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1 Introduction and notations

The optimal rate of convergence in the central limit theorem for independent
random variables (X;);ecz is well known to be of order n=1/2 if the X,’s are
centered and have uniformly bounded third moments (cf. Berry [1] and Esseen
[8]). For dependent random variables the rate of convergence was also most fully
investigated but in many results the rate is not better than n~/4. For exam-
ple, Philipp [19] obtains a rate of n~/4(logn)? for uniformly mixing sequences,
Landers and Rogge [15] obtain a rate of n~'/4(logn)/* for a class of Markov
chains (see also Bolthausen [3]) and Sunklodas [23] obtains a rate of n=/*logn
for strong mixing sequences. However, Rio [22] has shown that the rate n=1/2
is reached for uniformly mixing sequences of bounded random variables as soon
as the sequence (¢;)p>o of uniform mixing coefficients satisfies > _, pd, < oc.
Jan [13] also established a n~'/2 rate of convergence in the central limit theorem
for bounded processes taking values in R? under some mixing conditions and
recently, using a modification of the proof in Rio [22], Le Borgne and Péne [16]
obtained the rate n=1/2 for stationary processes satisfying a strong decorrela-
tion hypothesis. For bounded martingale difference sequences, Ibragimov [12]
has obtained the rate of n=/4 for some stopping partial sums and Ouchti [18]
has extended Ibragimov’s result to a class of martingales which is related to the
one we are going to consider in this paper. Several results on the rate of conver-
gence for the martingale central limit theorem have been obtained for the whole
partial sums, one can refer to Hall and Heyde [10] (section 3.6.), Chow and Te-
icher [5] (Theorem 9.3.2), Kato [14], Bolthausen [2], Haeusler [11], Rinott and
Rotar [20] and [21]. In fact, Kato obtains the rate n~'/?(logn)? for uniformly
bounded variables under the assumption assumption that the conditional vari-
ances are almost surely constant. In this paper, we are most interested in results
by Bolthausen [2] who obtained the better (in fact optimal) rate n='/2logn un-
der somewhat weakened conditions. In this paper, we shall not aim to improve



the rate n~'/2log n but rather introduce a large class of martingales which leads

to it. Finally, note that El Machkouri and Volny [7] have shown that the rate

of convergence in the central limit theorem can be arbitrary slow for stationary
sequences of bounded (strong mixing) martingale difference random variables.

Let n > 1 be a fixed integer. We consider a finite sequence X = (Xy, ..., X;,) of
martingale difference random variables (i.e. X is Fi-measurable and E(Xy|Fx-1) =
0 a.s. where (Fx)o<k<n is an increasing filtration and Fy is the trivial o-algebra).

In the sequel, we use the following notations

oi(X) = B(X§|Fr-1), m(X)=E(X}), 1<k<n,

n

v2(X) =Y 72(X) and Vf(X):UQ(lx)Za,%(X).
k=1 n k=1

We denote also S, (X) = X1 + X5 + ... + X,,. The central limit theorem estab-
lished by Brown [4] and Dvoretzky [6] states that under some Lindeberg type
condition

Ap(X) =sup ‘H(Sn(X)/Un(X) <t)- (I)(t)| — 0.

teR n—-—+oo

For more about central limit theorems for martingale difference sequences one
can refer to Hall and Heyde [10]. The rate of convergence of A, (X) to zero was
most fully investigated. Here, we focus on the following result by Bolthausen

[2].

Theorem (Bolthausen, 82) Let v > 0 be fized. There exists a constant
L(y) > 0 depending only on v such that for all finite martingale difference
sequence X = (X1,..., X,,) satisfying V2(X) =1 a.s. and || X;|leo <7y then

nlogn>

3
Un,

A(X) < L(y) (

We are going to show that the method used by Bolthausen [2] in the proof of
the theorem above can be extended to a large class of unbounded martingale
difference sequences. Note that Bolthausen has already given extensions to
unbounded martingale difference sequences which conditional variances become
asymptotically nonrandom (cf. [2], Theorems 3 and 4) but his assumptions
cannot be compared directly with ours (cf. condition (1) below). So the results
are complementary.

