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Abstract

We study limit theorems for partial sums of instantaneous functions of a homogeneous Markov chain
on a general state space. The summands are heavy-tailed and the limits are stable distributions.

We show that if the transition operator of the chain is operator uniformly integrable and the chain
is ρ-mixing, then the limit is the same as if the summands were independent.

We provide an example of a Markov chain that is operator uniformly integrable (and admits a spectral
gap) while it is not hyperbounded.

What makes our assumptions working is a new, efficient version of the Principle of Conditioning.
c⃝ 2019 Elsevier B.V. All rights reserved.

MSC: 60F05; 60F17; 60E07; 60J05; 60J35
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1. Introduction

Our motivation comes from the paper by Jara, Komorowski and Olla [36], where a fractional
diffusion was obtained as a scaled limit of functionals of Markov chains forming a probabilistic
solution to a linear Boltzmann equation. The main tool used in [36] was a functional limit
theorem on convergence to stable Lévy processes due to Durret and Resnick [20] and
the assumptions that made this functional limit theorem working were L2-spectral gap and
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strong contractivity properties of the Markov transition operator. In the particular example
considered in [36] the ultraboundedness of the transition operator was used, but in the general
considerations (Theorem 2.4, ibid.) properties related to a weaker notion of hyperboundedness
were assumed (We refer to Section 2 for formal definitions and discussion of all these notions).

Later Cattiaux and Manou-Abi [12] reexamined the limit theorems from [36] in the context
of the general theory of convergence to stable laws for sums of stationary sequences. They
considered standard mixing conditions (φ-, ρ-, α- mixing) and anti-clustering condition D′,
introduced in [14] and discussed in [17]. While the discussion in [12] was quite extensive,
it did not address the question whether the strong assumption of hyperboundedness of the
transition operator can be essentially weakened.

In the present paper we suggest replacing the hyperboundedness with the uniform in-
tegrability in L2 (2-U.I. in short) of the transition operator, a notion introduced in [52].
We believe that this is the proper minimal form for operator contractivity whenever limit
theorems for Markov chains with stable limits are considered. Our main results are formulated
in Section 3. In Theorem 3.1 we obtain limit theorems assuming the 2-U.I. condition and
ρ-mixing. In Proposition 3.3 we study the relations between hyperboundedness and ρ-mixing
and in Corollary 3.5 we provide the corresponding limit theorems. The proofs of both main
results are deferred to Section 5. In Section 2 we gather all necessary information, notation
and comments related to the models considered in the paper.

What allows considerable weakening of the assumptions and removing technicalities is a
new efficient version of the Principle of Conditioning that operates with conditional char-
acteristic functions rather than predictable characteristics and therefore keeps integrability
requirements at the minimal possible level. Recall that the Principle of Conditioning is a
heuristic rule that transforms limit theorems for independent random variables into limit
theorems for dependent random variables. The mentioned above functional limit theorem by
Durret and Resnick [20] is a particular manifestation of this rule. We state our new result
(Theorem A.3) and give more comments and references on the Principle of Conditioning
in Appendix.

In Section 4 we give five examples, each of a different nature.
First we provide an example of a Markov chain with the transition operator that is

uniformly integrable in L2 (and admits an L2-spectral gap) while it is not hyperbounded. The
constructed Markov chain is integer-valued but can be easily modified to obtain the absolutely
continuous stationary distribution on R+. This shows that our theory substantially extends
[36, Theorem 2.4] and [12].

Then, using the standard example of a stationary AR(1) sequence with Gaussian innovations,
which is hyperbounded and ρ-mixing, we demonstrate that our theory does not imply φ-mixing
(or uniform ergodicity). This proves that the hyperboundedness is not as demanding as it looks
like.

On the other hand, using our Corollary 3.5, we can show that some popular Markov chains,
like ARCH or GARCH processes, are not hyperbounded.

Finally we contribute to the problem of m-skeletons, providing an example of a Markov
chain such that the 3-skeleton {X3n} is not i.i.d. but still satisfies the assumptions of our
Theorem 3.1, while the partial sums of the whole sequence remain bounded in probability.
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2. Preliminaries

2.1. Transition operator

Let {Xn}n≥0 be a Markov chain with state space (S,S) and the transition probability
P(x, dy) on S×S. We will always assume that P(x, dy) admits a stationary distribution π on
(S,S), i.e.

π (A) =

∫
S

π (dx)P(x, A), A ∈ S. (1)

The transition probability defines the transition operator that acts by the formula

(P f )(x) =

∫
S

P(x, dy) f (y) (2)

and is a positive contraction on every space L p(π ) = L p(S,S, π), p ∈ [1,+∞].

2.2. 2-U.I. condition

Following [52] we will say that the transition operator P is:

uniformly integrable in L2 (or 2-U.I.) if

{|P f |
2
; ∥ f ∥L2(π ) ≤ 1} is uniformly π -integrable. (3)

hyperbounded if there exists q > 2 such that P : L2(π ) → Lq (π ) is a bounded linear
operator, i.e.

sup{

∫
|P f |

q dπ ; ∥ f ∥L2(π ) ≤ 1} < +∞. (4)

ultrabounded if

sup{∥P f ∥∞ ; ∥ f ∥L1(π ) ≤ 1} < +∞. (5)

There are simple relations between these notions. First, we have∫
|P f |

q dπ = ∥ |P f |
2
∥

q/2
Lq/2(π )

,

so (4) implies boundedness of {|P f |
2
; ∥ f ∥L2(π ) ≤ 1} in Lq/2(π ), hence uniform integrability,

if q > 2. Therefore the hyperboundedness implies the uniform integrability in L2. Second,
applying the Jensen inequality, we get for any p > 1 that (5) implies

sup{∥P f ∥∞ ; ∥ f ∥p ≤ 1} < +∞.

Thus the ultraboundedness implies the hyperboundedness.
Notice that the hyperboundedness of the transition operator is, in a sense, independent of

the particular choice of q > 2. Indeed, by the Riesz–Thorin theorem, if P is a bounded linear
operator from L p(π ) to Lq (π ), with 1 < p < q < +∞, then for any other 1 < p′ < +∞

there is q ′ > p′, q ′ < +∞, such that P is a bounded linear operator from L p′

to Lq ′

.
Conditions like (3)–(5) are usually considered in the context of hypercontractivity of Markov

semigroups and all examples mentioned in [52] (as well as most of examples in [12]) are related
to the continuous time Markov processes analysis.
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In the present paper we deal with discrete time Markov chains and show that also in
this more elementary setting there are natural examples of Markov chains with contracting
properties of the transition operator describable by relations (3)–(5).

For example, suppose that P is given by a density p(x, y) with respect to π , i.e.

P f (x) =

∫
S

π (dy)p(x, y) f (y).

Then P is ultrabounded if p(x, y) is a bounded function in (x, y) (as in the main model in [36]),
and it is hyperbounded if p(x, y) ∈ Lq (π×π ) for some q > 2 (see [12, p. 480]). In Section 4.1
we shall provide an example of a countable-space Markov chain with P that is 2-U.I. but not
hyperbounded.

Remark 2.1. By the linearity of P , if any of conditions (3)–(5) holds for real-valued functions
f , then it is satisfied also for complex-valued functions f .

2.3. Geometric ergodicity and strong mixing

The chain {Xn}n≥0 is geometrically ergodic, if there is a number 0 ≤ η < 1 and a function
C : S → R+ such that

∥Pn(x, ·) − π∥T V ≤ C(x)ηn, for π -a.e. x ∈ S, n ∈ N,

where ∥ · ∥T V is the total variance distance (see [48, Theorem 2.1]). It is well known that
the geometric ergodicity of a Markov chain is equivalent (under natural conditions) to the
exponential absolute regularity (see e.g. [8, Theorem 21.19, p. 325]), hence implies also the
strong mixing at geometric rate. The latter property means (in the world of Markov chains)
that there is a constant 0 < C < +∞ such that for every bounded measurable function
h : (S,S) → (R1,B1) and every n∫

S

π (dx)
⏐⏐Pnh(x) −

∫
S

h dπ
⏐⏐ ≤ Cηn

∥h∥∞. (6)

See [9, Chapter 4] or [19] for definitions and properties of this and other mixing conditions.

