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Abstract
We investigate the local linear kernel estimator of the regression function g of

a stationary and strongly mixing real random field observed over a general subset
of the lattice Zd. Assuming that g is derivable with derivative g′, we provide a
new criterion on the mixing coefficients for the consistency and the asymptotic
normality of the estimators of g and g′ under very mild conditions on the band-
width parameter. Our results improve the work of Hallin, Lu and Tran (2004) in
several directions.

AMS Subject Classifications (2000): 62G05, 60J25, 62G07.
Key words and phrases: Local linear regression estimation, strong mixing, ran-
dom fields, asymptotic normality.
Short title: Local linear regression for random fields.

1 Introduction and main results
In a variety of fields like soil science, geology, oceanography, econometrics, epidemi-
ology, image processing and many others, the aim of practionners is to handle phe-
nomenons observed on spatial sets. In particular, one of the fundamental question is
the understanding of the phenomenon from a set of (dependent) observations based on
regression models. In this work, we investigate the problem in the context of strongly
mixing spatial processes (or random fields) and we focus on local linear regression
estimation. More precisely, let d be a positive integer and let {(Yi, Xi); , i ∈ Zd} be
a strictly stationary R2-valued random field defined on a probability space (Ω,F ,P).
The estimation of its regression function g defined by g(x) = E(Y0|X0 = x) for almost
all real x is a natural question and a very important task in statistics. The nonspatial
case, that is for dependent time series (d = 1), has been extensively studied. One can
refer for example to Lu and Cheng [15], Masry and Fan [16], Robinson [19], Roussas
[21] and many references therein. For d > 2, some contributions were done by Biau and
Cadre [1], Carbon, Francq and Tran [2], El Machkouri [6], El Machkouri and Stoica [9],
Dabo-Niang and Rachdi [3], Dabo-Niang and Yao [4], Hallin, Lu and Tran [10] and Lu
and Chen [13], [14]. Given two σ-algebras U and V , the α-mixing coefficient introduced
by Rosenblatt [20] is defined by

α(U ,V) = sup{|P(A ∩B)− P(A)P(B)| , A ∈ U , B ∈ V}.
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Let p be fixed in [1,∞]. The strong mixing coefficients (α1,p(n))n>0 associated to
{(Yi, Xi); i ∈ Zd} are defined by

α1,p(n) = sup {α(σ(Yk, Xk),FΓ), k ∈ Zd, Γ ⊂ Zd, |Γ| 6 p, ρ(Γ, {k}) > n}

where FΓ = σ(Yi, Xi ; i ∈ Γ), |Γ| is the number of element in Γ and the distance ρ is
defined for any subsets Γ1 and Γ2 of Zd by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}
with |i − j| = max16s6d |is − js| for any i = (i1, .., id) and j = (j1, .., jd) in Zd. We
say that the random field (Yi, Xi)i∈Zd is strongly mixing if limn→∞ α1,p(n) = 0. Let x
be fixed in R. Following [10], we define the local linear kernel regression estimator of
t(g(x), g′(x)) by(

gn(x)
g′n(x)

)
= Argmin

(s,t)∈R2

∑
i∈Λn

(Yi − s− t(Xi − x))2 K
(
Xi − x
bn

)
(1)

where bn is the bandwidth parameter going to zero as n goes to infinity, Λn is a finite
subset of Zd which the number of elements |Λn| goes to infinity as n goes to infinity
and K is a probability kernel, that is a function K : R → R such that

∫
R K(s)ds = 1.

We introduce the following notations:

u00(n) =
1

|Λn|bn

∑
i∈Λn

K
(
Xi − x
bn

)
, u11(n) =

1

|Λn|bn

∑
i∈Λn

(
Xi − x
bn

)2

K
(
Xi − x
bn

)
,

u01(n) = u10(n) =
1

|Λn|bn

∑
i∈Λn

(
Xi − x
bn

)
K
(
Xi − x
bn

)
,

v0(n) =
1

|Λn|bn

∑
i∈Λn

YiK
(
Xi − x
bn

)
, v1(n) =

1

|Λn|bn

∑
i∈Λn

Yi

(
Xi − x
bn

)
K
(
Xi − x
bn

)
,

w0(n) =
1

|Λn|bn

∑
i∈Λn

ZiK
(
Xi − x
bn

)
and w1(n) =

1

|Λn|bn

∑
i∈Λn

Zi

(
Xi − x
bn

)
K
(
Xi − x
bn

)
with Zi = Yi − g(x)− g′(x)(Xi − x). A straightforward calculation gives(

gn(x)

g′n(x)bn

)
= U−1

n Vn where Un =

(
u00(n) u10(n)

u01(n) u11(n)

)
and Vn =

(
v0(n)

v1(n)

)
.