2 Main Results

We introduce the following class of martingale difference sequences: a sequence
X = (X1,...,X,) belongs to the class M, (v) if X is a martingale difference
sequence with respect to some increasing filtration (F)o<r<n such that for any
1<k<n,

E(IXkP|Fr-1) < w B(XE|Fir—1) - as. (1)

where v = (&), is a sequence of positive reals numbers.

Our first result is the following.



Theorem 1 There exists a constant L > 0 (not depending on n) such that for
all finite martingale difference sequence X = (X1, ..., X,,) which belongs to the
class M, (7y) then

Unp INN

min{v,, 2"} °

A(X) < L( L IV20X) — 12 A V2(X) - 1||1/3)

where u, = Vi_1Vk-

Theorem 2 There exists a constant L > 0 (not depending on n) such that for
all finite martingale difference sequence X = (X1, ..., X,,) which belongs to the
class M, (v) and which satisfies V2(X) =1 a.s. then

u, Inn
AL (X) < L[t
022 ()

For any random variable Z we denote 6(Z) = sup,cp |11(Z < t) —®(t)|. We need
also the following extension of Lemma 1 in Bolthausen [2] which is of particular
interest.

Lemma 1 Let X and Y be two real random variables. If there exist real num-
bers 1 >0 and r > 1 such that Y belongs to L'" (i) then

(X +Y)<25(X)+3|E (|Y|l|X) HF A|E (Y2|X) ”Cl)éZ 2)
and 1
5(X) <20(X +Y) +3||E(YV'[X) 77 AE(Y2X) 122 3)

The proofs of various central limit theorems for stationary sequences of ran-
dom variables are based on approximating the partial sums of the process by
martingales (see Gordin [9], Volny [24]). More precisely, if (f o T*); is a p-
integrable stationary process where T': 0 — (Q is a bijective, bimeasurable and
measure-preserving transformation (in fact, each stationary process has such
representation) then there exists necessary and sufficient conditions (cf. Volny
[24]) for f to be equal to h+ g — goT where (hoT*), is a p-integrable station-
ary martingale difference sequence and g is a p-integrable function. The term
g — goT is called a coboundary.

The following theorem gives the rate of convergence in the central limit theorem
for stationary processes obtained from a martingale difference sequence which
is perturbed by a coboundary.

Theorem 3 Let p > 0 be fived and let F = (f oT*), be a stationary process. If
there exist m and g in LP(u) such that H = (hoT*),, is a martingale difference
sequence and f =h+g—goT then

+1
4g|p/ Y

An(F) < 208n(H) + = Doy

If p= oo then
419/l
ni/2 -

An(F) < 2A,(H) +



3 Proofs

3.1 Proof of theorem 2

In the sequel, we are going to use the following lemma by Bolthausen [2].

Lemma 2 (Bolthausen, 82) Let k > 0 and f : R — R be a function which
has k deriwatives fO, ..., f*) which together with f belong to LY(p). Assume
that ) is of bounded variation ||f* ||y, if X is a random variable and if
a1 # 0 and as are two real numbers then

|EfP (an X +as)| < Hf(’“)l\vjlelﬂglu(X < )= @(t)|+|aa|~FFV| £l sup |6 ()]

where ¢(x) = (2m) /2 exp(—22/2).

Consider v = (up), defined by u, = (Vi_;7vk). Clearly the class M, (v) is
contained in the class M, (u). For any (u,v) € RY x R%, we consider the
subclass

Ln(u,v) = {X € My(u) | VI(X) =1, v,(X) =vas.}

and we denote
Bn(u,v) = sup {A,(X)| X € L, (u,v)}.

In the sequel, we assume that X = (Xi,...,X,) belongs to £, (u,v), hence
X =(X1,..., Xpn—2,X,,—1 + X,,) belongs to L,,_1(4u,v) and consequently,

ﬁn <u7 /U) < ﬁnfl (4U, U).