2.4. L2-spectral gap and ρ-mixing

The transition operator P is said to have an L2-spectral gap if there is a number a < 1
such that

sup{∥P f ∥L2(π ) ;

∫
S

f (x) dπ (x) = 0, ∥ f ∥L2(π ) ≤ 1} ≤ a.

If some power Pm admits an L2-spectral gap of size at least 1 − a, then by iteration we obtain
that there is a constant 1 ≤ D < +∞ such that for f ∈ L2

0(π ) = { f ∈ L2(π ) ; π ( f ) =∫
S

f (x)π (dx) = 0}

∥Pn f ∥L2(π ) ≤ Dan
∥ f ∥L2(π ), n = 1, 2, . . . . (7)

This means that {Xn} satisfies “an L2 norm condition” of [49] and by Theorem 2, p. 217,
ibid., a central limit theorem with the standard normalization

√
n holds for the stationary

sequence Ψ (X0),Ψ (X1), . . . whenever
∫
Ψ (x)π (dx) = 0 and

∫
Ψ 2(x)π (dx) < +∞. (A proof

of this limit theorem that is preferred nowadays can be found e.g. in [23]).
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In the contemporary language we say that the chain is ρ-mixing (for Markov chains
necessarily at the geometric rate). A particular consequence of this property that is crucial
for our paper is that for any function g ∈ L2(π ) we have

Var
(n−1∑

j=0

g(X j )
)

≤ n
(

1 + 2
D

(1 − a)

)
Var

(
g(X0)

)
. (8)

For reversible, ψ-irreducible and aperiodic Markov chains the spectral gap property is known
to be equivalent to the geometric ergodicity.

If {Xn} is not reversible, then the spectral gap property implies the geometric ergodicity
(see [38, Theorem 1.3]), but there are Markov chains that are geometrically ergodic and do not
have an L2 spectral gap (see [38, Theorem 1.4]). It is remarkable that the central limit theorem
need not hold for such Markov chains (see [7,24,25]).

Notice that if one is interested in a central limit theorem to hold for particular instantaneous
function of the underlying Markov chain, then sufficient conditions weaker than the L2 spectral
gap are known (see e.g. [41]).

2.5. Stable limits

In the present paper the limiting distribution µ will be stable with exponent α ∈ (0, 2). It is
well-known (see e.g. [51] or [27]) that its characteristic function admits the Lévy–Khintchine
representation

µ̂(θ ) = exp
(

iθah
+

∫ (
eiθx

− 1 − iθx1{|x |≤h}

)
να,c+,c−

(dx)
)
, (9)

where c+, c− ≥ 0, c+ + c− > 0 and ah
∈ R1, the Lévy measure να,c+,c−

has the density

pα,c+,c−
(x) = α

(
c+x−(α+1)1{x>0} + c−|x |

−(α+1)1{x<0}

)
,

and h > 0 is a fixed level of truncation. We will denote the stable distribution with characteristic
function (9) by δah ∗ -Poiss(α, c+, c−)ch .

In the main results of the paper we shall consider somewhat less general limits µα with
characteristic function of the form

µ̂α(θ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(∫ (
eiθx

− 1
)
να,c+,c−

(dx)
)
, α ∈ (0, 1);

exp
(∫ (

eiθx
− 1

)
ν1,c,c(dx)

)
, α = 1;

exp
(∫ (

eiθx
− 1 − iθx

)
να,c+,c−

(dx)
)
, α ∈ (1, 2).

(10)

A reader familiar with the terminology would observe that completing the above list with
probability laws of the form δa ∗ µ1, a ̸= 0, we obtain all strictly stable laws on R1

Notice that the integrals under the exponents in (9) or (10) can be evaluated, but obtained
this way formulas are usually meaningless within the limit theory.

3. Results

Let {Xn} be a Markov chain on the space (S,S) with a stationary distribution π . Define
Fn = σ {X j ; j ≤ n}.
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We will study distributional limits for suitably normalized and centered partial sums of the
form

Sn =

n∑
j=1

Ψ (X j ),

where Ψ : (S,S) → (R1,B1) is a measurable function.
We will assume that the probability law π ◦Ψ−1 belongs to the domain of attraction of µα ,

0 < α < 2. This means (see e.g. [22, Theorem 1a, p. 313]) that

π
(
x ; |Ψ (x)| > t

)
= t−αℓ(t), (11)

where ℓ(t) is a slowly varying function as t → ∞, and there exist the limits

lim
t→∞

π
(
x ; Ψ (x) > t

)
π

(
x ; |Ψ (x)| > t

) =
c+

c+ + c−

, lim
t→∞

π
(
x ; Ψ (x) < −t

)
π

(
x ; |Ψ (x)| > t

) =
c−

c+ + c−

. (12)

Theorem 3.1. Let {Xn} be a Markov chain on the space (S,S), with the transition operator
P and a stationary distribution π . We assume that the chain is ρ-mixing and that P satisfies
the 2-U.I. condition.

Let Ψ : (S,S) → (R1,B1) be such that π ◦Ψ−1 belongs to the domain of attraction of the
stable distribution µα , α ∈ (0, 2) (i.e. both (11) and (12) are fulfilled). Let Bn → ∞ satisfies

n
Bαn
ℓ(Bn) → c+ + c−. (13)

(i) If α ∈ (0, 1) or α = 1 and c+ = c− = c then

Ψ (X1) + Ψ (X2) + · · · + Ψ (Xn)
Bn

−→D µα. (14)

(ii) If α ∈ (1, 2), then∑n
j=1

(
Ψ (X j ) − EΨ (X j )

)
Bn

−→D µα, (15)

and ∑n
j=1

(
E

(
Ψ (X j )|F j−1

)
− EΨ (X j )

)
Bn

−→
P

0. (16)

Remark 3.2. In the recent paper [44] Mikosch and Wintenberger consider a similar setting
of (multidimensional) instantaneous functions of Markov chains. They operate with two types
of assumptions. While their drift Condition DCp implies geometric ergodicity and is close
in spirit to “dynamical” properties of the transition operator P , their other assumption RVα

(regular variation of finite dimensional distributions, see [2]) is probabilistic in nature and
usually requires knowledge of the structure of the Markov chain, going beyond the properties
of non-iterated P . See the example in Section 4.3 for the flavor of the results obtained in [44].

As Example 4.1 shows, the hyperboundedness of the transition operator P is strictly stronger
than the 2-UI property. On the other hand the hyperboundedness is the most natural sufficient
condition for the 2-UI property. It is therefore interesting that the hyperboundedness is close
to the L2-spectral gap property.



M. El Machkouri, A. Jakubowski and D. Volný / Stochastic Processes and their Applications 130 (2020) 1853–1878 1859

Proposition 3.3. Suppose that the transition operator P is hyperbounded.

(i) If the chain is reversible and ergodic, then P has an L2-spectral gap.

(ii) If the chain is strongly mixing at geometric rate (geometrically ergodic), then Pm has an
L2-spectral gap for some m ∈ N.

In both cases the chain is ρ-mixing.

Remark 3.4. We owe the statement (ii) and its proof given in Section 5.4 to the anonymous
reviewer.

Corollary 3.5. Let {Xn} be a Markov chain on the space (S,S), with the transition operator
P and a stationary distribution π .

Let Ψ : (S,S) → (R1,B1) satisfies both (11) and (12) and Bn → ∞ is defined by (13).
If P is hyperbounded and the chain is either reversible and ergodic or strongly mixing at

geometric rate then

Ψ (X1) + Ψ (X2) + · · · + Ψ (Xn)
Bn

−→D µα,

provided α ∈ (0, 1) or α = 1 and c+ = c− = c or α ∈ (1, 2) and
∫
Ψ (x)π (dx) = 0.

Remark 3.6. The fact that hyperboundedness, ergodicity and reversibility imply an L2-spectral
gap is a good piece of mathematics that was recently obtained by Miclo [43].

In the context of our results one can pose another question: is it true that the 2-U.I. property
implies an L2-spectral gap for reversible and ergodic Markov chains?

Remark 3.7. In assumptions of Corollary 3.5 we can strengthen the convergence in probability
in (16) to the a.s. convergence.