Denoting Wn = Vn − Un t(g(x), g′(x)bn) = t(w0(n), w1(n)), we obtain

G(n, x) :=

(
gn(x)− g(x)

(g′n(x)− g′(x)) bn

)
= U−1

n Wn. (2)

The main contribution of this paper is to provide sufficient conditions ensuring the
consistency (Theorem 1) and the asymptotic normality (Theorem 2) of the estimator
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defined by (1) under very mild conditions on the bandwidth parameter (see assump-
tion (A6)). Our approach is based on the so-called Lindeberg’s method (see [7], [8],
[9], [12]) instead of the Bernstein’s blocking method used in several previous works for
proving limit theorems in the random field setting (see [2], [10], [22],...).

Let K : R → R be a probability kernel. For any c = (c0, c1) ∈ R2 and any s in R, we
define Kc(s) = (c0 + c1s)K(s). In the sequel, we consider the following assumptions:

(A1) For any c in R2, we have supt∈R |Kc(t)| < ∞,
∫
R |Kc(t)|dt < ∞ and Kc has an

integrable second-order radial majorant, that is, the function ψ defined for any
real x by r(x) = sup|t|>|x| t

2Kc(t) is integrable.

(A2) g is twice differentiable and g′′ is continuous.

(A3) There exists a positive constant κ such that supk 6=0 |f0,k(x, y) − f(x)f(y)| ≤ κ
for any (x, y) in R2 where f0,k is the continuous joint density of (X0, Xk) and f
is the continuous marginal density of X0.

(A4) E|Y0|2+δ <∞ for some δ > 0.

(A5) bn → 0 such that |Λn|b3
n →∞.

(A6) bn → 0 such that |Λn|bn →∞ and |Λn|b5
n → 0.

Our first main result ensures the consistency of the estimator.

Theorem 1 If (A1), (A2), (A3), (A4) and (A5) hold and
∞∑
m=1

m
(2d−1)δ+6d−2

2+δ α
δ

2+δ

1,∞(m) <∞ (3)

then for any x in R,
G(n, x)

bn

P−−−−−→
n→∞

0 (4)

where G(n, x) is defined by (2).

The second main contribution of this paper is the following central limit theorem.

Theorem 2 If (A1), (A2), (A3), (A4), (A6) and (3) hold then for any x in R such
that f(x) > 0, √

|Λn|bnG(n, x)
D−−−−−→

n→∞
N
(
0, U−1Σ t(U−1)

)
where

Σ = V(Y0/X0 = x)f(x)

(∫
R K

2(t)dt
∫
R tK

2(t)dt∫
R tK

2(t)dt
∫
R t

2K2(t)dt

)
(5)

and
U = f(x)

(
1

∫
R tK(t)dt∫

R tK(t)dt
∫
R t

2K(t) dt

)
. (6)
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Remark. Theorem 2 extends results of Hallin, Lu and Tran [10] in several directions.
Using our notations, Theorem 3.1 in [10] assumes that α1,∞(m) = O (m−µ) where
µ > 2(3 + δ)d/δ and this condition is more restrictive than (3). Moreover, the regions
Λn that we consider in our work are very general and very mild conditions are assumed
on the bandwidth parameter bn. In fact, the condition |Λn|b5

n → 0 in Assumption (A6)
is assumed only for the cancellation of the bias term in Theorem 2.

2 Proofs
In the sequel, for any sequences (pn)n>1 and (qn)n>1 of real numbers, we denote pn E qn
if and only if there exists κ > 0 (not depending on n) such that pn 6 κqn. Moreover,
proofs of some technical lemmas in this section are postponned to the appendix. Con-
sider the sequence (mn)n>1 of positive integers defined by

mn = max

τn,

b−3δ

4+δ
n

∑
|i|>τn

|i|
d(4+δ)
2+δ α

δ
2+δ

1,∞(|i|)

 1
3d

+ 1

 (7)

where τn =
[
b
−δ

2d(4+δ)
n

]
and [ . ] denotes the integer part function. The proof of the

following lemma is left to the reader (see Lemma 2 in [7]).

Lemma 1 If (3) holds then

mn →∞, md
nb

δ
4+δ
n → 0 and

(
md
nb

δ
4+δ
n

)− 4+δ
2+δ ∑
|i|>mn

|i|
d(4+δ)
2+δ α

δ
2+δ

1,∞ (|i|)→ 0.

2.1 Proof of Theorem 1

Let x and c = (c0, c1) be fixed in R and R2 respectively and denote

η = V(Y0/X0 = x)f(x)

∫
R
K2
c(t)dt.