Let Z1,Z5, ..., Z, be independent identically distributed standard normal vari-
ables independent of the o-algebra F,, (which contains the o-algebra gener-
ated by Xi,...,X,,) and £ be an extra centered normal variable with variance
6? > 1Vv2u?2 which is independent of anything else. Noting that > | 0:(X)Z; /v
is a standard normal random variable, indeed

LD o i Ty 0f 1 (%)
t2 _ 5
= exp(fg) ( Since V7 (X) =1 as.).
According to Inequality (3) in Lemma 1,
60
Ap(X) < 2sup T (t)] + —. (4)
teR v

where
Lo(t) £ p((Sn(X) +8€) fo<t) —p <<ZU¢(X)Zi +§> Jv< t) :

For any integer 1 < k < n, we consider the following random variables

k—1 n
1 1
Yké; E X, Wkév< g Ui(X)Zi+§>a
i1

i=k+1

=~



1 - t—Y;
HkAﬁ(Z O’f(X)‘i’@z) and Tk(t)éik, teR
i=k+1

with the usual convention Y 7 . 07(X) = >" . 04(X)Z; = 0 a.s. More-
over, one can notice that conditionned on Gy = o(X1, ..., X,,, Zx), the random
variable Wy, is centered normal with variance H,f According to the well known
Lindeberg’s decomposition (cf. [17]), we have
t)
n

Wk Xk Wk 0‘k<X)Zk
= — < Ti(t) — — — < Ti(t) — ————
I;M(Hk - k<) ka> 'u<Hk - k() vHj,
=2 E (E (ﬂﬁ?;gn(t)—j;’; |g’“>> —E <E (HZ,V’,;<Tk(t>”“£§LZ’“ |g’“>>
k=1

- k:E <<I> (Tk(t) - ﬁ)) -F <‘I’ (T’“(t) - W))

Now, for any integer 1 < k < n and any random variable (i, there exists a
random variable |e;| < 1 a.s. such that

n
X X)Z
mt):zu(YHWH;St)_u(yﬁwﬁw
k=1

IN

B (T4(0) — o) = (Tu(0)~Ge® (Te(0))+ 0" (Tu(0) 0" (Tu(t) — 24 s

So, we derive

< X, on(X)Zk\ X2 o2 X)Z2\ v
T (t) —;E{ (_ka + o, )cb (T (1)) + (%2’;{% - Sv2H,§k> O (Th(t))

X]i;) 1 Eka Uz(X)Zg " E;Uk(X)Zk
| === P (Tk(t) — e | TR(t) - ——777— .
<6v3Hg> ( W= )t 6v3 H k®) vHy,

Since V2(X) =1 a.s. we derive that Hy and T}(t) are Fj_;-measurable, hence

"1 X3 e Xp\ o} (X)Z3 £,.01(X) Zk
Lo(t) =) —=Eq—7E® (Ti(t) - BZhG | Th(t) — 22
®) 1;16@3 { H? (’“() ka)JF H} k() vHj

and consequently
1

|Fn(t)| < 603 (S1+52) (5)
where
N | Xk | o eeXk
S1 = E{ H? O | Ti(t) A
k=1
and

~ [ (X)) Z P
Sy = E R\ IR
=2

k=1

o (Tk(t) _ 52022)%) ’}



Consider the stopping times v(j);—o,..,» defined by v(0) =0, v(n) = n and for
any 1 <j<n

k -
) =inf{k > 1 2x)> 2% as .
) =t (k211 St 2 T s

Noting that {1,...,n} = Uj_{v(j — 1) + 1,..,v(j)} a.s. we derive

1 e X,
® (Tk(t>— ij’“)‘}

moreover, for any v(j — 1) < k < v(j) we have

n v(j)
X 3
S1 = E E{ E |Hk3|
k=v

j=1 G-D+1 Ok

n

Z ol (X) +6°

i=v(j)+1

1
Hy;

%

02

ol (X) = Y oF(X) —op(X) +6°

n v(j)—1
= i=1

1
2

—_

Vv
@M‘ —_
7N

S

[\v]
|
o,
S|
(V]

I N

+

S

(V]
N———

[>
o

Similarly,

-5 (Y- X e

< —
_U2

A
= M]2 a.s.