Indeed, denote by ∥ · ∥s→t the operator norm of a linear map between Ls(π ) and L t (π ) and
suppose that ∥P∥2→q < +∞, for some q > 2. Let α ∈ (1, 2) and take 0 < r < α − 1. We
know that E

⏐⏐Ψ (X0)
⏐⏐α−r

< +∞. Since P is also a bounded map from L1(π ) to L1(π ), we can
apply the Riesz–Thorin interpolation theorem (see e.g. [3, Theorem 1.1.1]) to get that

∥P∥(α−r )→β ≤ ∥P∥
2(α−r−1)/(α−r )
2→q < +∞,

where

β =
q(α − r )

2(q − 1) − (q − 2)(α − r )
> α.

This means that E
⏐⏐E(

Ψ (X1)
⏐⏐F0

)⏐⏐β =
∫
π (dx)|PΨ (x)|β < +∞ for some β > α. By the

remark at the end of Annex C in [47, p. 185] and Corollary 3.2 (i), p. 55 ibid., we have∑n
j=1

(
E

(
Ψ (X j )|F j−1

)
− EΨ (X j )

)
n1/(β−ε) → 0, a.s.,

for every ε > 0, β − ε > α. But in such a case also n1/(β−ε)/Bn → 0 and our claim follows.

Remark 3.8. It is worth stressing that in our results for α = 1 we need only that the limit is
symmetric and not π ◦ Ψ−1 itself.
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4. Examples

4.1. Example related to the 2-U.I. condition

We are going to construct a discrete in time and space example of the transition operator that
exhibits the L2-spectral gap property, satisfies the 2-U.I. condition but is not hyperbounded.
This will show that our theory essentially extends Theorem 2.4 of [36] and the results of [12].
Notice also that all the examples of operators provided in [52] and related to the 2-U.I. condition
are taken from the stochastic analysis.

Example 4.1. The example is a variant of Rosenblatt’s family of examples [49, pp. 213–214],
but it occurs also in many other places, e.g. in [42, p.54], in the context of the backward
recurrence time chain.

Let T : (Ω ,F ,P) → N = {0, 1, 2, . . .} be an integer valued non-negative random variable
such that

ET < +∞, P(T ≥ j) > 0, j ∈ N.

(Other requirements imposed on the distribution of T will be specified later). Let the transition
probabilities p j,k be given by the formula

p j,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P(T = j)
P(T ≥ j)

, if k = 0;

P(T ≥ j + 1)
P(T ≥ j)

, if k = j + 1;

0, otherwise.

Then

π ( j) =
P(T ≥ j)
1 + ET

, j = 0, 1, 2, . . . ,

is the unique stationary distribution for P = [p j,k] and the transition operator reads

P f ( j) =
P(T = j)
P(T ≥ j)

f (0) +
P(T ≥ j + 1)
P(T ≥ j)

f ( j + 1).

Let {Xn} be a Markov chain on S = N with the transition probabilities [p j,k].

Lemma 4.2. If 3ET < P(T = 0) and

P(T ≥ 1) ≥ sup
k≥1

P(T ≥ k + 1)
P(T ≥ k)

, (17)

then the Markov chain {Xn} has the L2-spectral gap property.

Proof. Let f ∈ L2
0(π ) and ∥ f ∥L2(π ) = 1. These relations imply that⏐⏐ f (0)

⏐⏐ =

⏐⏐⏐ −

∞∑
j=1

f ( j)P(T ≥ j)
⏐⏐⏐ ≤

∞∑
j=1

(
| f ( j)|

√
P(T ≥ j)

)√
P(T ≥ j)

≤

√ ∞∑
j=1

f 2( j)P(T ≥ j)

√ ∞∑
j=1

P(T ≥ j) =

√(
1 + ET − f 2(0)

)
ET .
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Hence

| f (0)| ≤
√
ET . (18)

In a similar way we obtain⏐⏐⏐ ∞∑
j=1

f ( j)
P(T = j − 1)
P(T ≥ j − 1)

P(T ≥ j)
1 + ET

⏐⏐⏐ ≤

∞∑
j=1

| f ( j)|
P(T ≥ j)
1 + ET

≤

√ ∞∑
j=1

f 2( j)
P(T ≥ j)
1 + ET

√ ∞∑
j=1

P(T ≥ j)
1 + ET

≤

√
ET

1 + ET
.

(19)

We are ready for estimates of Eπ
(
|P f |

2)
=

(
1/(1 + ET )

) ∑
∞

j=0

⏐⏐P f ( j)
⏐⏐2P(T ≥ j).

∞∑
j=0

⏐⏐P f ( j)
⏐⏐2 P(T ≥ j)

1 + ET
=

∞∑
j=0

⏐⏐⏐P(T = j)
P(T ≥ j)

f (0) +
P(T ≥ j + 1)
P(T ≥ j)

f ( j + 1)
⏐⏐⏐2 P(T ≥ j)

1 + ET

=
f 2(0)

1 + ET

∞∑
j=0

P2(T = j)
P(T ≥ j)

+
2 f (0)

1 + ET

∞∑
j=0

f ( j + 1)
P(T = j)
P(T ≥ j)

P(T ≥ j + 1)

+
1

1 + ET

∞∑
j=0

f 2( j + 1)
P2(T ≥ j + 1)

P(T ≥ j)
= J1 + J2 + J3.

We have by (18)

J1 ≤
ET

1 + ET

∞∑
j=0

P2(T = j)
P(T ≥ j)

≤ ET,

while by (18) and (19)

J2 ≤ 2
√
ET

√
ET

1 + ET
≤ 2ET .

Finally, by (17),

J3 ≤ P(T ≥ 1)
∞∑
j=1

f 2( j)
P(T ≥ j)
1 + ET

≤ P(T ≥ 1).

Therefore

Eπ
(
|P f |

2)
≤ 3ET + P(T ≥ 1) = 1 −

(
P(T = 0) − 3ET

)
= a < 1.

The proof of Lemma 4.2 is complete.

It remains to show that for some specific distribution of T the 2-U.I. condition holds, but
there is no hyperboundedness. Choose γ ∈ (0, 1) and set

P(T ≥ 1) = γ,P(T ≥ 2) = γ 3, . . . ,P(T ≥ j) = γ 1+2+···+ j
= γ j( j+1)/2, . . . .

Clearly, P(T ≥ j + 1)/P(T ≥ j) = γ j+1, j = 0, 1, 2, . . . and for γ < 1/5

ET <
γ

1 − γ
< (1/3)(1 − γ ) = (1/3)P(T = 0),

so that the assumptions of Lemma 4.2 are satisfied and the corresponding Markov chain {Xn}

has the L2-spectral gap property.
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In order to prove that the 2-U.I. condition holds, it is enough to show that

lim
k→∞

sup
∥ f ∥L2(π )≤1

∞∑
j=k

⏐⏐P f ( j)
⏐⏐2 P(T ≥ j)

1 + ET
= 0.

Notice that ∥ f ∥L2(π ) ≤ 1 implies that f 2( j) ≤ (1 + ET )/P(T ≥ j), j = 0, 1, 2, . . . Keeping
this in mind we can proceed as follows.

∞∑
j=k

⏐⏐P f ( j)
⏐⏐2 P(T ≥ j)

1 + ET

≤
2 f 2(0)
1 + ET

∞∑
j=k

P2(T = j)
P(T ≥ j)

+
2

1 + ET

∞∑
j=k

f 2( j + 1)
P2(T ≥ j + 1)

P(T ≥ j)

≤ 2P(T ≥ k) + 2
∞∑
j=k

P(T ≥ j + 1)
P(T ≥ j)

= 2P(T ≥ k) + 2
∞∑
j=k

γ j+1
→ 0.

Next consider a sequence { fk} of functions in L2(π ) given by

fk( j) =

⎧⎪⎨⎪⎩
√

1 + ET
P(T ≥ k)

, if j = k;

0, otherwise.

Take any q > 2. We have, if k → ∞,

∥P fk∥
q
Lq (π ) =

∞∑
j=0

⏐⏐P fk( j)
⏐⏐q P(T ≥ j)

1 + ET

=

(
1 + ET
P(T ≥ k)

)q/2( P(T ≥ k)
P(T ≥ k − 1)

)q P(T ≥ k − 1)
1 + ET

=
(
1 + ET

)q/2−1
(
P(T ≥ k)

)q/2(
P(T ≥ k − 1)

)q−1 =
(
1 + ET

)q/2−1
γ w(k)

→ +∞,

for w(k) = qk(k +1)/4− (q −1)k(k −1)/2 = (1/4)
(
k2(2−q)+ k(3q −2)

)
→ −∞. It follows

that the transition operator P cannot be a bounded linear map from L2(π ) to Lq (π ).

