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Abstract

We establish new Kahane-Khintchine inequalities in Orlicz spaces
induced by exponential Young functions for stationary real random
fields which are bounded or satisfy some finite exponential moment
condition. Next, we give sufficient conditions for partial sum processes
indexed by classes of sets satisfying some metric entropy condition to
converge in distribution to a set-indexed Brownian motion. Moreover,
the class of random fields that we study includes φ-mixing and mar-
tingale difference random fields.
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1 Introduction

Let (Xk)k∈Zd be a stationary field of zero mean real-valued random variables.
If A is a collection of Borel subsets of [0, 1]d, define the smoothed partial
sum process {Sn(A) ; A ∈ A} by

Sn(A) =
∑

i∈{1,...,n}d

λ(nA ∩Ri)Xi (1)

where Ri =]i1 − 1, i1] × ...×]id − 1, id] is the unit cube with upper corner at
i and λ is the Lebesgue measure on R

d.
The main aim of this paper is to study the asymptotic behaviour of the se-
quence of processes {Sn(A) ; A ∈ A} in terms of the validity of the functional
central limit theorem (FCLT) using new Kahane-Khintchine inequalities (cf.
section 3). More precisely, we derive the following property: the sequence
{n−d/2Sn(A) ; A ∈ A} converges in distribution to a mixture of Brownian
motions in the space C(A) of continuous real functions on A equipped with
the metric of uniform convergence.
To measure the size of the collection A one usually considers the metric en-
tropy with respect to the Lebesgue measure. Dudley [9] proved the existence
of a standard Brownian motion with sample paths in the space C(A) if A
has finite entropy integral (i.e. Condition (5) in section 4 holds).
The first weak convergence results for Qd-indexed partial sum processes were
established in the iid case for the collection Qd of lower-left quadrants in
[0, 1]d, that is to say the collection {[0, t1]× . . .× [0, td] ; (t1, . . . , td) ∈ [0, 1]d}.
They were proved by Wichura [26] under a finite variance condition and ear-
lier by Kuelbs [17] under additional moment restrictions. When the dimen-
sion d is reduced to one, these results coincide with the original invariance
principle of Donsker [7]. In 1983, Pyke [22] derived a weak convergence
result for the process {Sn(A) ; A ∈ A} in the iid case provided that the
collection A satisfies an entropy condition with inclusion (i.e. Condition (6)
in section 4 holds). However, this FCLT required moment conditions which
become more strict as the size of A increases. Bass [2] and simultaneously
Alexander and Pyke [1] extended Pyke’s result to iid random fields with
finite variance.
For uniform φ-mixing and β-mixing random fields, Goldie and Greenwood
[12] adapted Bass’s approach which is mainly based on Bernstein’s inequal-
ity for iid random fields. In 1991, Chen [3] proved a FCLT for Qd-indexed
partial sum of non-uniform φ-mixing random fields (the non-uniform φ-
mixing coefficients was introduced by Dobrushin and Nahapetian [6]). Re-
cently, Dedecker [5] gave an L∞-projective criterion for the partial sum
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process {n−d/2Sn(A) ; A ∈ A} to converge to an A-indexed Brownian mo-
tion when the collection A satisfies only the entropy condition (5) of Dudley.
This new criterion is valid for martingale difference bounded random fields
and provides a new criterion for non-uniform φ-mixing bounded random
fields. In the unbounded case, Dedecker gave an Lp-version (p > 1) of his
L∞-projective criterion for Qd-indexed partial sum of random fields with
moments strictly greater than 2. Next, for non-uniform φ-mixing random
fields, using the chaining method of Bass [2] and establishing Bernstein
type inequalities, Dedecker proved the FCLT for the partial sum process
{Sn(A) ; A ∈ A} provided that the collection A satisfies the more strict
entropy condition with inclusion (6) and under both finite fourth moments
and an algebraic decay of the mixing coefficients.
In a previous work (see [10]), it is shown that the FCLT may be not valid
for p-integrable (0 ≤ p < +∞) martingale difference random fields. More
precisely, the following result is proved.

Theorem (El Machkouri, Volný) Let (Ω,F , µ, T ) be an ergodic dynami-
cal system with positive entropy where Ω is a Lebesgue space, µ is a probabil-
ity measure and T is a Z

d-action. For any nonnegative real p, there exist a
real function f ∈ Lp(Ω) and a collection A of regular Borel subsets of [0, 1]d

such that

(1) For any k in Z
d, E

(
f ◦ T k|σ(f ◦ T i ; i 6= k)

)
= 0. We say that the

random field (f ◦ T k)k∈Zd is a strong martingale difference random
field.