Now, for any v(j — 1) < k < v(j) put

k—1
1 [Rel _ It =Yo-1)41l
R, 2= X;, Ap 2 < J
k (2 Z k { m; - 2MJ
i=v(j—1)+1
and for any positive integer ¢ consider the real function 1, defined for any
real © by ¥,(z) 2 sup{|®" (y)| ; y > %‘ — gq}. On the other hand, on the set



Ak N {| Xk| < g} we have

ex Xk t=Y,g-n+1 R Eka}

Ty (t) — — = -

| k() ’UHk | | Hk Hk ’UHk;
- [t =Y, —1)+1l R [ X
- Hy, Hy, vHy
- lt=Yyg-n41l  |Rel g
- Mj m; 0

S It =Y, -1+l B

> oM, a.s. (since 6 > 1).

Thus

" €ka t_Yl/ j—1)+1
’(I) <Tk(t) -, ) ‘ g, N x<q < W (]\2 A
J

So, for any 1 < j < n we have

v(j)
| Xk
ey B
k=v

G-1+1 Tk

) T4, nixel<q

" {5ka
o (Tk(t) - L ) ‘ﬂAm{stq}}

t— Y,
(=) )

() o

v(4) 3
| Xk
o o

k=v(j—1)+1 ~ F

_E{E{ Z 7H,§ |-7:V(j—1)}

k=v(j—1)+1

On the other hand, for any 1 < j < n we have

v(j)
| X |?
E{ Y. T Fan
k=v

G-D+1 Tk
~ X X
= { Z TP \Fug-1 ¢ — E Z ?Vv(jfl)
k=v(j—1)+1 ~ F k=v(j)+1 ~ F
—~ < | X5 |? | X5 |3
=2 2 (E{ - W-v=tFui-n 1 — By g Leg=ilFui-
1=1 k=141 k k
n n XkS |Xk|3
:Z Z (E{E(|H3| |Tk—1)]1u(j1)—z|7u(j1)}—E{E( 73 |Fr—1) Loy=tlFoii-1)
=1 k=I+1 k k
E{ Z E( iR |fk—1)fu(j—1)}- (7)
k= (j—1)+1



By using the inequality (6), (7) and the fact that X € £, (u, v), we have
U(]) IXk|3 " Ek;Xk
By > @ (RO -5 ) Lanixisa

k=v(j—1)+1 ¥
t=Yyi-n+1

v(j) 3
Xk
E{E{ Z E <| H3| |fk1) |‘7:V(j1)}
k=v

G-1+1 k
u @2, t=Y,j-nn
< @E E Z o (XN Fui-1) ¢ [¥q M :
J k=v(j—1)+1 J
J

Moreover, note that

v(5) v(4)

)
Yo X)) =) ek (X) = Y oi(X)

k=v(j—1)+1 k=1
J+Dv? (-1 202
n n n

IA
\
o
»
—
(0]
=

Thus, for each 1 < j < n,

v(j)
| X |?
Y 5
k=v

" Eka
® (Tk(t)— oI, ) ‘ﬂAm{kaq}}

(j—1)+1 k
2un 'U2 t— Yy( j—1)+1
< E 2 vyt
~ nm? { Va ( M;

Using Lemma 2, noting that ||¢4|lcc < 1 and keeping in mind the notation
§(Z) £ supyeg |1(Z < t) — ®(t)| there exists a positive constant c3 such that

=Y,
E {% (W)} < 6(Yu(—1)+1) + csM;.
J

Now, using Lemma 1 and the inequality

2

E Z X ’Fy(_j—l) <02 <1 - > a.s.
k=v(j—1)+1
we obtain
2

1 n 1/2

5(Yy(]’_1)+1) S 25(SH(X)/IU)+3HE{’U2 Z Xk Yu(j—l)-‘rl}
k=v(j—1)+1 o

2
1 n 1/2
k=v(j—1)+1 o0
1 1/2
<281 (4u,0) + 3 (1 - jﬂ) (9)



and so

thV . i1 1/2
E {l/fq (]\(jl)ﬂ)} S 26n—1(4u7'v) +3 <]— - ]n> +01Mj.