Example 4.3. On the probability space (N, π) considered in Example 4.1 one cannot define
Ψ with the distributional properties (11) and (12). This drawback disappears, however, after
easy modification.

Let {Xk}k≥0 be the Markov chain from the previous example and let {ϵk}k≥0 be an i.i.d.
sequence of random variables distributed uniformly on (0, 1) that is independent of {Xk}. Set

Yk = Xk + ϵk, k = 0, 1, 2, . . . .

Then it is not difficult to check that {Yk} is a Markov chain on (R+,B+) with the transition
probabilities (Leb(B) means the Lebesgue measure of B and ⌊x⌋ is the integer part of x)

P
(
Y1 ∈ A

⏐⏐Y0 = x
)

= P
(
Y1 ∈ A

⏐⏐X0 = ⌊x⌋
)

= P
(
X1 = 0

⏐⏐X0 = ⌊x⌋
)
Leb

(
A ∩ [0, 1)

)
+ P

(
X1 = ⌊x + 1⌋

⏐⏐X0 = ⌊x⌋
)
Leb

(
A ∩ [⌊x + 1⌋, ⌊x + 2⌋)

)
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and the stationary distribution

π̃ (A) =

∞∑
j=0

P
(
X0 = j

)
Leb

(
A ∩ [ j, j + 1)

)
.

The transition operator P̃ acts similarly to P from the previous example.

(P̃ f )(x) =
(∫ 1

0
f (u)d u

)
P
(
X1 = 0

⏐⏐X0 = ⌊x⌋
)

+
(∫ ⌊x+2⌋

⌊x+1⌋

f (u)d u
)
P
(
X1 = ⌊x + 1⌋

⏐⏐X0 = ⌊x⌋
)
.

Therefore the 2-U.I. and the L2-spectral gap properties, as well as the lack of hyperboundedness
can be verified by obvious adaptation of the corresponding computations performed for P . And
the stationary distribution π̃ is absolutely continuous so that our probability space (S,S, π̃ )
supports a function Ψ with the desired distributional properties.

4.2. Gaussian hyperboundedness

Let us examine a standard example — the stationary AR(1) process with Gaussian
innovations, already considered by Doob [18, p. 218]. For 0 < |ρ| < 1 set

P(x, dy) =
1√

2π (1 − ρ2)
e
−

(y−ρx)2

2(1−ρ2) dy, π (dx) =
1

√
2π

e−
x2
2 dx .

It is well-known that the Markov chain {Xn} corresponding to P(x, dy) has the L2-spectral
gap property. Using [12, p. 480], we shall show that {Xn} is also hyperbounded. Indeed,
P(x, dy) = p(x, y)π (dy), where

p(x, y) =
1√

1 − ρ2
exp

(
−

ρ2

2(1 − ρ2)
x2

+
ρxy

1 − ρ2 −
ρ2

2(1 − ρ2)
y2

)
.

And we have
∫
π (dx)π (dy)p(x, y)q < +∞, whenever 2 < q < 1+|ρ|

|ρ|
. Applying Theorem 3.1

(or Corollary 3.5) we obtain
Ψ (X1) + Ψ (X2) + · · · + Ψ (Xn)

Bn
−→D µα, (20)

for suitably chosen Ψ and Bn . Notice that this simple example is not covered by Theorem 2.4
in [36], because relation (2.9) of Condition 2.3 ibid. is not satisfied.

We evoke this classic example for two reasons. It was Doob [18, p. 218] who pointed
out that this Markov chain does not satisfy Doeblin’s condition (D). And since the work of
Davydov [16] we know that Doeblin’s condition means essentially φ-mixing of a Markov chain.
It follows that the limit theory developed in our paper is much broader than results depending
on uniform ergodicity of Markov chains, as presented e.g. in [13].

The other reason is that {Ψ (Xn)} is a particular case of a more general example considered
by Davis in [14]. Dealing with stationary sequences and using analogs of the well-known in
the Extreme Value Limit Theory conditions D and D′, Davis proved in Theorem 2, p. 265
ibid. a limit theorem for α ∈ (0, 1) and adding a technical condition D′′ he proved in Theorem
3, p.266, ibid. a limit theorem for α ∈ [1, 2). As was observed in [33, Theorem 4.2] condition
D′′ is satisfied by ρ-mixing sequences with sufficiently fast decay.
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It is possible that our 2-U.I. condition implies condition D′. But we are not able to prove
this fact.

The main example considered by Davis and described on p. 267 ibid. is a sequence of
instantaneous functions of a stationary Gaussian sequence (possibly non-Markovian) with the
covariances rn = EX0 Xn satisfying either rn log n → 0 or

∑
∞

n=1 r2
n < +∞ (clearly, our

{Xn} fulfills these requirements). For detailed discussion of various aspects of results based on
condition D′ we refer to [17,39] and [12].

4.3. ARCH processes with heavy tails are not hyperbounded

An ARCH(1) process is a Markov chain given by the recurrence formula

X j+1 =

√
β + λX2

j Z j+1, j ≥ 0, (21)

where β, λ > 0 and {Zn}n∈N is an i.i.d. sequence, independent of X0. In order to comply with
references we shall assume that Zn ∼ N (0, 1).

For basic information on ARCH processes and the properties used below we refer both to
the classic book [21] and to the recent source [11].

In the range of parameters β > 0 and λ ∈ (0, 2eγ ) (where γ is the Euler constant) the
process {X j } admits a stationary distribution given by

X0 ∼ r0

√β

∞∑
m=1

Z2
m

m−1∏
j=1

(λZ2
j ),

where r0 is a Rademacher random variable (P(r0 = ±1) = 1/2), independent of {Zn}. This
stationary distribution exhibits power decay of the tails. Namely, if κ > 0 is the unique positive
solution of the equation E(λZ2

1)u
= 1, then, as x → ∞,

P
(
X0 > x

)
= P

(
X0 < −x

)
∼

Cβ,λ

2
x−2κ , (22)

where

Cβ,λ =

E
[(
β + λX2

0

)κ
−

(
λX2

0

)κ]
κλ2κE

[(
Z2κ

1 ln(λZ2
1)

)] ∈ (0,+∞).

It follows that λ > 1 implies “really” heavy tails and it is likely that the partial sums of {X j }

properly normalized converge to stable laws. Indeed, Davis and Mikosch [15] showed that the
partial sums under the natural normalization converge to some stable limit and Bartkiewicz
et al. [1] identified the parameters of the limit.

For purposes of the present example, let us denote by µα,τ the symmetric α-stable
distribution given for α ∈ (0, 2) and τ > 0 by

µ̂α,τ (θ ) = exp
(
τα

∫
R

(
eiθu

− 1
)
|u|

−(α+1) du
)
.

If our Theorem 3.1 or Corollary 3.5 were applicable to {X j } j≥0, then we would have

X1 + X2 + · · · + Xn

(nCβ,λ)
1

2κ
−→D µ2κ,1.
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It is, however, proved in [1] that

X1 + X2 + · · · + Xn

(nCβ,λ)
1

2κ
−→D µ2κ,τ ,

where 0 < τ = E
[
|1 + S∞|

2κ
− |S∞|

2κ] < 1 and the series

S∞ =

∞∑
j=1

λ j/2[ j−1∏
k=1

|Zk |
]
Z j

converges a.s.
Moreover, ARCH(1) processes are strongly mixing at geometric rate, as is shown in

[15, p. 2077] (see also [2, Theorem 2.8]).
Therefore the transition operator of an ARCH(1) process is not hyperbounded, if λ > 1.

Remark 4.4. If 2κ ∈ (1, 2), then the corresponding ARCH(1) process {X j } forms a stationary
sequence of martingale differences, partial sums of which normalized by n1/2κ are weakly
convergent, but to a different limit than in the independent case. This is in striking contrast to
the properties of martingale difference sequences with finite variance!

Remark 4.5. If λ ∈ (0, 1), then by taking Ψ (x) = const · |x |
υsign(x), with υ sufficiently

large, we obtain a Markov chain {Ψ (X j )} satisfying the distributional relations (11) and (12),
related to some ARCH process {X ′

j } with λ′ > 1. There seems to be, however, no simple
correspondence between the asymptotics of partial sums of {Ψ (X j )} and {X ′

j } and therefore
we are not able to reduce the case λ ∈ (0, 1) to the case λ > 1.