(2) The collection A satisfies the entropy condition with inclusion (6).

(3) The partial sum process {n−d/2Sn(f,A) ; A ∈ A} is not tight in the
space C(A)

where
Sn(f,A) :=

∑

i∈{1,...,n}d

λ(nA ∩Ri)f ◦ T i.

The above theorem shows that not only Dedecker’s FCLT for bounded ran-
dom fields (see [5]) cannot be extended to p-integrable (0 ≤ p < +∞)
random fields but also it lays emphasis on that Bass, Alexander and Pyke’s
result (see [1], [2]) for iid random fields cannot hold for martingale difference
random fields.
In the present work, under a projective condition similar to Dedecker’s one,
we establish some so-called Kahane-Khintchine inequalities for stationary



5

real random fields in Orlicz spaces induced by exponential Young functions
(cf. section 3). We require the random field to be bounded or to satisfy
some finite exponential moment condition (cf. Assumption (2) in section
3). These inequalities extend previous ones for sequences of iid bounded
random variables (see for example [14], [15], [20]). With the help of the
above inequalities, we are in position to prove the tightness of the sequence
of processes {n−d/2Sn(A) ; A ∈ A} in the space C(A) when the collection A
satisfies an entropy condition related to the moments of the random field (i.e.
Condition (8) in section 4 holds). The convergence of the finite-dimensional
laws is a simple consequence of a central limit theorem (CLT) for stationary
real random fields with finite variance (see [4], Theorem 2.2).
Before presenting our results in more details, let us explain the main dif-
ference of our approach in tightness’s proof of the sequence of processes
{n−d/2Sn(A) ; A ∈ A} with Dedecker’s one. In fact, Dedecker’s proof is
based on an exponential inequality of Hoeffding type derived from a Marcinkiewicz-
Zygmund type inequality for p-integrable real random fields (cf. Inequality
(11) in section 5) by optimizing in p. That is the reason why the boundedness
condition is necessary. Our approach combines this Marcinkiewicz-Zygmund
type inequality with a property of the norm in Orlicz spaces induced by ex-
ponential Young functions (cf. Lemma 1) which allows us to derive the
announced Kahane-Khintchine inequalities under only the assumption of
some finite exponential moment.

2 Notations

By a stationary real random field we mean any family (Xk)k∈Zd of real-
valued random variables defined on a probability space (Ω,F ,P) such that
for any (k, n) ∈ Z

d × N
∗ and any (i1, ..., in) ∈ Z

nd, the random vectors
(Xi1 , ..., Xin) and (Xi1+k, ..., Xin+k) have the same law.
Let µ be the law of the stationary real random field (Xk)k∈Zd and consider

the projection f from R
Z

d

to R defined by f(ω) = ω0 and the family of

translation operators (T k)k∈Zd from R
Z

d

to R
Z

d

defined by (T k(ω))i = ωi+k
for any k ∈ Z

d and any ω in R
Zd

. Denote by B the Borel σ-algebra of R.
The random field (f ◦T k)k∈Zd defined on the probability space (RZd

,BZd

, µ)
is stationary with the same law as (Xk)k∈Zd . Consequently, without loss of
generality, one can suppose that

(Ω,F ,P) = (RZ
d

,BZ
d

, µ) and Xk = f ◦ T k, k ∈ Z
d.
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An element A of F is said to be invariant if T k(A) = A for any k ∈ Z
d. We

denote by I the σ-algebra of all measurable invariant sets.
On the lattice Z

d we define the lexicographic order as follows: if i =
(i1, ..., id) and j = (j1, ..., jd) are distinct elements of Z

d, the notation i <lex j
means that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq
for 1 ≤ q < p. Let the sets {V k

i ; i ∈ Z
d , k ∈ N

∗} be defined as follows:

V 1
i = {j ∈ Z

d ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Z
d ; |i− j| ≥ k} where |i− j| = max

1≤k≤d
|ik − jk|.

For any subset Γ of Z
d, define FΓ = σ(Xi ; i ∈ Γ). If Xi belongs to L1(P),

set
Ek(Xi) = E(Xi|FV k

i
).

