

u(ε) = [ηN − E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M .

Using the function u, we write βN(M) = E(u(ε)|I). The fact that βN (M)
tends to zero as M tends to infinity follows from the dominated convergence
theorem. In fact

lim
M→∞

u(ε) = ηN −E(Ψ(ε)|F−∞)

and u(ε) is bounded by |ηN − E(Ψ(ε)|F−∞)| which belongs to L1. This
implies that

lim
M→∞

βN (M) = E
(

ηN − E(Ψ(ε)|F−∞)
∣

∣I
)

a.s.

Since I is included in the P-completion of F−∞ (see the above proposition)
and keeping in mind that ηN is I-measurable, it follows that

lim
M→∞

βN(M) = ηN −E(Ψ(ε)|I) a.s.

14



By stationarity of the random field, we know that E(ε0εk|I) = E(ε0ε−k|I)
which implies that

E(Ψ(ε)|I) =
∑

k∈CN−1

E(ε0εk|I) = ηN

and the result follows.
We are going to prove the second point of Lemma 2. First note that

Bk(M) = [ηN − E(Ψ ◦ T f(k)(ε)|Ff(k),−∞)] 11|ηN−E(Ψ◦T f(k)(ε)|Ff(k),−∞)|≤M

= u ◦ T f(k)(ε).

Consequently
nd
∑

k=1

s2
f(k)B

N
k (M) =

∑

i∈Λn

s2
i u ◦ T i(ε).

Finally, the proof of lemma 2 is completed by the following lemma which is
proved in Section 5.

Lemma 3

lim
n→∞

∥

∥

∥

∥

∑

i∈Λn

s2
i u ◦ T i(ε) − E(u(ε)|I)

∥

∥

∥

∥

2

= 0.

As a direct application of lemma 2, we see that

∣

∣

∣

∣

E



Z

nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)βN(M)





∣

∣

∣

∣

≤ E|βN(M)|

is as small as we wish by choosing M large enough. So instead of W3 we
consider

W4 = E



Z
nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)[B

N
k (M) − βN(M)]



 .

3.1.7 Abel transformation

In order to control W4, we use the Abel transformation:

W4 = E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

Z(h
′′

k−1,k+1 − h
′′

k,k+2)

]

+ E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN(M)]



 .

15



Now

∣

∣

∣

∣

E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN(M)]





∣

∣

∣

∣

≤ E

∣

∣

∣

∣

βN (M)−
nd
∑

k=1

s2
f(k)B

N
k (M)

∣

∣

∣

∣

.

Then applying lemma 2, we obtain

lim
n→+∞

∣

∣

∣

∣

E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN (M)]





∣

∣

∣

∣

= 0.

Therefore it remains to prove that for any positive integer N and any positive
real M ,

lim
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Z(h
′′

k−1,k+1 − h
′′

k,k+2)

]

= 0.

3.1.8 Last reductions

We are going to finish the proof. We use the same decomposition as be-
fore:

h
′′

k,k+2 − h
′′

k−1,k+1 = h
′′

k,k+2 − h
′′

k,k+1 + h
′′

k,k+1 − h
′′

k−1,k+1.

Applying Taylor’s formula

h
′′

k,k+2 − h
′′

k,k+1 = −γf(k+1)h
′′′

k,k+2 + tk

and
h

′′

k,k+1 − h
′′

k−1,k+1 = Xf(k)h
′′′

k−1,k+1 + Tk

where |tk| ≤ γ2
f(k+1) and |Tk| ≤ X2

f(k). To examine the remainder terms, we
consider:

E





nd
∑

k=1

s2
f(k)

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Zε2
f(k)



 .

The definition of BN
i (M) and of βN(M) enables us to write for all integer k

in [1, nd],
k
∑

i=1

s2
f(i)|BN

i (M) − βN(M)| ≤ 2M.
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Therefore

E

∣

∣

∣

∣

nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βn(M)]

)

s2
f(k)Zε

2
f(k) 11|εf(k)|>K

∣

∣

∣

∣

≤ 2ME
(

ε2
0 11|ε0|>K

)

and applying the dominated convergence theorem this last term is as small
as we wish by choosing K large enough. Now, for all K in R

+, Lemma 2
ensures that

lim
n→+∞

E





nd
∑

k=1

s2
f(k)

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Zε2
f(k) 11|εf(k)|≤K



 = 0.