4.4. m-skeletons

It is well known that iterating the transition operator improves its properties from many
viewpoints. So it may happen that some power Pm is hyperbounded, for instance, while P
itself not. Such situation implies that for {Ψ (Xk·m)}k=0,1,2,... (the m-skeleton) some α-stable
limit theorem holds and one may hope to extend this property to the whole sequence. This is im-
possible in general, as the simple counterexample provided already by Rosenblatt [49, p. 195]
shows. Indeed, take an i.i.d. sequence {Yn} of strictly stable random variables and consider
a Markov chain on S = R2 given by the formula Xn = (Yn, Yn−1). Take Ψ (x, y) = x − y.
Then

∑n−1
j=0 Ψ (Xn) remains stochastically bounded while the 2-skeleton consists of independent

random variables and therefore satisfies the corresponding limit theorem.
Rosenblatt’s example is of probabilistic provenience. Some people may prefer another

example given below that is closer to thinking in terms of dynamical systems.

Example 4.6. Set S = [0, 3) and let Leb be the Lebesgue measure restricted to S. For
x ∈ [0, 1) and B ∈ B[0,1) ∪ B[2,3) define

P(x, {x + 1}) = P(x + 1, {x + 2}) = 1, P(x + 2, B) =
Leb(B)

2
.

The invariant measure π is given by the density p(x) =
1
41[0,2)(x) +

1
21[2,3)(x). Elementary

calculations show that for f ∈ L2
0(π ) we have Eπ

((
P3 f

)2
)

≤
27
32Eπ

(
f 2

)
, i.e. the 3-skeleton
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has the spectral gap property. Another elementary calculation shows that also ∥P3 f ∥∞ ≤

3∥ f ∥1, i.e. the 3-skeleton is ultrabounded.
Now take ψ(·) : [0, 1) → R1 with a symmetric α-stable distribution µ and define

Ψ (x) =

⎧⎪⎨⎪⎩
ψ(x), if x ∈ [0, 1);
−ψ(x − 1), if x ∈ [1, 2);
0, if x ∈ [2, 3).

One verifies directly that

π
(
Ψ > r

)
=

1
2

Leb
(
ψ > r

)
, π

(
Ψ < −r

)
=

1
2

Leb
(
ψ < −r

)
.

Therefore the 3-skeleton {Ψ (X3n)} satisfies all assumptions of our Theorem 3.1, while the
partial sums of the whole sequence {Ψ (Xk)} are bounded in probability.

5. Proofs

5.1. Some auxiliary results

We begin with establishing an important property of conditional distributions P(x, dy)◦Ψ−1

that is a consequence of solely (11)–(12).

Proposition 5.1. Suppose that (11) and (12) hold. Let Bn be defined by (13). Then

n
⏐⏐⏐1 − E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

−→
P

0, θ ∈ R1. (23)

Proof. Recall that if Bn is defined by (13) then Bn = n1/α ℓ̃(n), where ℓ̃(t) is a slowly varying
function. Let h > 0 be fixed. Using the inequality |1 + i x − ei x

| ≤
1
2 |x |

2, we have

n
⏐⏐⏐1 − E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

≤ 2n
⏐⏐⏐1 + iθE

(Ψ (X1)
Bn

1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)
− E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

+ 2nB−2
n θ2

⏐⏐⏐E(
Ψ (X1)1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

(24)

≤ nB−4
n θ4

(
E

(
Ψ (X1)21{|Ψ (X1)|≤h Bn}

⏐⏐F0
))2

+ 16n
(
P
(
|Ψ (X1)| > h Bn

⏐⏐F0
))2

+ 2nB−2
n θ2

⏐⏐⏐E(
Ψ (X1)1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

= θ4 I h
n,1 + 16I h

n,2 + 2θ2 I h
n,3.

At first we shall examine the convergence of I h
n,3. If α ∈ (1, 2) then⏐⏐⏐E(

Ψ (X1)1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

→

⏐⏐⏐E(
Ψ (X1)

⏐⏐F0
)⏐⏐⏐2

a.s.,

while nB−2
n = n1−2/α(ℓ̃(n))−2

→ 0. Consequently, I h
n,3 → 0 a.s.

Now suppose that α ∈ (0, 1]. Take 0 < r < α/2. We have

E
(
E

(
|Ψ (X1)|α−r

⏐⏐F0
))

= E|Ψ (X1)|α−r < +∞,

and so

(α − r )
∫

∞

0
tα−r−1 P

(
X0, |Ψ |

−1(t,+∞)
)

dt = E
(
|Ψ (X1)|α−r

⏐⏐F0
)
< +∞ a.s.
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It follows that

I h
n,3 = nB−2

n

⏐⏐⏐E(
Ψ (X1)1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

≤ nB−2
n

⏐⏐⏐E(⏐⏐Ψ (X1)
⏐⏐1{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

≤ nB−2
n

⏐⏐⏐ ∫ h Bn

0
P

(
X0, |Ψ |

−1(t,+∞)
)

dt
⏐⏐⏐2

= nB−2
n

⏐⏐⏐ ∫ h Bn

0
t1−α+r tα−r−1 P

(
X0, |Ψ |

−1(t,+∞)
)

dt
⏐⏐⏐2

≤ nB−2
n h2(1−α+r ) B2(1−α+r )

n

⏐⏐⏐ ∫ ∞

0
tα−r−1 P

(
X0, |Ψ |

−1(t,+∞)
)

dt
⏐⏐⏐2

= n−1+2r/α(ℓ̃(n)
)−2(α−r )h2(1−α+r )

( 1
α − r

E
(
|Ψ (X1)|α−r

⏐⏐F0
))2

→ 0, a.s.

Similarly, if α ∈ (0, 2) and 0 < r < α/2, then we have

I h
n,1 = nB−4

n

⏐⏐⏐E(
Ψ (X1)21{|Ψ (X1)|≤h Bn}

⏐⏐F0
)⏐⏐⏐2

≤ 4nB−4
n

(∫ h Bn

0
t P

(
X0, |Ψ |

−1(t,+∞)
)

dt
⏐⏐⏐2)

= 4nB−4
n

(∫ h Bn

0
t2−α+r tα−r−1 P

(
X0, |Ψ |

−1(t,+∞)
)

dt
)2

≤ 4nB−4
n h2(2−α+r ) B2(2−α+r )

n

(∫
∞

0
tα−r−1 P

(
X0, |Ψ |

−1(t,+∞)
)

dt
)2

= 4n−1+2r/α(ℓ̃(n)
)−2(α−r )h2(2−α+r )

( 1
α − r

E
(
|Ψ (X1)|α−r

⏐⏐F0
))2

→ 0, a.s.

It remains to show that I h
n,2 −→

P
0. This condition is not related to truncated moments and

therefore requires a different type argument. Notice that the convergence in probability is
metrizable and so it is enough to show that in every subsequence n′ one can find a further
subsequence n′′ along which I h

n′′,2 −→
P

0. So choose n′ and consider random variables Yn′

defined on (S,S, π) by the formula

Yn′ (x) = n′ P
(
x, |Ψ |

−1(h Bn′ ,+∞)
)
.

We know from (11), (12), (13) and the continuity of the stable Lévy measure that∫
S

π (dx)Yn′ (x) = n′P
(
|Ψ (X1)| > h Bn′

)
→ (c+ + c−)h−α,

hence, in particular, random variables {Yn′} are uniformly tight. Let {n′′
} be a subsequence

such that Yn′′ −→D Y∞. By the Skorokhod representation theorem one can construct random
variables Ỹn′′ and Ỹ∞, defined on the standard probability space

(
[0, 1],B[0,1], Leb

)
and such

that

Ỹn′′ ∼ Yn′′ , Ỹ∞ ∼ Y∞,

and

Ỹn′′ (ω) → Ỹ∞(ω), for almost all ω ∈ [0, 1].
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This implies that

1
n′′

Ỹ 2
n′′ (ω) → 0, for almost all ω ∈ [0, 1].

But under the initial distribution π we have

n′′

(
P

(
x, |Ψ |

−1(h Bn′′ ,+∞)
))2

=
1
n′′

Y 2
n′′ ∼

1
n′′

Ỹ 2
n′′ . (25)

It follows that

n′′

(
P

(
x, |Ψ |

−1(h Bn′′ ,+∞)
))2

−→
P

0.