Mixing coefficients for random fields. Given two σ-algebras U and V
of F , different measures of their dependence have been considered in the
literature. We are interested by one of them. The φ-mixing coefficient has
been introduced by Ibragimov [13] and can be defined by

φ(U ,V) = sup{‖P(V |U) − P(V )‖∞ , V ∈ V}.

Now, let (Xk)k∈Zd be a real random field and denote by |Γ| the cardinality
of any subset Γ of Z

d. In the sequel, we shall use the following non-uniform
φ-mixing coefficients defined for any (k, l, n) in (N∗ ∪ {∞})2 × N by

φk,l(n) = sup {φ(FΓ1 ,FΓ2), |Γ1| ≤ k, |Γ2| ≤ l, d(Γ1,Γ2) ≥ n},

where the distance d is defined by d(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}.
We say that the random field (Xk)k∈Zd is φ-mixing if there exists a pair
(k, l) in (N∗ ∪ {∞})2 such that limn→+∞ φk,l(n) = 0.
For more about mixing coefficients one can refer to Doukhan [8] or Rio [23].

Y oung functions and Orlicz spaces. Recall that a Young function ψ is a
real convex nondecreasing function defined on R

+ which satisfies

lim
t→+∞

ψ(t) = +∞ and ψ(0) = 0.

We define the Orlicz space Lψ as the space of real random variables Z
defined on the probability space (Ω,F ,P) such that E[ψ(|Z|/c)] < +∞ for
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some c > 0. The Orlicz space Lψ equipped with the so-called Luxemburg
norm ‖.‖ψ defined for any real random variable Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }

is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [16].

3 Kahane-Khintchine inequalities

A real random field (Xk)k∈Zd is said to be a martingale difference random
field if it satisfies the following condition: for any m in Z

d

E(Xm |σ(Xk ; k <lex m ) ) = 0 a.s.

Let β > 0. We denote by ψβ the Young function defined for any x ∈ R
+ by

ψβ(x) = exp((x+ hβ)
β) − exp(hββ) where hβ = ((1 − β)/β)1/β 11{0<β<1}.

We are interested in Kahane-Khintchine inequalities for a large class of ran-
dom fields. In fact, we shall give a projective condition (that is to say a
condition expressed in terms of a series of conditional expectations) compa-
rable to that introduced by Dedecker to prove a central limit theorem for
stationary square-integrable random fields (see [4]) and a functional central
limit theorem for stationary bounded random fields (see [5]). Consider the
following assumption :

∃q ∈]0, 2[ ∃θ > 0 E[exp(θ|X0|β(q))] < +∞ (2)

where β(q) = 2q/(2 − q) for any 0 < q < 2. Our first result is the following.

Theorem 1 Let (Xi)i∈Zd be a zero mean stationary real random field which
satisfies the assumption (2) for some 0 < q < 2. There exists a positive uni-
versal constant M1(q) depending only on q such that for any family (ai)i∈Zd

of real numbers and any finite subset Γ of Z
d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q)

(
∑

i∈Γ

|ai| bi,q(X)

)1/2

(3)

where

bi,q(X) := |ai| ‖X0‖2
ψβ(q)

+
∑

k∈V 1
0

|ak+i|
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

.
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If (Xi)i∈Zd is bounded then for any 0 < q ≤ 2, there exists a universal
positive constant M2(q) depending only on q such that for any family (ai)i∈Zd

of real numbers and any finite subset Γ of Z
d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q)

(
∑

i∈Γ

|ai| bi,∞(X)

)1/2

(4)

where
bi,∞(X) := |ai| ‖X0‖2

∞ +
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞.

Remark 1 If (Xi)i∈Zd is a martingale difference random field then

bi,q(X) = |ai| ‖X0‖2
ψβ(q)

and bi,∞(X) = |ai| ‖X0‖2
∞.

Thus, the inequalities (3) and (4) extend previous ones established for se-
quences of bounded i.i.d. random variables (see [14], [15], [20]).

Using Serfling’s inequality (see [19] or [24]), we deduce from Theorem 1 the
following result for stationary φ-mixing real random fields.