So, we have proved that

lim
n→+∞

E





nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZTk



 = 0.

In the same way, we obtain that

lim
n→+∞

E





nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Ztk



 = 0.

Moreover since (ε, (τi)i6=f(k+1)) is independent of τf(k+1) we have

E

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]γf(k+1)Zh

′′′

k,k+2

)

= 0.

Finally, it remains to consider

W5 = E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

ZXf(k)h
′′′

k−1,k+1

]

.

Let p be a fixed positive integer. Since h
′′′

is 1-Lipschitz, we have the upper
bound |h′′′

k−1,k+1 − h
′′′p
k−1,k+1| ≤ |Sf(k−1)(X) − Sp

f(k)(X)|. Now, we can apply
the same truncation argument as before: first we choose the level of our
truncation by applying the dominated convergence theorem and then we use
Lemma 2. So, it follows that

lim
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZXf(k)(h
′′′

k−1,k+1−h
′′′p
k−1,k+1)

]

= 0.
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Therefore, to prove our theorem it is enough to show that

lim
p→+∞

lim sup
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZXf(k)h
′′′p
k−1,k+1

]

= 0.

(14)
We consider a one to one map m from [1, |Ep

k|] ∩ N
∗ to Ep

k and such that
|m(i)−f(k)| ≤ |m(i−1)−f(k)|. Now, we use the same argument as before:

h
′′′p
k−1,k+1 − h

′′′

(Sc
f(k)(γ)) =

|Ep
k |

∑

i=1

h
′′′

(Sm(i)(X) + Sc
f(k)(γ)) − h

′′′

(Sm(i−1)(X) + Sc
f(k)(γ))

≤
|Ep

k |
∑

i=1

|Xm(i)|.

Here recall that BN
i (M) is Ff(i),−∞-measurable and βN(M) is I-measurable.

We have E(εf(k)|I) = 0, E(εf(k)|Ff(k),−∞) = 0 and E(εf(k)|Ff(i),−∞) = 0 for
any positive integer i such that i < k. Consequently, for any positive integer
i such that i ≤ k, we have

E
(

s2
f(i)[B

N
i (M) − βN(M)]Zsf(k)εf(k)h

′′′

(Sc
f(k)(γ))

)

= 0.

Therefore using the conditional expectation, we find

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZXf(k)h
′′′p
k−1,k+1

]

≤ 2M

nd
∑

k=1

|sf(k)|
|Ep

k |
∑

i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

= 2M

nd
∑

k=1

|sf(k)|
∑

j∈V p
0

|sj+f(k)|E|εjE|j|(ε0)|

≤ 2AM
∑

j∈V p
0

E|εjE|j|(ε0)| (A ∈ R
∗
+) by (10) and (11).

Since (3) is realised the last term is as small as we wish by choosing p large
enough, henceW4 is handled. Finally, the main theorem is proved. �
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3.2 Proof of the corollary

As observed in [8], the proof of the corollary is a direct consequence of The-
orem 1.1 in Rio [23]. In fact, for any k in V 1

0 , we have

E|εkE|k|(ε0)| = Cov
(

|εk|
(

11E|k|(ε0)≥0 − 11E|k|(ε0)≤0

)

, ε0

)

≤ 4

∫ α1,∞(|k|)

0

Q2
ε0

(u) du.

The proof of the corollary is complete. �

4 Application

The direct consequence of our result is that it allows the construction of
statistical tests able to quantify the estimation error. For this purpose, we
show the construction of such a test that can be used in image denoising [11,
16, 28]. In the context given by the model (1), let us consider the following
situation : a true image g is affected by a correlated additive noise ǫ, that
gives Y for the observed image.
For the original function the classical Lena image is used. This image is a
gray level image with pixels values in the interval [0, 255]. The size of the
image is 256 × 256 pixels. The correlated noise we consider is a Gaussian
field (εk)k∈Z2 built using an exponential covariance function

C(k) = E(ε0εk) = Cst × exp{−|k|
a
}.

The choice of such random field ensures the validity of the projective crite-
rion (3)(see [9], p.59 Corollary 2). There exist several methods for simulating
such a random field, here we have opted for the spectral method [15]. In or-
der to obtain an important visual effect of how the noise affects the original
image Cst was set to 200 and a = 1. The noisy image is obtained by adding
pixel by pixel the original image to the simulated noise. The estimator of the
original image is computed using the Epanechnikov kernel

K(x) =
3

8
(1 − |x|2)I{|x|≤1}, x = (x1, x2) ∈ R

2.

