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1 Introduction

Let (Xk)k∈Zd be a stationary field of real-valued random variables defined on
a given probability space (Ω,F ,P). If A is a collection of Borel subsets of
[0, 1]d, define the smoothed partial sum process {Sn(A) ; A ∈ A} by

Sn(A) =
∑

i∈{1,...,n}d

λ(nA ∩ Ri)Xi (1)

where Ri =]i1 − 1, i1] × ...×]id − 1, id] is the unit cube with upper corner
at i and λ is the Lebesgue measure on R

d. We equip the collection A with
the pseudo-metric ρ defined for any A,B in A by ρ(A,B) =

√
λ(A∆B). To

measure the size of A one considers the metric entropy: denote by H(A, ρ, ε)
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the logarithm of the smallest number N(A, ρ, ε) of open balls of radius ε
with respect to ρ which form a covering of A. The function H(A, ρ, .) is
the entropy of the class A. A more strict tool is the metric entropy with
inclusion: assume that A is totally bounded with inclusion i.e. for each
positive ε there exists a finite collection A(ε) of Borel subsets of [0, 1]d such
that for any A ∈ A, there exist A− and A+ in A(ε) with A− ⊆ A ⊆ A+

and ρ(A−, A+) ≤ ε. Denote by H(A, ρ, ε) the logarithm of the cardinality
of the smallest collection A(ε). The function H(A, ρ, .) is the entropy with
inclusion (or bracketing entropy) of the class A. Let C(A) be the space of
continuous real functions on A, equipped with the norm ‖.‖A defined by

‖f‖A = sup
A∈A

|f(A)|.

A standard Brownian motion indexed by A is a mean zero Gaussian process
W with sample paths in C(A) and Cov(W(A),W(B))= λ(A ∩ B). From
Dudley [8] we know that such a process exists if

∫ 1

0

√
H(A, ρ, ε)dε < +∞. (2)

Since H(A, ρ, .) ≤ H(A, ρ, .), the standard Brownian motion W is well de-
fined if ∫ 1

0

√
H(A, ρ, ε) dε < +∞. (3)

For any probability measure m defined on [0, 1]d equipped with its Borel σ-
algebra, we define the pseudo-metric ρm by ρm =

√
m(A∆B) for any A and

B in A. For any positive ε > 0, we denote N(A, ε) = supmN(A, ρm, ε) and
we say that the collection A has uniformly integrable entropy if

∫ 1

0

√
logN(A, ε)dε < +∞. (4)

We say that the (classical) invariance principle or functional central limit the-
orem (FCLT) holds if the sequence {n−d/2Sn(A) ; A ∈ A} converges in distri-
bution to an A-indexed Brownian motion in the space C(A). The first weak
convergence results for Qd-indexed partial sum processes were established for
i.i.d. random fields and for the collection Qd of lower-left quadrants in [0, 1]d,
that is to say the collection {[0, t1]× . . .× [0, td] ; (t1, . . . , td) ∈ [0, 1]d}. They
were proved by Wichura [25] under a finite variance condition and earlier by
Kuelbs [17] under additional moment restrictions. When the dimension d is
reduced to one, these results coincide with the original invariance principle
of Donsker [7]. In 1983, Pyke [21] derived a weak convergence result for the
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process {Sn(A) ; A ∈ A} for i.i.d. random fields provided that the collection
A satisfies the bracketing entropy condition (3). However, his result required
moment conditions which depend on the size of the collection A. Bass [3]
and simultaneously Alexander and Pyke [1] extended Pyke’s result to i.i.d.
random fields with finite variance. More precisely, the following result is
proved.

Theorem A (Bass (1985), Alexander and Pyke (1986)) Let (Xk)k∈Zd

be a stationary field of independent real random variables with zero mean and

finite variance. If A is a collection of regular Borel subsets of [0, 1]d which

satisfies Assumption (3) then the sequence of processes {n−d/2Sn(A);A ∈ A}
converge in distribution to

√
E(X2

0 )W where W is a standard Brownian mo-

tion indexed by A.

Unfortunately, the bracketing condition (3) is not automatically fulfilled in
the important case of A being a Vapnik-Chervonenkis class of sets. Ziegler
[26] has covered this case by proving (among other results) that the FCLT of
Bass, Alexander and Pyke (i.e. Theorem A) still holds for classes of sets which
satisfy the uniformly integrable entropy condition (4). Recently, Dedecker
[6] gave an L∞-projective criterion for the process {n−d/2Sn(A) ; A ∈ A} to
converge to a mixture of A-indexed Brownian motions when the collection A
satisfies only the entropy condition (2) of Dudley. This new criterion is valid
for martingale-difference bounded random fields and provides a new criterion
for non-uniform φ-mixing bounded random fields. In the unbounded case, us-
ing the chaining method of Bass [3] and establishing Bernstein type inequal-
ities, Dedecker proved also the FCLT for the partial sum {Sn(A) ; A ∈ A}
of non-uniform φ-mixing random fields provided that the collection A sat-
isfies the more strict entropy condition with inclusion (3) and under both
finite fourth moments and a polynomial decay of the mixing coefficients. In
a previous work (see [12]), it is shown that the FCLT may be not valid for
p-integrable (0 ≤ p < +∞) martingale-difference random fields. More pre-
cisely, the following result is established.