Corollary 1 Let (Xi)i∈Zd be a zero mean stationary real random field which
satisfies the assumption (2) for some 0 < q < 2. For any family (ai)i∈Zd of
real numbers and any finite subset Γ of Z

d,
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q) ‖X0‖ψβ(q)

(
∑

i∈Γ

|ai| b̃i,q(X)

)1/2

where

b̃i,q(X) := |ai| +C(q)
∑

k∈V 1
0

|ak+i|
√
φ∞,1(|k|),

M1(q) is the positive constant introduced in Theorem 1 and C(q) is a positive
universal constant depending only on q.
If (Xi)i∈Zd is bounded then for any 0 < q ≤ 2, any family (ai)i∈Zd of real
numbers and any finite subset Γ of Z

d,
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q) ‖X0‖∞
(
∑

i∈Γ

|ai| b̃i,∞(X)

)1/2

where
b̃i,∞(X) := |ai| + 2

∑

k∈V 1
0

|ak+i|φ∞,1(|k|),
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One can notice that in the unbounded case we were able to give Kahane-
Khintchine inequalities only in Orlicz spaces Lψq

when 0 < q < 2 but for
bounded random field we established these inequalities even in the space
Lψ2 . That is the reason why we cannot give a proof of the FCLT for random
fields with finite exponential moments (Theorem 2) under Dudley’s entropy
condition (5) unlike as in the case of bounded random fields (see [5]).

4 Functional central limit theorem

Let A be a collection of Borel subsets of [0, 1]d. We focus on the sequence of
processes {Sn(A) ; A ∈ A} defined by (1). As a function of A, this process
is continuous with respect to the pseudo-metric ρ(A,B) =

√
λ(A∆B).

To measure the size of A one considers the metric entropy: denote by
H(A, ρ, ε) the logarithm of the smallest number of open balls of radius ε
with respect to ρ which form a covering of A. The function H(A, ρ, .) is
the entropy of the class A. A more strict tool is the metric entropy with
inclusion: assume that A is totally bounded with inclusion i.e. for each
positive ε there exists a finite collection A(ε) of Borel subsets of [0, 1]d such
that for any A ∈ A, there exist A− and A+ in A(ε) with A− ⊆ A ⊆ A+

and ρ(A−, A+) ≤ ε. Denote by H(A, ρ, ε) the logarithm of the cardinality
of the smallest collection A(ε). The function H(A, ρ, .) is the entropy with
inclusion (or bracketing entropy) of the class A. Let C(A) be the space of
continuous real functions on A, equipped with the norm ‖.‖A defined by

‖f‖A = sup
A∈A

|f(A)|.

A standard Brownian motion indexed by A is a mean zero Gaussian process
W with sample paths in C(A) and Cov(W(A),W(B))= λ(A ∩ B). From
Dudley [9] we know that such a process exists if

∫ 1

0

√
H(A, ρ, ε) dε < +∞. (5)

Since H(A, ρ, .) ≤ H(A, ρ, .), the standard Brownian motion W is well de-
fined if ∫ 1

0

√
H(A, ρ, ε) dε < +∞. (6)

We say that the sequence {n−d/2Sn(A) ; A ∈ A} satisfies the functional cen-
tral limit theorem (FCLT) if it converges in distribution to a mixture of
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A-indexed Brownian motions in the space C(A) (which means that the lim-
iting process is of the form ηW , where W is a standard Brownian motion
indexed by A and η is a nonnegative random variable independent of W ).

In the sequel, we shall give a projective criterion which implies the tight-
ness of the sequence {n−d/2Sn(A) ; A ∈ A} in C(A) under the assumption
(2) of finite exponential moments and provided that the class A satisfies an
entropy condition related to the moments of the random field (i.e. Con-
dition (8) holds). The case of bounded stationary real random fields was
studied by Dedecker in [5] where he proved that the FCLT holds under the
L∞-projective criterion

∑

k∈V 1
0

‖XkE|k|(X0)‖∞ < +∞

and for any collection A satisfying only Dudley’s entropy condition (5). For
any Borel set A in [0, 1]d, let ∂A be the boundary of A. We say that A is
regular if λ(∂A) = 0.

Theorem 2 Let (Xi)i∈Zd be a zero mean stationary real random field which
satisfies the assumption (2) for some 0 < q < 2 and assume that

∑

k∈V 1
0

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

< +∞. (7)

Let A be a collection of regular Borel subsets of [0, 1]d satisfying the following
entropy condition ∫ 1

0
(H(A, ρ, ε))1/q dε < +∞. (8)

Then

(1) For the σ-algebra I of invariant sets defined in section 2, we have

∑

k∈Zd

∥∥∥
√
|E(X0Xk|I)|

∥∥∥
2

ψβ(q)

< +∞. (9)

Denote by η the nonnegative and I-measurable random variable

η =
∑

k∈Zd

E(X0Xk|I).
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(2) The sequence of processes {n−d/2Sn(A) ; A ∈ A} converges in distri-
bution in C(A) to

√
ηW where W is a standard Brownian motion

indexed by A and independent of I.