Remark 5.2. It is clear that the convergences I h
n,1 −→

P
0 and I h

n,3 −→
P

0 can be obtained
also by the last method. But the proofs given above lead to the a.s. convergence and provide
some idea about the rate of convergence.

Remark 5.3. It is also clear that relation (25) can be extended to

(n′′)1+δ
(

P
(
x, |Ψ |

−1(h Bn′′ ,+∞)
))2

=
1

(n′′)1−δ
Y 2

n′′ ∼
1

(n′′)1−δ
Ỹ 2

n′′ ,

hence, in fact, we have

nδ I h
n,2 −→

P
0,

for every δ ∈ [0, 1). Gathering information on I h
n,1, I h

n,2 and I h
n,3 we obtain existence of some

δ > 0 such that

n1+δ
⏐⏐⏐1 − E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

−→
P

0, θ ∈ R1.

5.2. An application of the principle of conditioning

Now we are ready to prove a universal (i.e. independent of α ∈ (0, 2)) limit theorem.

Proposition 5.4. Let {Xn} be a Markov chain on the space (S,S), with the transition operator
P and a stationary distribution π . We assume that P satisfies the 2-U.I. condition and the chain
is ρ-mixing.

Let α ∈ (0, 2) and h > 0. Let Ψ : (S,S) → (R1,B1) be such that π ◦ Ψ−1 belongs to
the domain of attraction of the stable distribution µα , α ∈ (0, 2) (i.e. both (11) and (12) are
fulfilled). Let Bn → ∞ be defined by (13).

Set Sh
n =

∑n
j=1 Ψ (X j ) − E

(
Ψ (X j )1{|Ψ (X j )|≤h Bn}

⏐⏐F j−1
)
. Then

Sh
n

Bn
−→D ch-Poiss(α, c+, c−). (26)

Proof. Choose θ ∈ R1 and notice that by Proposition 5.1 relation (23) holds. We will show
that this relation can be strengthened to

nE
⏐⏐⏐1 − E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

→ 0. (27)
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It is enough to show that n
⏐⏐1 −E

(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐2 is a uniformly integrable sequence. By the

2-U.I. condition we have to prove that the sequence {Zn =
√

n
(
1 − eiθΨ (X1)/Bn

)
} is bounded

in L2.

E
⏐⏐⏐√n

(
1 − eiθΨ (X1)/Bn

)⏐⏐⏐2

= n E
((

1 − cos(θΨ (X1)/Bn)
)2

+
(
sin(θΨ (X1)/Bn)

)2
)

(28)

≤ θ2(1 + θ2/4)
n
B2

n
EΨ (X1)21{|Ψ (X1)|≤Bn} + 5nP

(
|Ψ (X1)| > Bn

)
≤ θ2(1 + θ2/4)

n
B2

n
2

∫ Bn

0
tP

(
|Ψ (X1)| > t

)
dt + 5nP

(
|Ψ (X1)| > Bn

)
.

The last expression converges to
(
2θ2(1 + θ2/4) + 5

)
(c+ + c−) by (13) and the direct half of

the Karamata theorem (see [6, Theorem 1.5.11, p. 28]).
Given (27) we obtain the crucial relation (40)

E
( n∑

j=1

⏐⏐⏐1 − E
(
eiθΨ (X j )/Bn |F j−1

) ⏐⏐⏐2)
= nE

⏐⏐⏐1 − E
(
eiθΨ (X1)/Bn

⏐⏐F0
)⏐⏐⏐2

→ 0, θ ∈ R1.

By Theorem A.3 it is enough to prove (41), i.e.

Φh
n (θ ) :=

n∑
j=1

E
(
eiθΨ (X j )/Bn |F j−1

)
− 1 − iθB−1

n E
(
Ψ (X j )1{|Ψ (X j )|≤h Bn}

⏐⏐F j−1
)

(29)

−→
P

∫ (
eiθx

− 1 − iθx1{|x |≤h}

)
να,c+,c−

(dx) =: Φh(θ ).

Let us notice that by (11) and (12) we have EΦh
n (θ ) → Φh(θ ). Taking all these facts together

we obtain the final condition to be verified:
n∑

j=1

χh
n,θ (X j−1) −→

P
0, (30)

where

χh
n,θ (x) =

∫ (
exp

(
iθΨ (y)/Bn

)
− 1 − iθ

(
Ψ (y)/Bn

)
1{|Ψ (y)|≤h Bn}

)
P(x, dy)

−

(∫ (
exp

(
iθΨ (y)/Bn

)
− 1 − iθ

(
Ψ (y)/Bn

)
1{|Ψ (y)|≤h Bn}

)
π (dy)

)
.

By (8), for some finite constant D′ we have

Var
( n∑

j=1

χh
n,θ (X j−1)

)
≤ nD′Var

(
χh

n,θ (X0)
)

= nVar
(
W h

n,θ

)
≤ nE

⏐⏐W h
n,θ

⏐⏐2,

where

W h
n,θ = 1 + iθE

(Ψ (X1)
Bn

1{|Ψ (X1)|≤h Bn}

⏐⏐⏐F0

)
− E

(
eiθΨ (X1)/Bn

⏐⏐F0
)
.

Therefore it is enough to prove that nE
⏐⏐W h

n,θ

⏐⏐2
→ 0. By inspection of (24) we see that

n
⏐⏐W h

n,θ

⏐⏐2
≤

1
2
θ4 I h

n,1 + 8I h
n,2 −→

P
0.
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As before, this convergence can be strengthened to the convergence in L1 by applying the
2-U.I. condition. Indeed, both sequences

{Z ′

n =
√

n
(Ψ (X1)2

B2
n

1{|Ψ (X1)|≤h Bn}

)
} and {Z ′′

n =
√

n1{|Ψ (X1)|>h Bn}}

are bounded in L2 by arguments essentially identical to those used in (28) in the proof of
L2-boundedness of {Zn =

√
n
(
1 − eiθΨ (X1)/Bn

)
}. Our L1- claim follows from the observation

that

n|W h
n,θ |

2
≤

1
2
θ4

(
E

(
Z ′

n

⏐⏐F0
))2

+ 8
(
E

(
Z ′′

n

⏐⏐F0
))2
.

We have thus completed the proof of Proposition 5.4.

5.3. Proof of Theorem 3.1

Given (26), i.e.∑n
j=1 Ψ (X j ) − E

(
Ψ (X j )1{|Ψ (X j )|≤h Bn}

⏐⏐F j−1
)

Bn
−→D ch-Poiss(α, c+, c−),

we shall apply classic Theorem 4.2 from [5] in a way suitable for each case α ∈ (0, 1), α = 1
or α ∈ (1, 2).

The reasoning for α ∈ (0, 1) is based on the direct half of Karamata’s theorem [6, Theorem
1.5.11, p. 28]. We shall show that

lim
h→0

lim sup
n→∞

E
⏐⏐⏐ n∑

j=1

E
(Ψ (X j )

Bn
1{|Ψ (X j )|≤h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐ = 0, (31)

and that

ch-Poiss(α, c+, c−) ⇒ µα, as h → 0.

The latter relation holds because
∫

|x |1{|x |≤1} να,c+,c−
(dx) < +∞ for α ∈ (0, 1). In order to

prove (31) we proceed in the standard way.

E
⏐⏐⏐ n∑

j=1

E
(Ψ (X j )

Bn
1{|Ψ (X j )|≤h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐ ≤ nE
(⏐⏐⏐Ψ (X1)

Bn

⏐⏐⏐1{|Ψ (X1)|≤h Bn}

)
≤

n
Bn

∫ h Bn

0
P
(
|Ψ (X1)| > t

)
dt →n→∞ (1 − α)−1h1−α(c+ + c−) →h→0 0.

The proof for α = 1 is somewhat different. Let us notice first that due to the symmetry of
ν1,c,c we have the equality

ch-Poiss(α, c, c) = µ1, h ∈ R1,

hence

ch-Poiss(α, c, c) ⇒h→0 µ1.