In order to compute the expectation of the estimated function, several re-
alisation of the noisy image are needed. Here we have considered 50 such
images, constructed by adding the original Lena image with a noise realisa-
tion. Using (2), for each noisy image, an estimate gn of the original function
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g was computed using the kernel K defined above. The expectation E(gn) is
computed by just taking the pixel by pixel arithmetical means corresponding
to the images previously restored.
Clearly, it is now possible to estimate the difference gn − E(gn). Following
our theoretical result, the normalised square of this difference follows a χ2

distribution with one degree of freedom. Since this quantity is observable,
p-values pixel by pixel can be computed.
The original image and the realisation of a noisy image are shown in Fig-
ure 1a and 1b, respectively. It can be noticed that in the “dirty” picture, spots
are formed, due to the noise correlation. The expectation of the estimated
original images in Figure 1c exhibits almost no such spots. Furthermore,
the visual quality of this restored image is close to the original. A more
quantitative evaluation of this result is given by the image of p-values of the
proposed statistical test given in Figure 1d. The light-coloured pixels rep-
resent p-values close to 1, whereas the dark-coloured pixels indicate values
close to 0. We have counted 83% of the pixels for which we have obtained a
p-value higher than 0.01. This ratio is quite a reliable indicator concerning
the restored image. Together with the visual analysis of the results, it pro-
vides a detailed description of the obtained result. We conclude that, under
these considerations, the theoretical results developed in this paper may be
used as a basis for the development of practical tools in image analysis.

5 Annexe

In this section we prove lemma 3.

Proof of Lemma 3. In fact, for any u in L2, we can write u = w + E(u|I)
where w = u− E(u|I), hence it suffices to prove that

lim
n→+∞

∥

∥

∥

∥

∑

k∈Λn

s2
k w ◦ T k

∥

∥

∥

∥

2

= 0.

Let us consider the transformations T1, T2, ..., Td defined by T i
1 = T (i,...,0),

T i
2 = T (0,i,...,0), ..., T i

d = T (0,...,i) for any integer i. It is well known (cf. [7])
that the space

H =
{

h1 − h1 ◦ T1 − (h2 − h2 ◦ T2) − ...− (hd − hd ◦ Td) ; h1, .., hd ∈ L2
}

is dense in the space G = {g ∈ L2 ; E(g|I) = 0}. Let ε > 0 be fixed, there
exist h1, ..., hd ∈ L2 such that

∥

∥w− [(h1−h1 ◦T1)− ...− (hd−hd ◦Td)]
∥

∥

2
≤ ε.
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a) b)

c) d)

Figure 1: Results of the image restoration procedure : a) original Lena image,
b) realisation of a noisy image, c) expectation of the restored images, d)
obtained p−values as a gray level image (white pixels represent values close
to 1, whereas black pixels indicate values close to 0).
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So, we derive

∥

∥

∥

∥

∑

k∈Λn

s2
k w ◦ T k

∥

∥

∥

∥

2

≤ ε+

d
∑

j=1

∥

∥

∥

∥

∑

k∈Λn

s2
k (hj ◦ T k − hj ◦ T k(j))

∥

∥

∥

∥

2

where k(j) = (k1, ..., kj−1, kj + 1, kj+1, ..., kd). Using Lemma 1 and keeping
in mind that K is a bounded and Lipschitzian kernel, one can check that

s2
(k1,..,kd) = O

(

1

(nhn)d

)

and s2
(k1,..,kj,..,kd)−s2

(k1,..,kj−1,..,kd) = O

(

1

(nhn)d+1

)

and consequently, we obtain

d
∑

j=1

∥

∥

∥

∥

∑

k∈Λn

s2
k (hj ◦ T k − hj ◦ T k(j))

∥

∥

∥

∥

2

= O

(

1

nhd+1
n

)

.

Finally, keeping n sufficiently large, we obtain

∥

∥

∥

∥

∑

k∈Λn

s2
k w ◦ T k

∥

∥

∥

∥

2

≤ 2ε.

The proof of lemma 3 is complete. �
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