J

Using this estimate and the dominated convergence theorem, we derive for any

integer 1 < j < n,
122 €ka
S (Ti(t) — 1
(r-52) o}

v(j) 3
| X |
m-p{ ¥
N 2 i 1/2
<A T (ﬁn_l(élu,v) + <1 - jﬂ) +M; ). (10)

<

k=v(j—1)+1
ms n

J
On the other hand, for any integer v(j — 1) < k < v(j)
Ri| _ [t=Y, -1+l
ACCB'é{ max |7l>—J .
k J v(j—1)<i<v(j) my; 2M]
Since the set Ay is Fy, we have
v(4)

3
(¥%) = E{ Z \)22!

k=v(j—-1)+1 ~ k

1 epX,
? <T’“(t) :H:MHAE}

v(j) 3
1" ‘Xk|
< Hq) ||ooE Z o 1 Ac

o
<u,F = 1 »ge
k=v(j—1)+1 k

v(3) 2
X
cupl Y T,
k=v(j—1)+1 k

By using inequality 8 and the fact that Hy > m; for any k € {v(j — 1) +
1,---,v(j)}, we have

2u, v
(x) < 3 X x p(Bj)
j

2u, 2 m;lt = Yy(o1)4l

< — X — X R;| >

- m? n # (u(j—glgz?;v(j)' | QMJ
2u, v 4M?

< % % L % E | min 1, — J 5B ( max |Ri|2|.7:l,(j1)> .
m; n mj|t =Y, -1)41l v(j—1)<i<v(j)

(11)

Noticing that the sequence of random variables

y R;, siv(j—1)4+1<i<v(j);
T\ Ry, siv()+1<i<n.



is a martingale adapted to the filtration (F;_1);<n, thus

E max Ri|2|Foie )zE( max | R;|}|F, i )
(v(j1><z'<u(j>| v u(jfl)<i§n| Pty
E(|Rn*|F, (1))

= 4E(|Ru(j)|2|fu(j—1))- (12)
By the inequality (8), (11) and (12), we have

2u, v . 16M2
(%) < — X o x FE <m1n {1 2|t — (|Ru(j)2|fu(j—1))}>
J

j 1Jr1|2

2u,, 2 32]\/[2
< u; X v X E | min< 1, .
m n nm; 2t =Y, —1)41]?

By applying lemma 2 with f(x) = min(1; 272), we have

32M7 V32
E({minq1 <Y, + —M
( { Q‘t Yoj—1+1l? }) Yotg-141) V/2nmm;

<O0(Yy(j—1)41) + c3Mj,

3

where c3 is a strictly positive constant.
By the inequality (9), we have

E|min{1 320} < 2B,_1(4 )+3<1 j_1>1/2+ M
min< 1, < 26h-1(4u, v — c3M;.
nm3lt — Y, 1)1 ! n !

Thus there exists a positive constant ¢4 such that

(3k) < S44n v? izt v -
S g XX On—1(du, v) + (1 + M; (13)

mj n

From (10) and (13), there exists a positive constant cs such that

2 1\ /2
(%) + (xx) < 05u3n x L % (ﬂn_l(élu,v) (1 - ]nl) + Mj> .