Let h > h′ > 0. By (29) we have also

Φh
n (θ ) − Φh′

n (θ ) = −iθ
n∑

j=1

B−1
n E

(
Ψ (X j )1{h′ Bn<|Ψ (X j )|≤h Bn}

⏐⏐F j−1
)

−→
P

0, θ ∈ R1.
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Therefore

lim
h′→0

lim sup
n→∞

P
(⏐⏐⏐ n∑

j=1

E
(Ψ (X j )

Bn
1{h′ Bn<|Ψ (X j )|≤h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐ > ε
)

= 0, ε > 0.

Now let α ∈ (1, 2). Find ζ h
n ∈ L2

0(π ) such that

E
(Ψ (X j )

Bn
1{|Ψ (X j )|≤h Bn}

⏐⏐F j−1
)
− E

(Ψ (X j )
Bn

1{|Ψ (X j )|≤h Bn}

)
= ζ h

n (X j−1), j ∈ N.

We shall prove that for every h > 0
n∑

j=1

ζ h
n (X j−1) −→

P
0. (32)

Similarly as before, by ρ-mixing Var
(∑n

j=1 ζ
h
n (X j−1)

)
≤ nD′Var

(
ζ h

n (X0)
)
, and our task

consists in proving that the last expression converges to 0.
By (11) and (12) and the general limit theorem for triangular arrays of row-wise independent

random variables (see e.g. Theorem 2.35 in [27]) we have

nVar
(Ψ (X1)

Bn
1{|Ψ (X j )|≤h Bn}

)
−→n→∞

∫ h

−h
x2να,c+,c−

(dx) < +∞.

Therefore the sequence {n
⏐⏐ζ h

n (X0)
⏐⏐2

} is uniformly integrable by the 2-U.I. property. On the
other hand

n
⏐⏐ζ h

n (X0)
⏐⏐2

≤ 2nB−2
n

⏐⏐⏐E(
Ψ (X j )1{|Ψ (X j )|≤h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐2

+ 2nB−2
n

⏐⏐⏐E(
Ψ (X j )1{|Ψ (X j )|≤h Bn}

)⏐⏐⏐2
→ 0, a.s,

by the same argument as in the verification of I h
n,3 → 0 a.s. in the proof of Proposition 5.1.

Hence n E
⏐⏐ζ h

n (X0)
⏐⏐2

→ 0, and so (32) holds.
It follows that in (26) we can replace conditional expectations with expectations, i.e. for

every h > 0∑n
j=1

(
Ψ (X j ) − EΨ (X j )1{|Ψ (X j )|≤h Bn}

)
Bn

−→D ch-Poiss(α, c+, c−). (33)

Applying the direct part of the Karamata Theorem we obtain

n
⏐⏐⏐E ( Ψ (X j )

Bn
1{|Ψ (X j )|>h Bn}

) ⏐⏐⏐ ≤ nE
(⏐⏐⏐Ψ (X1)

Bn

⏐⏐⏐1{|Ψ (X1)|>h Bn}

)
≤

n
Bn

(∫
∞

h Bn

P
(
|Ψ (X1)| > t

)
dt + h BnP

(
|Ψ (X1)| > h Bn

))
(34)

→n→∞

α

α − 1
h1−α(c+ + c−) →h→∞ 0.

We have also

ch-Poiss(α, c+, c−) ⇒ µα, as h → ∞, (35)

due to the fact that
∫

|x |1{|x |≥1} να,c+,c−
(dx) < +∞, if α ∈ (1, 2). Relations (33)–(35) prove

(15).
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In order to prove (16) we use (32), (34) and

lim
h→∞

lim sup
n→∞

E
⏐⏐⏐ n∑

j=1

E
(Ψ (X j )

Bn
1{|Ψ (X j )|≥h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐ = 0.

The above statement holds because

E
⏐⏐⏐ n∑

j=1

E
(Ψ (X j )

Bn
1{|Ψ (X j )|≥h Bn}

⏐⏐⏐F j−1

)⏐⏐⏐ ≤ nE
(⏐⏐⏐Ψ (X1)

Bn

⏐⏐⏐1{|Ψ (X1)|≥h Bn}

)
→n→∞

α

α − 1
h1−α(c+ + c−) →h→∞ 0.

5.4. Proof of Proposition 3.3

(i) If P is hyperbounded, self-adjoint and ergodic then it admits an L2-spectral gap by
[43, Theorem 1].

(ii) Suppose that ∥P∥2→q = H < +∞. Keeping in mind that ∥P∥1→1 = 1 we obtain by
the Riesz–Thorin interpolation theorem that for θ0 = (q − 2)/(3q − 2)

∥P∥2/(1+θ0)→2/(1−θ0) ≤ H θ0

But ∥P∥r→r = 1 for every r ≥ 1 hence also

∥Pm
∥2/(1+θ0)→2/(1−θ0) ≤ H θ0 , m ∈ N.

Let us consider an operator Qm given by(
Qm f

)
(x) = Pm(

f −

∫
S

f d π
)
(x).

We have ∥Qm( f )∥2/(1−θ0) ≤ H θ0∥ f −
∫
S

f dπ∥2/(1+θ0) ≤ 2H θ0∥ f ∥2/(1+θ0), hence

∥Qm∥2/(1+θ0)→2/(1−θ0) ≤ 2H θ0 . (36)

On the other hand, due to the strong mixing at geometric rate we have∫
S

π (dx)
⏐⏐(Qmh)(x)| =

∫
S

π (dx)
⏐⏐(Pmh)(x) −

∫
S

hd π
⏐⏐ ≤ Cηm

∥h∥∞,

for some C > 0 and 0 < h < 1 (see (6)), what gives

∥Qm∥∞→1 ≤ Cηm . (37)

Given (36) and (37) we again apply the Riesz–Thorin theorem with θ1 = θ0/(1+θ0) and obtain

∥Qm∥2→2 ≤
(
2H θ0

)θ1(Cηm)1−θ1 .

It follows that there exists m0 ∈ N such that ∥Qm0∥2→2 ≤ 1/2. This means that for every
function g ∈ L2

0(π )

∥Pm0 g∥L2(π ) = ∥Qm0 g∥L2(π ) ≤ ∥g∥L2(π )/2.
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Appendix. Complements on the principle of conditioning

As mentioned in Introduction, the Principle of Conditioning (PoC) is a heuristic rule that
allows producing limit theorems for dependent random variables given limit theorems for
independent random variables. For example, applying the PoC one obtains the following
theorem on convergence to stable laws.

Theorem A.1. Let {Xn, j ; j ∈ N, n ∈ N} be an array of random variables, which are
row-wise adapted to a sequence of filtrations {{Fn, j ; j = 0, 1, . . .} ; n ∈ N}. Let h > 0 and
let kn → ∞ be a sequence of numbers.

The following conditions

max
1≤ j≤kn

P
(
|Xn, j | > ε

⏐⏐Fn, j−1
)

−→
P

0, ε > 0;

kn∑
j=1

P
(
Xn, j > x |Fn, j−1

)
−→
P

c+x−α, x > 0;

kn∑
j=1

P
(
Xn, j < x

⏐⏐Fn, j−1
)

−→
P

c−|x |
−α, x < 0;

kn∑
j=1

E
(
Xn, j1{|Xn, j |≤h}

⏐⏐Fn, j−1
)

−→
P

ah
;

kn∑
j=1

Var
(
Xn, j1{|Xn, j |≤h}

⏐⏐Fn, j−1
)

−→
P

∫
{|x |≤h}

x2 να,c+,c−
(dx);

imply that
kn∑
j=1

Xn, j −→D δah ∗ ch-Poiss(α, c+, c−), (38)

where δah ∗ ch-Poiss(α, c+, c−) is the stable distribution with the characteristic function (9).

In other words the PoC says that if we replace in a limit theorem for row-wise independent
summands:

• the expectations by conditional expectations with respect to the past,
• the convergence of numbers by convergence in probability of random variables appearing

in the conditions,

then still the conclusion (in our case: (38)) will hold. In fact, one can also replace the summation
to constants by summation to stopping times.

We refer to [29] for exposition of results related to various versions of the PoC, begin-
ning with the Brown–Eagleson martingale CLT [10], through multidimensional [4,37] and
functional [20,26] limit theorems, up to the PoC in infinite dimensional Hilbert [28,30] and
Banach [50] spaces. The ideas standing behind the PoC motivated further research devoted to
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so called decoupling inequalities, described in detail in the well-known books by Kwapień and
Woyczyński [40] and de la Peña and Giné [45]. It might be interesting to realize that the tools
developed to cope with the PoC find unexpected applications even today [34,46].