In Theorem 2, one can see that we control the size of the class A via the
classical metric entropy (without inclusion). In fact, all the earlier results
we know (in particular [1], [2], [5]) about the FCLT for unbounded processes
indexed by large classes of sets deal with the more strict bracketing entropy.

Using Serfling’s inequality (see [19] or [24]), we derive from Theorem 2
the following result for stationary φ-mixing real random fields.

Corollary 2 Theorem 2 still holds if we replace the condition (7) by

∑

k∈Zd

√
φ∞,1(|k|) < +∞. (10)

5 Proofs

We need the following lemma which can be obtained using the expansion of
the exponential function (see [25]).

Lemma 1 Let β be a positive real number and Z be a real random variable.
There exist positive universal constants Aβ and Bβ depending only on β such
that

Aβ sup
p>2

‖Z‖p
p1/β

≤ ‖Z‖ψβ
≤ Bβ sup

p>2

‖Z‖p
p1/β

.

Recall that in [5], Dedecker established the following Marcinkiewicz-Zygmund
type inequality for nonstationary real random fields.

Proposition (Dedecker, 2001) Let (Xi)i∈Zd be a zero mean real random
field and Γ be a finite subset of Z

d. For any p > 2,

∥∥∥∥∥
∑

i∈Γ

Xi

∥∥∥∥∥
p

≤
(

2 p
∑

i∈Γ

ci(X)

)1/2

(11)

where
ci(X) := ‖X2

i ‖ p

2
+
∑

k∈V 1
i

‖XkE|k−i|(Xi)‖ p

2
.

Now, recall that β(q) = 2q/(2− q) for any 0 < q < 2 and define 1/β(2) = 0.
Combining Lemma 1 and Inequality (11), we derive the following estimation.
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Lemma 2 Let (Xi)i∈Zd be a zero mean real random field. For any 0 < q ≤ 2
there exists a positive universal constant Bq depending only on q such that
for any family (ai)i∈Zd of real numbers and any finite subset Γ of Z

d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤
√

2Bq sup
p>2

1

p1/β(q)

(
∑

i∈Γ

ci(aX)

)1/2

(12)

where
ci(aX) := a2

i ‖Xi‖2
p + |ai|

∑

k∈V 1
i

|ak| ‖XkE|k−i|(Xi)‖ p

2
.

5.1 Proof of Theorem 1

Assume that (Xi)i∈Zd is a zero mean stationary real random field satisfying
the condition (2) for some 0 < q < 2 and (ai)i∈Zd is a family of real numbers.
Let i in Γ be fixed. We have

ci(aX) := a2
i ‖Xi‖2

p + |ai|
∑

k∈V 1
i

|ak| ‖XkE|k−i|(Xi)‖ p

2

= a2
i ‖Xi‖2

p + |ai|
∑

k∈V 1
i

|ak|
∥∥∥
√
|XkE|k−i|(Xi)|

∥∥∥
2

p

= a2
i ‖X0‖2

p + |ai|
∑

k∈V 1
0

|ak+i|
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

p
.

Moreover, by Lemma 1, there exists a positive universal constant Aβ(q) de-
pending only on q such that

sup
p>2

‖X0‖p
p1/β(q)

≤ A−1
β(q) ‖X0‖ψβ(q)

(13)

and for any k in V 1
0 ,

sup
p>2

1

p1/β(q)

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
p
≤ A−1

β(q)

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
ψβ(q)

. (14)

Combining (12), (13) and (14), we derive the following estimation

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q)

(
∑

i∈Γ

|ai| bi,q(X)

)1/2
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where

bi,q(X) := |ai| ‖X0‖2
ψβ(q)

+
∑

k∈V 1
0

|ak+i|
∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

and M1(q) denotes the constant
√

2BqA
−1
β(q). The first part of Theorem 1 is

proved.
Now, assume that the random field (Xi)i∈Zd is bounded, let 0 < q ≤ 2 be
fixed and recall that 1/β(2) = 0. For any i in Γ,

ci(aX) ≤ a2
i ‖X0‖2

∞ + |ai|
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞.