Theorem B (El Machkouri, Volný, 2002) Let (Ω,F , µ, T ) be an ergodic

dynamical system with positive entropy where Ω is a Lebesgue space, µ is a

probability measure and T is a Z
d-action. For any nonnegative real p, there

exist a real function f ∈ Lp(Ω) and a collection A of regular Borel subsets of

[0, 1]d such that

• For any k in Z
d, E

(
f ◦ T k|σ(f ◦ T i ; i 6= k)

)
= 0. We say that the

random field (f ◦T k)k∈Zd is a strong martingale-difference random field.

• The collection A satisfies the entropy condition with inclusion (3).
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• The partial sum process {n−d/2Sn(f, A) ; A ∈ A} is not tight in the

space C(A)

where

Sn(f, A) :=
∑

i∈{1,...,n}d

λ(nA ∩Ri)f ◦ T i.

The above theorem shows that not only Dedecker’s FCLT for bounded ran-
dom fields (see [6]) cannot be extended to p-integrable (0 ≤ p < +∞) random
fields but also it lays emphasis on that Bass, Alexander and Pyke’s result
for i.i.d. random fields (Theorem A) cannot hold for martingale-difference
random fields without additional assumptions. Recently, El Machkouri [11]
has shown that the FCLT still holds for unbounded random fields which sat-
isfy both a finite exponential moment condition and a projective criterion
similar to Dedecker’s one. All these results put on light that the moment
assumption on the random field is very primordial in the FCLT question for
random fields indexed by large classes of sets.
In the present work, we give a positive answer to the validity of the FCLT
for square-integrable martingale-difference random fields which conditional
variances are bounded almost surely (cf. Theorem 1). Next, we consider
self-normalized i.i.d. random fields, more precisely, we investigate the valid-
ity of the FCLT when the stationary random field (Xk)k∈Zd is assumed to be
independent and the classical normalization nd/2 is replaced by Un defined by
(5) (cf. Theorem 2). From a statistical point of view, the self-normalization
is natural and several articles in the literature are devoted to limit theo-
rems for self-normalized sequences (Xk)k∈Z of independent random variables
with statistical applications. Logan et al. [19] investigate the various possi-
ble limit distributions of self-normalized sums. Giné et al. [13] prove that∑n

i=1Xi/
√∑n

i=1X
2
i converges to the Gaussian standard distribution if and

only if X1 is in the domain of attraction of the normal distribution (the
symmetric case was previously treated by Griffin and Mason [14]). Egorov
[10] investigates the non identically distributed case. Large deviations are
investigated in Shao [23] without moment conditions. Račkausksas and Su-
quet [22] gives invariance principles for various partial sums processes under
self-normalization in C([0, 1]) and in the stronger topological framework of
Hölder spaces. Our Theorem 2 below improves on Račkauskas and Suquet’s
result in C([0, 1]).

2 Main results

By a stationary real random field we mean any family (Xk)k∈Zd of real-valued
random variables defined on a probability space (Ω,F ,P) such that for any
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(k, n) ∈ Z
d×N

∗ and any (i1, ..., in) ∈ (Zd)n, the random vectors (Xi1 , ..., Xin)
and (Xi1+k, ..., Xin+k) have the same law.
On the lattice Z

d we define the lexicographic order as follows: if i = (i1, ..., id)
and j = (j1, ..., jd) are distinct elements of Z

d, the notation i <lex j means
that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q <
p. A real random field (Xk)k∈Zd is said to be a martingale-difference random
field if it satisfies the following condition: for any m in Z

d, E (Xm|Fm) = 0
a.s. where Fm is the σ-algebra generated by the random variables Xk, k <lex

m. Our first result is the following.

Theorem 1 Let (Xk)k∈Zd be a stationary field of martingale-difference ran-

dom variables with finite variance such that E(X2
0 |F0) is bounded almost

surely and let A be a collection of regular Borel subsets of [0, 1]d satisfying

the condition (3). Then the sequence {n−d/2Sn(A); A ∈ A} converges weakly

in C(A) to
√
E(X2

0 )W where W is the standard Brownian motion indexed

by A.

Comparing Theorem 1 and Theorem B in section 1, one can notice that the
conditional variance E (X2

0 |F0) is primordial in the invariance principle prob-
lem for martingale-difference random fields. More generally, the conditional
variance for martingales is known to play an important role in modern mar-
tingale limit theory (see Hall and Heyde [15]).
For any integer n ≥ 1, we define

U2
n =

∑

i∈Λn

X2
i (5)

where Λn = {1, ..., n}d. We say thatX0 belongs to the domain of attraction of
the normal distribution (and we denote X0 ∈ DAN) if there exists a norming
sequence bn of real numbers such that b−1

n SΛn converges in distribution to a
standard normal law. We should recall that if X0 ∈ DAN then ‖X0‖p < ∞
for any 0 < p < 2 and that constants bn have the form bn = nd/2l(n) for some
function l slowly varying at infinity. Moreover, for each τ > 0, we have

lim
n→∞

ndEX0,n = 0, lim
n→∞

ndP(|X0| ≥ τbn) = 0 and lim
n→∞

b−2
n ndE(X2

0,n) = 1

(6)
where X0,n = X0 11|X0|<τbn (see for instance Araujo and Giné [2]). Note also
that X0 ∈ DAN implies (Raikov’s theorem) that

1

b2n

∑

i∈Λn

X2
i

P−−−−→
n→∞

1. (7)
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Theorem 2 Let (Xk)k∈Zd be a field of i.i.d. centered random variables and

let A be a collection of regular Borel subsets of [0, 1]d satisfying the condition

(3). Then X0 ∈ DAN if and only if the sequence {U−1
n Sn(A); A ∈ A}

converges weakly in C(A) to the standard Brownian motion W .