Behind the verbal form of the PoC there is a result on convergence of conditional
characteristic functions (see [28]).

Theorem A.2. Let the system {Xn, j ,Fn, j } be as in Theorem A.1. If for some z ∈ C, z ̸= 0,
we have

φn(θ ) =

kn∏
j=1

E
(
eiθXn, j |Fn, j−1

)
−→
P

z,

then also

E exp(iθ
kn∑
j=1

Xn, j )−→z.

In particular, if for some probability measure µ on R1 we have

φn(θ ) −→
P

µ̂(θ ), θ ∈ R1, (39)

then
kn∑
j=1

Xn, j −→D µ.

Mimicking the case of independent random variables one can prove that conditions obtained
by the PoC imply (39). But in many cases this is not the most efficient way of applying
the PoC. It was observed in [31] that for highly structured models we can often check (39)
directly and that going this way we can keep integrability requirements at the minimal possible
level.

We extend the results of [28,32] and [31] in the following theorem that provides a convenient
tool in many cases of interest.

Theorem A.3. Let {Xn, j ; j ∈ N, n ∈ N} be an array of random variables, which are
row-wise adapted to a sequence of filtrations {{Fn, j ; j = 0, 1, . . .} ; n ∈ N}.

Suppose that the following condition holds.
kn∑
j=1

⏐⏐1 − E
(
eiθXn, j |Fn, j−1

) ⏐⏐2
−→
P

0, θ ∈ R1. (40)

Let An be arbitrary random variables and Φ(θ ) ∈ C be a constant for each θ ∈ R1. The
following conditions are equivalent:( kn∑

j=1

(
E

(
eiθXn, j |Fn, j−1

)
− 1

))
− iθ An −→

P
Φ(θ ). (41)

( kn∏
j=1

E
(
eiθXn, j |Fn, j−1

))
e−iθ An −→

P
eΦ(θ ). (42)
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In either case we have also

E exp(iθ
( kn∑

j=1

Xn, j − An
)
)−→eΦ(θ). (43)

In particular, if eΦ(θ )
= µ̂(θ ), θ ∈ R1, for some probability measure µ, then either of

conditions (41) or (42) implies
kn∑
j=1

Xn, j − An −→D µ.

Proof. Set

φn(θ ) =

kn∏
j=1

E
(
eiθXn, j |Fn, j−1

)
; Φn(θ ) =

kn∑
j=1

(
E

(
eiθXn, j |Fn, j−1

)
− 1

)
.

If z ∈ C satisfies |z| ≤ 1, then |z − ez−1
| ≤ 5|z − 1|

2. Hence we have

|φn(θ )e−iθ An − exp
(
Φn(θ ) − iθ An

)
| = |φn(θ ) − exp

(
Φn(θ )

)
|

≤

kn∑
j=1

|E
(
eiθXn, j |Fn, j−1

)
− exp

(
E

(
eiθXn, j |Fn, j−1

)
− 1

)
|

≤ 5
kn∑
j=1

⏐⏐E (
eiθXn, j |Fn, j−1

)
− 1

⏐⏐2
−→
P

0, by (40).

We have thus established the equivalence of (41) and (42). To prove that (42) implies (43) we
need a suitable version of Lemma 2 in [35].

Lemma A.4. For every ε > 0

⏐⏐E exp(iθ
( kn∑

j=1

Xn, j − An
)
) − E

(
φn(θ )e−iθ An

)⏐⏐
≤ 2(1 +

1
ε

)P
(
|φn(θ )| < ε

)
+

1
ε
E

⏐⏐φn(θ )e−iθ An − E
(
φn(θ )e−iθ An

)⏐⏐.
(44)

Proof. We follow the idea of the proof of Theorem A in [28]. Define

φn,k(θ ) =

k∏
j=1

E
(
eiθXn, j |Fn, j−1

)
.

Fix θ ∈ R1 and ε > 0 and consider random variables

X∗

n,k = Xn,k1{|φn,k (θ)|≥ε}.

Then we have both⏐⏐E exp(iθ
( kn∑

j=1

Xn, j − An
)
) − E exp(iθ

( kn∑
j=1

X∗

n, j − An
)
)
⏐⏐ ≤ 2P

(
|φn(θ )| < ε

)
,
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and, if we set φ∗
n (θ ) =

∏kn
j=1 E

(
eiθX∗

n, j |Fn, j−1

)
,

E
⏐⏐e−iθ Anφn(θ ) − e−iθ Anφ∗

n (θ )
⏐⏐ ≤ 2P

(
|φn(θ )| < ε

)
.

The advantage of random variables {X∗

n, j } consists in the fact that

|φ∗

n (θ )| =
⏐⏐ kn∏

j=1

E
(

eiθX∗
n, j |Fn, j−1

) ⏐⏐ ≥ ε,

and so, by the backward induction (or the martingale property)

E
exp(iθ

(∑kn
j=1 X∗

n, j − An
)
)

e−iθ Anφ∗
n (θ )

= E
exp(iθ

(∑kn
j=1 X∗

n, j

)
)∏kn

j=1 E
(

eiθX∗
n, j |Fn, j−1

) = 1.

Therefore,⏐⏐E exp(iθ
( kn∑

j=1

X∗

n, j − An
)
) − E

(
φn(θ )e−iθ An

)⏐⏐
=

⏐⏐⏐Eexp(iθ
(∑kn

j=1 X∗

n, j

)
)

φ∗
n (θ )

φ∗

n (θ )e−iθ An

− E
(
φn(θ )e−iθ An

)
E

exp(iθ
(∑kn

j=1 X∗

n, j

)
)

φ∗
n (θ )

⏐⏐⏐
≤

1
ε
E|φ∗

n (θ )e−iθ An − Eφn(θ )e−iθ An |

≤
1
ε

(
2P

(
|φn(θ )| < ε

)
+ E

⏐⏐φn(θ )e−iθ An − E
(
φn(θ )e−iθ An

)⏐⏐).
Proof of Theorem A.3(continued). Now assume that (42) holds. Let ε = 1/2|eΦ(θ )

|.
Then P

(
|φn(θ )| < ε

)
= P

(
|φn(θ )e−iθ An | < ε

)
→ 0 and by the dominated convergence

E
⏐⏐φn(θ )e−iθ An − E

(
φn(θ )e−iθ An

)⏐⏐ → 0.

References
[1] K. Bartkiewicz, A. Jakubowski, T. Mikosch, O. Wintenberger, Stable limits for sums of dependent infinite

variance random variables, Probab. Theory Related Fields 150 (2011) 337–372.
[2] B. Basrak, R.A. Davis, T. Mikosch, Regular variation of GARCH processes, Stochastic Process. Appl. 99

(2002) 95–115.
[3] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, in: Grundlehren Math. Wiss, vol. 223, Springer,

Heidelberg, 1976.
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Woyczyński (Eds.), Martingale Theory in Harmonic Analysis and Banach Spaces, in: Lecture Notes in Math.,
vol. 939, 1982, pp. 157–180.

[51] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian RandOm Processes: Stochastic Models with Infinite
Variance, Chapman & Hall/CRC, Boca Raton, 1994.

[52] L. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000)
301–376.

http://refhub.elsevier.com/S0304-4149(18)30286-2/sb41
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb41
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb41
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb42
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb43
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb44
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb44
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb44
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb45
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb46
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb46
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb46
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb47
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb48
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb48
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb48
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb49
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb50
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb50
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb50
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb50
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb50
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb51
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb51
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb51
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb52
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb52
http://refhub.elsevier.com/S0304-4149(18)30286-2/sb52

	Stable limits for Markov chains via the Principle of Conditioning
	Introduction
	Preliminaries
	Transition operator
	2-U.I. condition
	Geometric ergodicity and strong mixing
	L2-spectral gap and ρ-mixing
	Stable limits

	Results
	Examples
	Example related to the 2-U.I. condition
	Gaussian hyperboundedness
	ARCH processes with heavy tails are not hyperbounded
	m-skeletons

	Proofs
	Some auxiliary results
	An application of the principle of conditioning
	Proof of Theorem 3.1 
	Proof of Proposition 3.3 

	Acknowledgments
	Declaration of competing interest
	Appendix. Complements on the Principle of Conditioning
	References