So, using Inequality (12), we infer that

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q)

(
∑

i∈Γ

|ai| bi,∞(X)

)1/2

where
bi,∞(X) := |ai| ‖X0‖2

∞ +
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞

and M2(q) denotes the constant
√

2Bq2
−1/β(q). The proof of Theorem 1 is

complete. �

5.2 Proof of Corollary 1

Let i in Γ be fixed. Consider

b̃i,q(X) := |ai| + C(q)
∑

k∈V 1
0

|ak+i|
√
φ∞,1(|k|)

and
b̃i,∞(X) := |ai| + 2

∑

k∈V 1
0

|ak+i|φ∞,1(|k|)

where C(q) is a positive universal constant depending only on q that we will
define later. It is sufficient to prove that

bi,q(X) ≤ ‖X0‖2
ψβ(q)

b̃i,q(X) (15)

and
bi,∞(X) ≤ ‖X0‖2

∞ b̃i,∞(X). (16)
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Let k in V 1
0 be fixed. By Lemma 1, there exists a positive universal constant

Bβ(q) depending only on q such that

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≤ B2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

p

= B2
β(q) sup

p>2

1

p2/β(q)
‖XkE|k|(X0)‖ p

2

≤ B2
β(q) sup

p>2

1

p2/β(q)
‖X0‖p ‖E|k|(X0)‖p.

Using Serfling’s inequality (see [19] or [24]), we derive for any p > 2,

‖E|k|(X0)‖p ≤ 2 ‖X0‖p φ∞,1(|k|)
p−1

p

≤ 2 ‖X0‖p
√
φ∞,1(|k|).

Consequently,

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≤ 2B2
β(q)

(
sup
p>2

1

p1/β(q)
‖X0‖p

)2√
φ∞,1(|k|).

Using Inequality (13) and putting C(q) = 2B2
β(q) A

−2
β(q), we obtain

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≤ C(q) ‖X0‖2
ψβ(q)

√
φ∞,1(|k|). (17)

Finally, Inequality (15) is a simple consequence of (17). The first part of
Corollary 1 is proved.
Now, assume that the random field (Xi)i∈Zd is bounded. Serfling’s inequality
(see [19] or [24]) implies

‖E|k|(X0)‖∞ ≤ 2 ‖X0‖∞ φ∞,1(|k|).

Consequently, we obtain for any k in V 1
0 ,

‖XkE|k|(X0)‖∞ ≤ 2 ‖X0‖2
∞ φ∞,1(|k|)

which implies Inequality (16). The proof of Corollary 1 is complete. �
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5.3 Proof of Theorem 2

Let k in V 1
0 be fixed. Consider the tail σ-algebra F−∞ = ∩i∈N∗FV i

0
. Using

the same argument as in Georgii ([11], Proposition 14.9), we derive that the
σ-algebra I of invariant sets is included in the P-completion of F−∞. So,
for any nonnegative real p, we have

‖E(X0Xk|I)‖p ≤ ‖E(X0Xk|F−∞)‖p ≤ ‖XkE|k|(X0)‖p. (18)

By Lemma 1, there exists a positive universal constant Aβ(q) depending only
on q such that

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

p
(19)

Since ∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

p
= ‖XkE|k|(X0)‖ p

2
, (20)

the inequality (19) implies

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)
‖XkE|k|(X0)‖ p

2

and the inequality (18) gives

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)
‖E(X0Xk|I)‖ p

2

= A2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√
|E(X0Xk|I)|

∥∥∥
2

p

≥ A2
β(q) B

−2
β(q)

∥∥∥
√

|E(X0Xk|I)|
∥∥∥

2

ψβ(q)

(by Lemma 1)

where Bβ(q) is the positive universal constant in Lemma 1.
So, using the stationarity of the random field and the assumption (7), we
derive the assertion (9).
Now, if ε is a positive real number, (19) and (20) imply that

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≥ (2 + ε)−2/β(q)A2
β(q) ‖XkE|k|(X0)‖1.

Consequently, the condition (7) is more strict than the projective criterion

∑

k∈V 1
0

‖XkE|k|(X0)‖1 < +∞



16

initially introduced by Dedecker [4] as a sufficient condition for the central
limit theorem (CLT) for stationary real random fields with finite variance.
Therefore, the random variable η is nonnegative (see [4], Proposition 3).