Let us remark that the necessity of X0 ∈ DAN in Theorem 2 follows from
Giné et al. ([13], Theorem 3.3). Our result contrasts with the invariance
principle established by Bass and Alexander and Pyke (cf. Theorem A in
section 1) where square integrable random variables are required. We do not
know if Theorem 2 still hold if one replace the condition (3) by condition (2).
However, our next result is a counter-example which shows that Theorem A
in section 1 does not hold when the condition (3) is replaced by condition
(2).

Theorem 3 For any positive real number p, there exist a stationary field

(Xk)k∈Zd of independent, symmetric and p-integrable real random variables

and a collection A of regular Borel subsets of [0, 1]d which satisfies the con-

dition (2) such that the partial sum process {n−d/2Sn(A) ; A ∈ A} do not be

tight in the space C(A).

Note that Dudley and Strassen [9] have built a sequence of i.i.d. ran-
dom variables Xn with values in the space of continuous functions on [0, 1]
such that E(X1(t)) = 0 and the finite dimensional marginals of Zn(t) =
n−1/2

∑n
i=1Xi(t) converge to that of a Gaussian process Z. It was shown

that this process Z has a version with almost sure continuous sample paths
and that the process Zn(t) is not tight for the topology of the uniform metric.
However, contrary to our example, one can check that the limiting process Z
does not satisfy the Dudley’s entropy condition (2) for the intrinsic distance
ρ(s, t) = ‖Z(s) − Z(t)‖2. In fact, it is well known that the condition (2) is
sufficient for Gaussian processes to have a version with almost sure continu-
ous sample paths but it falls to be necessary (see van der Vaart and Wellner
[24], p. 445).

3 Proofs

Recall that a Young function ψ is a real convex nondecreasing function de-
fined on R

+ which satisfies ψ(0) = 0. We define the Orlicz space Lψ as the
space of real random variables Z defined on the probability space (Ω,F ,P)
such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space Lψ equipped
with the so-called Luxemburg norm ‖.‖ψ defined for any real random variable
Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }
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is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [16]. Let ψ1, ψ2 : R

+ → R be the
Young functions defined by ψ1(x) = exp(x) − 1 and ψ2(x) = exp(x2) − 1 for
any x ∈ R

+. We need the following lemma which is of independent interest.

Lemma 1 Let (θi)i∈Zd be an arbitrary field of random variables and let Hi

denote the σ-algebra generated by the random variables θj, j <lex i, i ∈ Z
d.

Let also 0 ≤ α ≤ β ≤ 1 and 0 < τ ≤ 1 be fixed and let (cn)n≥1 be a sequence

of real numbers. For any integer n ≥ 1 and any Borel subset A of [0, 1]d,
denote

θi(n, α, β) = θi 11ατcn≤|θi|<βτcn

and

Θn(A, α, β) =
1

cn

∑

i∈Λn

λ(nA ∩Ri)[θi(n, α, β) − E (θi(n, α, β)|Hi)] .

Assume also that there exists C > 0 such that for any integer n ≥ 1 and any

i in Z
d,

nd

c2n
E
(
θ2
i 11|θi|<cn|Hi

)
≤ C. (8)

If G1,G2 are finite collections of Borel subsets of [0, 1]d then
∥∥∥∥ max

(A,B)∈G

∣∣Θn(A, α, β)−Θn(B, α, β)
∣∣
∥∥∥∥
ψ1

≤ K[β τ ψ−1
1 (|G|)+ max

(A,B)∈G
ρ(A,B)ψ−1

2 (|G|)]

where G = G1×G2, |G| is the cardinal of G and K > 0 is a universal constant.

Proof of Lemma 1. Consider the field of martingale-difference random vari-
ables Yi(n, α, β), i ∈ Λn defined by

Yi(n, α, β) =
1

cn
(λ(nA ∩Ri) − λ(nB ∩Ri))[θi(n, α, β) − E (θi(n, α, β)|Hi)]

and note that |Yi(n, α, β)| ≤ 2βτ . Using (8) and keeping in mind that τ and
β are less than 1, there exists a universal constant C > 0 such that

∑

i∈Λn

E
(
Yi(n, α, β)2|Hi

)
≤ 4C max

(A,B)∈G
ρ2(A,B).

Noting that Θn(A, α, β)−Θn(B, α, β) =
∑

i∈Λn
Yi(n, α, β) and applying The-

orem 1.2A in de la Pena [4], we derive the following Bernstein inequality

P
(∣∣Θn(A, α, β)− Θn(B, α, β)

∣∣ > x
)
≤ 2 exp

( −x2

8C max(A,B)∈G ρ2(A,B) + 4βτx

)
.

The proof is completed by using Lemma 2.2.10 in van der Vaart and Wellner
[24].
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3.1 Proof of Theorem 1

a) Tightness

It suffices to prove that for any x > 0

lim
δ→0

lim sup
n→+∞

P


 sup

A,B∈A
ρ(A,B)<δ

∣∣n−d/2Sn(A) − n−d/2Sn(B)
∣∣ > x


 = 0. (9)

In the sequel, we write H(x) for H(A, ρ, x). Let δ > 0 be fixed, denote
τ = δ/

√
H(δ/2) > 0 and assume (without loss of generality) that τ ≤ 1.