Finally, we obtain the following estimate

S AZE{|Xk|3 (T’“(t)_i’fr:)‘}




On the other hand,

n
Y=y :
m? (1— 1+ up 4 92;3“%)3/2

n v2

n
1 v
< - X
—Z _dpu g2 22

( since v? < nu?),

— 1 J=11p J—1u -
S At Vo> 2P : 1— /2 (since 6% > 2u?
Zmi;( n ) —Z(l_%+%)3/2( n ) ( 2

v

n
1
< Z . ( since v? < nu?)

and

Hence

v? ( vn lnn 0 )
S1 <esu, X — X 14U, V) ——=+nInn(2+ ———) |. (14
1 5 n ﬂ 1( ) 02 — QU% ( \/02_72’“%) ( )
Note that to obtain the above estimates of S, we have only use the fact that
the martingale difference sequence X belongs to the class £, (u,v). Since the
sequence 0Z = (01(X)Z1,...,0,(X)Z,) belongs to L, (4u/v/27,v), we are able
to reach a similar estimate for Ss:

2 1 0
Sggcﬁunxv—x <ﬁn_1(16u/\/ﬂ,v)vn nn +nlnn(2+ >
n

02 — 2u2 \/02—211%)
where cg is a positive constant.
Using (4), (5), (14) and (15) there exist a positive constant ¢ such that
Bn (’U,, U) (16)
<cup, <5n1(16u/\/ 27, v)

Inn Inn

6
S L WA .
V0? — 2u2 " @+ 02—2u2)>+ v

11



Putting

D, (v) = sup{ﬂn(u’v) P u € RI_\\J_*} :

U, logn

and 62 £ (2 + 4c2 1n® n) u2, by the inequality 16, we have

D, _1(v C
Dy (v) < % + - (18)
where C is a positive constant which does not depend on n. Finally, we conclude
that

4C
D,(v) <2—+ —
) v * 27~ min(v; 27)
Thus |
Uy, Inn
n U, <4
Bn(u,v) Cmm(v; 2m)

The proof of Theorem 2 is complete.

3.2 Proof of Theorem 1

Let X = (X1,..., Xpn) in My (u). Following an idea by Bolthausen [2], we are
going to define a new martingale difference sequence X which satisfies V,2(X) =
1 a.s. Denote for each d € R7,

i(d) = n+ 2d/u}), k(d) = (0] +d — v V2)fub, k(d) = [k(d)],

dy = [[op Vi (X) = vill1, deo = 072 V2(X) = 07 [loo
and

. u;, for i < mn;
U; =

Up, forn+1<i<n(d).

where [.] denotes the integer part function. Consider the random variables
X1, ..., Xpt1 defined as follows:

M(Xizztunfn =1 as. n+1<i<n+k(d)
5 A~ 1
(X1 = £ [k(d) = k(d))7un|F,) = 5 as.
X, =0 else.
We put
N 1 A(d) PPN
Vf?(d)(X) 2 E(X?|Fi-1),
A(d) j=1
n(d) . . A .
bpay = E(X})and Fi = o(Xy,---, X)).
i=1

Lemma 3 For each i < n(d), we have

@gz(d) — ’UfL = d, V?(d) (X) =1 and E(|X,|3|ﬁz_1) S ’lALzE(X22|.7}1_1) a.s.

12



Proof of Lemma 3: By definition of X, we have

7(d)
Ry =i+ Y E[EX1F)]
i=n+1

n(d)
va+ Y Eluf Nicnina) + up[k(d) = k(d)] Timn k(a4 ]

1=n—+1
= v2 + ul Elk(d)]
=2 4d
and
) L@ 1 G
Vi) = o S B(RF) = s (VA0 + 3 BRAL) )
n(d) =1 i=n+1
1 n(d)
== VRVAX) 4+ Y ud gy + unlk(d) — k(d)] ﬂz‘=n+k(d)+1)
n(d) i=n+1

(
= o (029200 + i) + (@) - k@)
(

n(d)
1
= L (v sk - v3V3<X>)
Vs
n(d)
2
- ”11; d_
Yia)

On the other hand, for each n 4+ 1 < i < 7i(d), we obtain

ul, if i <n+ k(d);
E(|XiP|Fic1) = ud[k(d) — k(d)]?/?, ifi=n+k(d)+1;
0, else.
and
2, if i <n+ k(d);

u
B(XiPFim) = 4 w2[k(d) - k(@2 ifi=n+ k(d) + 1
0, else.

Thus, for each 0 <4 < 7i(d), we obtain
E(‘Xﬂs‘fi,l) S ﬁlE(X3|ﬁ271> a.s.
The proof of lemma 3 is complete.