As usual, we have to prove the convergence of the finite-dimensional laws
and the tightness of the partial sum process {n−d/2Sn(A) ; A ∈ A} in C(A).
The convergence of the finite-dimensional laws is a simple consequence of
both the CLT for random fields ([4], Theorem 2.2) and the following lemma
(see [5]).
For any subset Γ of Z

d we consider

∂Γ =
{
i ∈ Γ ; ∃j /∈ Γ such that |i− j| = 1

}
.

For any Borel set A of [0, 1]d, we denote by Γn(A) the finite subset of Z
d

defined by Γn(A) = nA ∩ Z
d.

Lemma 3 (Dedecker, 2001) Let A be a regular Borel set of [0, 1]d with
λ(A) > 0. We have

(i) lim
n→+∞

|Γn(A)|
nd

= λ(A) (ii) lim
n→+∞

|∂Γn(A)|
|Γn(A)| = 0.

Let (Xi)i∈Zd be a stationary random field with mean zero and finite variance.
Assume that

∑
k∈Zd |E(X0Xk)| < +∞. Then

lim
n→+∞

n−d/2
∣∣∣∣Sn(A) −

∑

k∈Γn(A)

Xk

∣∣∣∣
2

= 0.

Remark 2 The series
∑

k∈Zd |E(X0Xk)| converges under the assumption
(7). In fact, one can check that

∑

k∈Zd

|E(X0Xk)| ≤ E(X2
0 ) + 2

∑

k∈V 1
0

‖XkE|k|(X0)‖1.

Now, using the Kahane-Khintchine inequalities established in section 3, we
shall see that the partial sum process {n−d/2Sn(A) ; A ∈ A} is tight in the
space C(A). It is sufficient (see [21]) to check the following property:

lim
δ→0

lim sup
n→+∞

E

(
sup

ρ(A,B)<δ

∣∣n−d/2Sn(A) − n−d/2Sn(B)
∣∣
)

= 0. (21)

Recall that the random field (Xk)k∈Zd satisfies the assumption (2) for some
0 < q < 2. Let A and B be two elements of the class A and let n be a
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positive integer. For any k in the set {1, ..., n}d, we consider the element
ak = λ(nA∩Rk)−λ(nB∩Rk) of [−1, 1]. The Kahane-Khintchine inequality
(3) stated in Theorem 1 provides the following

‖Sn(A) − Sn(B)‖ψq
=

∥∥∥∥∥∥

∑

k∈{1,...,n}d

akXk

∥∥∥∥∥∥
ψq

≤ Kq(X)




∑

k∈{1,...,n}d

|ak|




1/2

≤ Kq(X)




∑

k∈{1,...,n}d

λ(n(A∆B) ∩Rk)




1/2

= Kq(X)
√
λ(n(A∆B))

= Kq(X)nd/2 ρ(A,B)

where

Kq(X) = M1(q)


‖X0‖2

ψβ(q)
+
∑

k∈V 1
0

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)




1/2

.

That is to say, for any positive integer n and any elements A and B of A,

‖n−d/2Sn(A) − n−d/2Sn(B)‖ψq
≤ Kq(X) ρ(A,B). (22)

The inequality (22) means that the partial sum process {n−d/2Sn(A) ; A ∈
A} is lipschitzian uniformly in n. Now, suppose that the metric entropy
condition (8) holds. Applying Theorem 11.6 in Ledoux and Talagrand [18],
we infer that the sequence {n−d/2Sn(A) ; A ∈ A} satisfies the following
property: for each positive ε there exists a positive real δ, depending only
on ε and on the value of the entropy integral (8), such that

E

(
sup

ρ(A,B)<δ
|n−d/2Sn(A) − n−d/2Sn(B)|

)
< ε.

The condition (21) is then satisfied and the process {n−d/2Sn(A) ; A ∈ A}
is tight in C(A). The proof of Theorem 2 is complete. �
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5.4 Proof of Corollary 2

From Inequality (17) in the proof of Corollary 1, we have

∑

k∈V 1
0

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≤ C(q) ‖X0‖2
ψβ(q)

∑

k∈V 1
0

√
φ∞,1(|k|).

Consequently, the condition (10) is more strict than the condition (7) and
the proof of Corollary 2 is complete. �
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