Let i ∈ Z
d, since Xi is a martingale-difference random variable, we have

Xi = Xi,n − E(Xi,n|Fi) +X i,n − E(X i,n|Fi) where Xi,n = Xi 11|Xi|<τnd/2 and

X i,n = Xi −Xi,n, hence it follows

P


 sup

A,B∈A
ρ(A,B)<δ

∣∣n−d/2Sn(A) − n−d/2Sn(B)
∣∣ > x


 ≤ E1 + E2

where

E1 = P


 sup

A,B∈A
ρ(A,B)<δ

∣∣∣∣
∑

i∈Λn

(λ(nA ∩Ri) − λ(nB ∩Ri))[Xi,n − E (Xi,n|Fi)]

∣∣∣∣ > xnd/2/2




E2 = ndP
(
|X0| ≥ τnd/2

)
−−−−→
n→+∞

0 (since X0 ∈ L2).

We are going to control E1. Now, for any constants 0 ≤ α ≤ β ≤ 1 define
Xi(n, α, β) = Xi 11ατnd/2≤|Xi|<βτnd/2 and

Zn(A, α, β) =
1

nd/2

∑

i∈Λn

λ(nA ∩ Ri)[Xi(n, α, β) − E (Xi(n, α, β)|Fi)].

One can notice that

E1 ≤
2

x
E


 sup

A,B∈A
ρ(A,B)<δ

∣∣Zn(A, 0, 1) − Zn(B, 0, 1)
∣∣


 .

Let δk = 2−kδ. If A and B are any sets in A, there exists sets Ak, A
+
k , Bk, B

+
k

in the finite class A(δk) such that Ak ⊂ A ⊂ A+
k and ρ(Ak, A

+
k ) ≤ δk,

and similarly for B,Bk, B
+
k . Let (ak)k∈N be a sequence of positive numbers
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decreasing to zero sucht that a0 = 1. Following the chaining method initiated
by Bass [3], we write

Zn(A, 0, 1) − Zn(A0, 0, 1) =

+∞∑

k=0

Zn(Ak+1, 0, ak) − Zn(Ak, 0, ak)

+

+∞∑

k=1

Zn(A, ak, ak−1) − Zn(Ak, ak, ak−1).

So, we have x
2
E1 ≤ F1 + F2 + F3 where

F1 = E



 max
A0, B0∈A(δ0)
ρ(A0,B0)≤3δ0

∣∣Zn(A0, 0, 1) − Zn(B0, 0, 1)
∣∣




F2 = 2
+∞∑

k=0

E


 max
Ak∈A(δk), Ak+1∈A(δk+1)

ρ(Ak ,Ak+1)≤2δk

∣∣Zn(Ak+1, 0, ak) − Zn(Ak, 0, ak)
∣∣



F3 = 2

+∞∑

k=1

E


 max
Ak, A

+

k ∈A(δk)

ρ(Ak,A
+

k )≤δk

sup
Ak⊂A⊂A

+

k

∣∣Zn(A, ak, ak−1) − Zn(Ak, ak, ak−1)
∣∣




In the sequel, we denote by K any universal positive constant. Applying
Lemma 1 with cn = nd/2, we derive

F1 ≤ K
(
τH(δ0) + δ0

√
H(δ0)

)
, (10)

similarly

F2 ≤ K

+∞∑

k=0

(akτH(δk+1) + δk
√

H(δk+1)). (11)

Now, we are going to control the last term F3. For any Borel subset A of
[0, 1]d, we denote

Z̃n(A, ak, ak−1) =
1

nd/2

∑

i∈Λn

λ(nA∩Ri)[|Xi(n, ak, ak−1)|−E (|Xi(n, ak, ak−1)||Fi)].
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One can check that

sup
Ak⊂A⊂A

+

k

|Zn(A, ak, ak−1) − Zn(Ak, ak, ak−1)|

≤ 1

nd/2

∑

i∈Λn

(λ(nA+
k ∩Ri) − λ(nAk ∩Ri))[|Xi(n, ak, ak−1)| − E (|Xi(n, ak, ak−1)||Fi)]

+
2

nd/2

∑

i∈Λn

(λ(nA+
k ∩ Ri) − λ(nAk ∩Ri))E (|Xi(n, ak, ak−1)||Fi)

= Z̃n(A
+
k , ak, ak−1) − Z̃n(Ak, ak, ak−1)

+
2

nd/2

∑

i∈Λn

λ(n
(
A+
k \Ak

)
∩ Ri)E (|Xi(n, ak, ak−1)||Fi)

Recall that by assumption we have E(X2
i |Fi) ≤ C for some C > 0. So, using

Lemma 1, it follows
∥∥∥∥ max
Ak,A

+

k ∈A(δk)

∣∣Z̃n(A+
k , ak, ak−1)−Z̃n(Ak, ak, ak−1)

∣∣
∥∥∥∥
ψ1

≤ K(ak−1τH(δk)+δk
√

H(δk)).

Moreover, one can check that

E (|Xi(n, ak, ak−1)||Fi) ≤
E (X2

i |Fi)

akτnd/2
≤ C

akτnd/2
.