One can easily check that

N Upt
80 (X) £ 30 (S0 g < ) — 2(0)] + sup10 (2] — a(0).
teR teR Vi (d)

13



Noting that 92 — v2 = d and using Lemma 1 with [ = 2 and r = 1, if d £ d;
there exist a positive constant ¢ such that

. 1 V51 () — v
Ap(X) <2054 (X +2HE< — X; SnX) +
() < 2wy (0 +2 B[ 3 P10 )|+ (=)
R 43 1 1 g2
<204 (X) + 22 + + !
n(dl)( ) ’1)721/3 /o 2n v,
X 1/3
< 2Aﬁ(d1)(X)+c;—/3 ( one can suppose that d; < v?),
Un/

where c is a positive constant. Using Lemma 3 and applying Theorem 2, we
derive

aayy InA(dy) a/?
min (@ﬁ(dl); Zﬁ(dl)) Uf/?’
u, Infn(1+ % 1/3
min (vn; 2") Uf/3

An(X) < QL(

a3

<4L( Uy Inn

because d; < v2.
min (vy; 27) UZ/B) -

where L is a strictly positive constant.
Similarly if d £ d., then

Ui (d) M7 (doo) di/?
min (05(a.,); 204=)) 42/

Uy Inn déé3
<A4L + .
- (min (vn: 21) v?/3>

An(X) < 2L(

Finally, we have

up Inn a3 g2
A (X)<4D | —2— ind 4+ _ == .
(X) = (min(vn; 2m) * mm{@i/s, Un,

The proof of Theorem 1 is complete. O

3.3 Proof of Theorem 3 and Lemma 1

Applying the inequality (3.3) in Lemma 1 for Y = n='/2(g —goT™), | = p and
r=1

1/(p+1)

1
lg — g o T/ "+
np/2(p+1)

g]s/® ")

< 2An(H) + 4W~

14



If p = 400, we obtain

nN 2| 7 1/2
g—goT i
20, (F) < 2A,,(H) + 2HE((W> > hoT >
i=1 o0
l19llo0
< 20, (H) + 4077,
The proof of the theorem (3) is complete. O

Let X and Y be two real random variables. We put for each k£ > 0 and r > 1,
denote 3 = ||E (]Y|*|X) ||, and consider ¢ € RU {oco} such that 1/r +1/q=1.
Let A > 0 and ¢ be two real numbers we have

p(X+Y<t)>2pu(X <t—-\Y <t-X)
(X <N —p(X<t—AY > |t—X]|)
> (X < 6= X) = B {yzer (Y] >t - X|[X)}
Since
E{lx<iap(|Y|> [t = X[|X)} < E{|t = X|T*E(Y[*|X) Ix<t-2}
< BIIE{ x<e-alt = X[7*} g

< A,
we obtain
p(X +Y <t)>p(X <t—A)—pr "
Consequently
A
X4Y <t)—dt) > pu(X <t—AN) =Bt —\) — — — B\ F
1( St =®(t) = p(X < A e

and taking A = (8v 2%)1/(“1), there exists a positive constant ¢ such that
(X +Y) > 8(X) —cpt/k+D), (19)
On the other hand

WX 4+Y <t) <p(X <t+A)+pX >t+ N[V >t - X))
wX <t+A) + E{Lxspap(|Y] > |t = X[[X)}

and
E{lxsiapn(|Y] <[t = X[1X)} < E{lxsrn B(Y|"X) |t — X|7"}
< BIE(Lxsean [t — X|75)lg
< BATR

Consequently
p(X+Y <t) <p(X <t+A)+pAF

and

,u(X+Y§t)—<I>(t)SM(X§t+>\)—<I>(t+>\)+\/%+ﬂ)\_k.

15



Taking \ = (8v/2m)Y/(*+1) | there exists a positive constant ¢ such that

S(X 4+Y) <6(X)+c gY/E+HD, (20)

Combining (19) and (20) with Lemma 1 in Bolthausen [2] completes the proof
of Lemma 1.
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