Consequently, we obtain

F3 ≤ K

(
+∞∑

k=1

ak−1τH(δk) + δk
√

H(δk) +
δ2
k

τak

)
(12)

Now, we choose ak = δk/(τ
√

H(δk+1)) for all k ∈ N (note that a0 = 1),
hence, we obtain the following estimations:

F1 ≤ K δ
√

H(δ/2)

F2 ≤ K
+∞∑

k=0

δk
√

H(δk+1)

F3 ≤ K

+∞∑

k=1

δk−1

√
H(δk+1)

Now, recall that 2
x
E1 ≤ F1 + F2 + F3 and keep in mind that the entropy

condition (3) holds then

lim sup
n→∞

2

x
E1 ≤ K

+∞∑

k=1

δk+1

√
H(δk) ≤ K

∫ δ

0

√
H(x)dx −−−−→

δ→0
0.
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Finally, the condition (9) holds and the sequence {n−d/2Sn(A) ; A ∈ A} is
tight in the space C(A).

b) Finite dimensional convergence

The convergence of the finite-dimensional laws is a simple consequence of
both the central limit theorem for random fields ([5], Theorem 2.2) and the
following lemma (see [6]). For any subset Γ of Z

d we consider

∂Γ =
{
i ∈ Γ ; ∃j /∈ Γ such that |i− j| = 1

}
.

For any Borel set A of [0, 1]d, we denote by Γn(A) the finite subset of Z
d

defined by Γn(A) = nA ∩ Z
d.

Lemma 2 (Dedecker, 2001) Let A be a regular Borel set of [0, 1]d with

λ(A) > 0. We have

(i) lim
n→+∞

|Γn(A)|
nd

= λ(A) (ii) lim
n→+∞

|∂Γn(A)|
|Γn(A)| = 0.

Let (Xi)i∈Zd be a stationary random field with mean zero and finite variance.

Assume that
∑

k∈Zd |E(X0Xk)| < +∞. Then

lim
n→+∞

n−d/2

∥∥∥∥Sn(A) −
∑

k∈Γn(A)

Xk

∥∥∥∥
2

= 0.

3.2 Proof of Theorem 2

Similarly, we are going to prove both the convergence of the finite-dimensional
laws and the tightness of the sequence of processes {U−1

n Sn(A) ; A ∈ A} in
the space C(A).

a) Tightness

It suffices to establish that for any x > 0

lim
δ→0

lim sup
n→+∞

P


 sup

A,B∈A
ρ(A,B)<δ

∣∣U−1
n Sn(A) − U−1

n Sn(B)
∣∣ > x


 = 0. (13)

Let δ > 0 and 0 < τ ≤ 1 defined as in the proof of theorem 1. In the sequel,
we denote (bn)n≥1 the sequence which satisfies condition (6) and we define
Xi,n = Xi 11|Xi|<τbn . One can check that

P


 sup

A,B∈A
ρ(A,B)<δ

∣∣U−1
n Sn(A) − U−1

n Sn(B)
∣∣ > x


 ≤ E1 + E2 + E3 + E4

11



where

E1 = P


 sup

A,B∈A
ρ(A,B)<δ

∣∣∣∣
∑

i∈Λn

(λ(nA ∩ Ri) − λ(nB ∩ Ri))[Xi,n − EXi,n]

∣∣∣∣ > xbn/2




E2 = P (Un ≤ bn/2) −−−−→
n→+∞

0 (by Raikov’s theorem)

E3 = ndP (|X0| ≥ τbn) −−−−→
n→+∞

0 (by (6))

E4 = x−1b−1
n nd|EX0,n| −−−−→

n→+∞
0 (by (6)).

So, it suffices to control E1. As in the proof of Theorem 1, we apply the
chaining method by Bass [3] with the following notations: for any constants
0 ≤ α ≤ β ≤ 1, we define Xi(n, α, β) = Xi 11ατbn≤|X0|<βτbn and

Zn(A, α, β) =
1

bn

∑

i∈Λn

λ(nA ∩Ri)[Xi(n, α, β) − EXi(n, α, β)].

So, we obtain

E1 ≤
2

x
E


 sup

A,B∈A
ρ(A,B)<δ

∣∣Zn(A, 0, 1) − Zn(B, 0, 1)
∣∣


 ≤ 2

x
(F1 + F2 + F3)

where F1, F2 and F3 are defined in the proof of Theorem 1. Applying Lemma
1 with cn = bn, the estimations (10) and (11) still hold for F1 and F2 respec-
tively. In order to control the last term F3, for any Borel subset A of [0, 1]d,
we denote

Z̃n(A, ak, ak−1) =
1

bn

∑

i∈Λn

λ(nA ∩ Ri)[|Xi(n, ak, ak−1)| − E|Xi(n, ak, ak−1)|].

We have

sup
Ak⊂A⊂A

+

k

|Zn(A, ak, ak−1) − Zn(Ak, ak, ak−1)|

≤ 1

bn

∑

i∈Λn

(λ(nA+
k ∩ Ri) − λ(nAk ∩Ri))[|Xi(n, ak, ak−1)| − E|Xi(n, ak, ak−1)|]

+ 2
nd

bn
E|X0(n, ak, ak−1)| δ2

k

= Z̃n(A
+
k , ak, ak−1) − Z̃n(Ak, ak, ak−1) + 2

nd

bn
E|X0(n, ak, ak−1)| δ2

k

12



Using Lemma 1, we derive
∥∥∥∥ max
Ak,A

+

k ∈A(δk)

∣∣Z̃n(A+
k , ak, ak−1)−Z̃n(Ak, ak, ak−1)

∣∣
∥∥∥∥
ψ1

≤ K(ak−1τH(δk)+δk
√

H(δk)).

In the other hand

nd

bn
E|X0(n, ak, ak−1)| δ2

k ≤
δ2
k

akτ

nd

b2n
EX2

0 11|X0|<bn.

So, the estimation (12) still hold for F3 and choosing again ak = δk/(τ
√

H(δk+1)),
we derive

lim sup
n→∞

2

x
E1 ≤ K

+∞∑

k=1

δk+1

√
H(δk) ≤ K

∫ δ

0

√
H(x)dx −−−−→

δ→0
0.

Finally, the condition (13) holds and the sequence {U−1
n Sn(A) ; A ∈ A} is

tight in the space C(A).

b) Finite dimensional convergence

For any Borel set A of [0, 1]d recall that Γn(A) is the finite set defined by
Γn(A) = nA ∩ Z

d and denote SΓn(A) =
∑

i∈Γn(A) Xi.

Lemma 3 Let A be a regular Borel set of [0, 1]d with λ(A) > 0. For any

x > 0, we have

lim
n→∞

P
(
U−1
n |Sn(A) − SΓn(A)| > x

)
= 0.

Proof of Lemma 3. Consider the subsets of Z
d

A1 = {i ; Ri ⊂ nA}, A2 = {i ; Ri∩nA 6= ∅}, A3 = A2∩{i ; Ri∩(nA)c 6= ∅}
and set ai = λ(nA ∩ Ri) − 11i∈Γn(A). Since ai equals zero if i belongs to A1,
we have

Sn(A) − SΓn(A) =
∑

i∈A3

aiXi.

Let τ > 0 and recall that Xi,n = Xi 11|Xi|<τbn. We have

P
(
U−1
n |Sn(A) − SΓn(A)| > x

)
≤ P1 + P2 + P3

where

P1 = P

(∣∣∣∣
∑

i∈A3

aiXi,n

∣∣∣∣ > xbn/2

)

P2 = P (Un ≤ bn/2) −−−−→
n→+∞

0 (by (7))

P3 = ndP (|X0| ≥ τbn) −−−−→
n→+∞

0 (by (6)).

13



Moreover

P1 ≤
4|A3|
x2b2n

EX2
0,n =

4|A3|
x2nd

× nd

b2n
EX2

0,n.

Keeping in mind that n−d|A3| tends to zero as n goes to infinity (cf. Dedecker
[6]) and using (6) then the proof of Lemma 3 is complete.

Lemma 4 For any regular Borel set A in A, the sequence
(
U−1
n SΓn(A)

)
n≥1

converge in distribution to
√
λ(A) ε where ε has the standard normal law.

Proof of Lemma 4. Let x > 0, n ∈ N
∗ and A ∈ A be fixed. We have

U−1
n SΓn(A) =

∑
i∈Γn(A) Xi√∑
i∈Γn(A)X

2
i

︸ ︷︷ ︸
Tn,1(A)

×
√∑

i∈Γn(A)X
2
i∑

i∈Λn
X2
i︸ ︷︷ ︸

Tn,2(A)

.

Using Theorem 3.3 in [13], we derive that Tn,1(A) converges in distribution
to the standard normal law. So, it suffices to prove that T 2

n,2(A) converges
in probability to λ(A). Let τ > 0 be fixed. Denoting Xi,n = Xi 11|Xi|<τbn and
X i,n = Xi −Xi,n, we have

|T 2
n,2(A) − λ(A)| ≤

∣∣∣∣T
2
n,2(A) −

∑
i∈Γn(A)X

2
i,n∑

i∈Λn
X2
i,n

∣∣∣∣
︸ ︷︷ ︸

(∗)

+

∣∣∣∣

∑
i∈Γn(A)X

2
i,n∑

i∈Λn
X2
i,n

− λ(A)

∣∣∣∣
︸ ︷︷ ︸

(∗∗)

.

(14)

Now, noting that X2
i = X2

i,n +X
2

i,n, we derive

(∗) =

∣∣∣∣

∑
i∈Λn

X2
i,n

∑
i∈Γn(A)X

2
i −

∑
i∈Λn

X2
i

∑
i∈Γn(A)X

2
i,n∑

i∈Λn
X2
i

∑
i∈Λn

X2
i,n

∣∣∣∣

=

∣∣∣∣

∑
i∈Λn

X2
i,n

∑
i∈Γn(A)X

2

i,n −
∑

i∈Λn
X

2

i,n

∑
i∈Γn(A)X

2
i,n∑

i∈Λn
X2
i

∑
i∈Λn

X2
i,n

∣∣∣∣

≤ 2

∑
i∈Λn

X
2

i,n∑
i∈Λn

X2
i

= 2 (1 −Rn)

where

Rn =

∑
i∈Λn

X2
i,n∑

i∈Λn
X2
i

≤ 1 a.s.

14



Let x > 0 be fixed. Using (6) we derive that

P((∗) > 3x) ≤ P((∗) > 0) ≤ P(Rn < 1) ≤ ndP(|X0| ≥ τbn) −−−−→
n→+∞

0. (15)

In the other hand,

(∗∗) ≤
∣∣∣∣

∑
i∈Γn(A)X

2
i,n∑

i∈Λn
X2
i,n

− 1

b2n

∑

i∈Γn(A)

X2
i,n

∣∣∣∣+
∣∣∣∣
1

b2n

∑

i∈Γn(A)

X2
i,n − λ(A)

∣∣∣∣

≤
∣∣∣∣1 − 1

b2n

∑

i∈Λn

X2
i,n

∣∣∣∣+
∣∣∣∣
1

b2n

∑

i∈Γn(A)

X2
i,n − λ(A)

∣∣∣∣

≤
∣∣∣∣1 − 1

b2n

∑

i∈Λn

X2
i,n

∣∣∣∣
︸ ︷︷ ︸

γn,1

+

∣∣∣∣
1

b2n

∑

i∈Γn(A)

(
X2
i,n − EX2

i,n

) ∣∣∣∣
︸ ︷︷ ︸

γn,2

+

∣∣∣∣
|Γn(A)|
b2n

EX2
0,n − λ(A)

∣∣∣∣
︸ ︷︷ ︸

γn,3

.

By (6) and the point (i) of Lemma 2, it is clear that

γn,3 −−−−→
n→∞

0. (16)

Noting that

b−2
n

∑

i∈Λn

X2
i,n =

∑
i∈Λn

X2
i

b2n
× Rn a.s.

we have

P(γn,1 > x) ≤ P
(∣∣1 − Rn

∣∣ > x/2
)

+ P

(∣∣∣∣1 −
∑

i∈Λn
X2
i

b2n

∣∣∣∣ > x/2

)

≤ P(Rn < 1) + P

(∣∣∣∣1 −
∑

i∈Λn
X2
i

b2n

∣∣∣∣ > x/2

)

≤ ndP(|X0| ≥ τbn) + P

(∣∣∣∣1 −
∑

i∈Λn
X2
i

b2n

∣∣∣∣ > x/2

)
.

Using (6) and (7), we obtain

P(γn,1 > x) −−−−→
n→∞

0. (17)
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We have also

P(γn,2 > x) ≤ b−4
n

x2
E




∑

i∈Γn(A)

X2
i,n − EX2

i,n




2

=
b−4
n

x2
|Γn(A)|E

(
X2

0,n − EX2
0,n

)2

≤ 4b−4
n

x2
|Γn(A)|EX4

0,n

≤ 4τ 2b−2
n

x2
|Γn(A)|EX2

0,n

=
4τ 2|Γn(A)|

ndx2
× nd

b2n
EX2

0,n.

Consequently, using (6) and the point (i) in Lemma 2, we derive

lim
n→+∞

P(γn,2 > x) ≤ 4τ 2λ(A)

x2
. (18)

Now, combining (16), (17) and (18), we obtain

lim
n→+∞

P((∗∗) > 3x) ≤ 4τ 2λ(A)

x2
. (19)

Combining (14), (15) and (19), it follows that

lim
n→+∞

P
(
|T 2
n,2(A) − λ(A)| > 6x

)
≤ 4τ 2λ(A)

x2
.

Since τ > 0 can be arbitrarily small, we obtain

lim
n→+∞

P
(
|T 2
n,2(A) − λ(A)| > 6x

)
= 0.

Finally, T 2
n,2(A) converges in probability to λ(A) and the proof of Lemma 4

is complete. The convergence of the finite-dimensional laws of the sequence
{U−1

n Sn(A);A ∈ A} follows then from Lemmas 3 and 4. The proof of Theo-
rem 2 is complete.

3.3 Proof of Theorem 3

Without loss of generality, we assume that p is a positive integer. Consider
the field X = (Xk)k∈Zd of i.i.d. integer-valued random variables defined on
a probability space (Ω,F , µ) by the following property: the random variable

16



X0 is symmetric and satisfies µ(X0 = 0) = 0 and µ(|X0| ≥ k) = k−p−1 for
any integer k ≥ 1. The random field X is p-integrable since

E(|X0|p) =
∑

k≥1

µ(|X0| ≥ k1/p)

=
∑

k≥1

k−1−1/p < +∞.

Let us fix an integer r ≥ 1 and consider the following numbers:

nr = 4rp,

βr = nd/2pr = 2rd,

kr = ndrµ(X0 ≥ βr) = 2rd(p−1),

εr =

(
kr
ndr

)1/2

= 2−rd(p+1)/2.

One can notice that (nr)r≥1, (βr)r≥1 and (kr)r≥1 are increasing sequences
of positive integers while (εr)r≥1 is a decreasing sequence of positive real
numbers which converges to zero. We define the class Ar as the collection of
all Borel subsets A of [0, 1]d with the following property: A is empty or there
exist il = (il,1, ..., il,d) in {1, ..., nr}d, 1 ≤ l ≤ kr such that

A =

kr⋃

l=1

]
il,1 − 1

nr
,
il,1
nr

]
× ...×

]
il,d − 1

nr
,
il,d
nr

]
.

Now, denote
A = Br ∪ Cr

where

Br =
r−1⋃

j=1

Aj and Cr =
+∞⋃

j=r

Aj.

For any integer j ≥ 1, the cardinal |Aj| of Aj equals 1 +

(
ndj
kj

)
, hence

N(Br, ρ, εr) ≤
r−1∑

j=1

(
1 +

(
ndj
kj

))
≤ 2rndkr

r .

On the other hand, since each element of the class Cr belongs to the ball with
center ∅ and radius εr, it follows that N(Cr, ρ, εr) = 1. Noting that

N(A, ρ, εr) ≤ N(Br, ρ, εr) +N(Cr, ρ, εr),

17



we obtain
N(A, ρ, εr) ≤ 1 + 2rndkr

r

and also
H(A, ρ, εr) = log N(A, ρ, εr) ≤ 3dkr log nr.

Finally, there exists K > 0 such that

+∞∑

r=2

εr−1

√
H(A, ρ, εr) ≤

+∞∑

r=2

εr−1

√
3dkr log nr

≤ K

+∞∑

r=2

2rd(p−1)/2
√
r

2rd(p+1)/2

= K

+∞∑

r=2

√
r

2rd
< +∞.

Consequently, the class A satisfies the metric entropy condition (2). Now, we
are going to see that the partial sum process {n−d/2Sn(A) ; A ∈ A} defined
by (1) is not tight in the space C(A). It is sufficient (Pollard, 1990) to show
that there exists θ > 0 such that

lim
δ→0

lim sup
n→+∞

µ


 sup

A,B∈A
ρ(A,B)<δ

n−d/2
∣∣Sn(A) − Sn(B)

∣∣ ≥ θ


 > 0.

For any integer r ≥ 1, denote Λr = {1, ..., nr}d and define Wr as the set of
all ω in Ω such that ∑

i∈Λr

11{Xi(ω)≥βr} ≥ kr.

Lemma 5 There exists a constant c > 0 such that for any integer r ≥ 1,

µ(Wr) ≥ c. (20)

Proof of Lemma 5. Let r ≥ 1 be fixed. For any i in Λr, denote

Yi = 11{Xi≥βr} − µ(X0 ≥ βr).

The family {Yi ; i ∈ Λr} is a finite sequence of i.i.d. centered random variables
bounded by 2. So, using a lower exponential inequality due to Kolmogorov
(Ledoux and Talagrand, 1991, Lemma 8.1), it follows that for any γ > 0,
there exist positive numbers K(γ) (large enough) and ε(γ) (small enough)
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depending on γ only, such that for every t satisfying t ≥ K(γ)b and 2t ≤
ε(γ)b2,

µ

(
∑

i∈Λr

Yi > t

)
≥ exp

(
−(1 + γ)t2/2b2

)

where b2 =
∑

i∈Λr
EY 2

i . In particular, there exists a positive universal con-
stant K such that

µ

(
∑

i∈Λr

Yi > Kb

)
≥ exp

(
−K2

)
.

Noting c = exp(−K2) > 0 and keeping in mind the definitions of the constant
kr and the random variable Yi, we derive

µ

(
∑

i∈Λr

11{Xi≥βr} > Kb + kr

)
≥ c.

Finally, Inequality (20) follows from the fact that Kb ≥ 0 and the proof of
the lemma is complete. The proof of Lemma 5 is complete.

Let ω be fixed in the set Wr and denote

Γ∗
r(ω) = {i ∈ Λr ; Xi(ω) ≥ βr}.

By definition of the set Wr, we know that |Γ∗
r(ω)| ≥ kr. Let Γr(ω) be a subset

of Γ∗
r(ω) such that |Γr(ω)| = kr and define

Ar(ω) =
⋃

i∈Γr(ω)

]
i1 − 1

nr
,
i1
nr

]
× ...×

]
id − 1

nr
,
id
nr

]
∈ Ar ⊂ A.

For any ω in Wr and any i in Λr, we have

λ(nrAr(ω) ∩ Ri) = 11Γr(ω)(i).
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Consequently, we have

n−d/2
r Snr(Ar(ω)) = n−d/2

r

∑

i∈Λr

λ(nrAr(ω) ∩ Ri)Xi(ω)

= n−d/2
r

∑

i∈Γr(ω)

Xi(ω)

≥ n−d/2
r |Γr(ω)|βr

= n−d/2
r krβr

= nd/2r µ(X0 ≥ βr)βr

=
1

2
nd/2r β−p

r

=
1

2
.

Thus, for any integer r ≥ 1 and any ω in Wr, we have
∣∣n−d/2
r Snr(Ar(ω))

∣∣ ≥ 1/2. (21)

Let δ > 0 be fixed. There exists an integer R such that for any r ≥ R and
any ω in Wr, λ(Ar(ω)) = kr/n

d
r ≤ δ2. Then, using the lower bounds (20)

and (21), it follows that for any r ≥ R,

µ


 sup

A,B∈A
ρ(A,B)<δ

∣∣n−d/2
r Snr(A) − n−d/2

r Snr(B)
∣∣ ≥ 1/2




≥ µ


 sup

A∈A
λ(A)<δ2

∣∣n−d/2
r Snr(A)

∣∣ ≥ 1/2




≥ µ

({
ω ∈ Wr

∣∣∣∣
∣∣n−d/2

r Snr(Ar(ω))
∣∣ ≥ 1/2

})

= µ(Wr) ≥ c > 0.

Finally, we have shown that for any δ > 0,

lim sup
n→+∞

µ


 sup

A,B∈A
ρ(A,B)<δ

∣∣n−d/2Sn(A) − n−d/2Sn(B)
∣∣ ≥ 1/2


 ≥ c > 0.

The proof of Theorem 3 is complete.
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