Lemma 2 E (cWn) E b2
n and |Λn|bnV(cWn) −−−−−→

n→∞
η.
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Proof of Lemma 2. Let n be a positive integer,

E (cWn) =
1

bn
E
[
Z0Kc

(
X0 − x
bn

)]
=

1

bn
E
[
[g(X0)− g(x)− g′(x)(X0 − x)]Kc

(
X0 − x
bn

)]
=

1

bn

∫
R

[g(u)− g(x)− g′(x)(u− x)]Kc

(
u− x
bn

)
f(u)du

=

∫
R

[g(x+ vbn)− g(x)− g′(x)vbn]Kc(v)f(x+ vbn)dv

=
b2
n

2

∫
R
g′′(θn(x, v))v2Kc(v)f(x+ vbn)dv

where θn(x, v) is a real number between x and x + vbn. By the Lesbesgue density
theorem (see chapter 2 in [5]), we have∫

R
g′′(θn(x, v))v2Kc(v)f(x+ vbn)dv −−−−−→

n→∞
g′′(x)f(x)

∫
R
v2Kc(v)dv.

So, we obtain E (cWn) E b2
n. In the other part,

∣∣|Λn|bnV(cWn)− E(∆2
0)
)
| =

∣∣∣∣∣∣ 1

|Λn|
E

(∑
i∈Λn

∆i

)2

− E(∆2
0)

∣∣∣∣∣∣ 6
∑

j∈Zd\{0}

|E(∆0∆j)| (8)

where
∆i =

Zi√
bn

Kc

(
Xi − x
bn

)
− E

Zi√
bn

Kc

(
Xi − x
bn

)
. (9)

Lemma 3 E (∆2
0) −−−−−→

n→∞
η and moreoever,

sup
i∈Zd\{0}

E|∆0∆i| E b
δ

4+δ
n and |E (∆0∆i) | E b

−δ
2+δ
n α

δ
2+δ

1,1 (|i|) for any i 6= 0.

Combining Lemma 3 and Lemma 1, we obtain

∑
j∈Zd\{0}

|E(∆0∆j)| E md
nb

δ
4+δ
n +

(
md
nb

δ
4+δ
n

)− 4+δ
2+δ ∑

i∈Zd
|i|>mn

|i|
d(4+δ)
2+δ α

δ
2+δ

1,∞ (|i|) −−−−−→
n→∞

0.

Using (8) and Lemma 3, we derive |Λn|bnV(cWn) −−−−−→
n→∞

η. The proof of Lemma 2 is
complete.

Lemma 4 Un
L2

−−−−−→
n→∞

U where U is defined by (6).
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Proof of Lemma 4. Let k be fixed in {0, 1, 2} and let x be a real number. Then,

1

|Λn|bn

∑
i∈Λn

(
Xi − x
bn

)k
K
(
Xi − x
bn

)
=

1

|Λn|
√
bn

∑
i∈Λn

∆i,k+
1

bn
E
(
X0 − x
bn

)k
K
(
X0 − x
bn

)
where

∆i,k =
1√
bn

(
Xi − x
bn

)k
K
(
Xi − x
bn

)
− E

1√
bn

(
X0 − x
bn

)k
K
(
X0 − x
bn

)
.

First, using again the Lebesgue density theorem (see chapter 2 in [5]), we have

1

bn
E
(
X0 − x
bn

)k
K
(
X0 − x
bn

)
=

∫
R
vkK(v)f(x+ vbn)dv −−−−−→

n→∞
f(x)

∫
R
vkK(v)dv.

(10)
In the other part, arguing as in the proof of Lemma 3, we have E

(
∆

2

0,k

)
converges to

f(x)
∫
R t

2kK2(t)dt as n goes to infinity and
∑

j∈Zd\{0}

∣∣E (∆0,k∆j,k

))
| goes to zero as n

goes to infinity. Consequently,∣∣∣∣∣∣ 1

|Λn|2bn
E

(∑
i∈Λn

∆i,k

)2

−
E
(

∆
2

0,k

)
|Λn|bn

∣∣∣∣∣∣ 6 1

|Λn|bn

∑
j∈Zd\{0}

∣∣E (∆0,k∆j,k

))
| −−−−−→

n→∞
0.

(11)
Combining (10) and (11) and keeping in mind that |Λn|bn goes to infinity as n goes to
infinity, we obtain

1

|Λn|bn

∑
i∈Λn

(
Xi − x
bn

)k
K
(
Xi − x
bn

)
L2

−−−−−→
n→∞

f(x)

∫
R
vkK(v)dv.

The proof of Lemma 4 is complete.

Combining (2) with Lemmas 2 and 4 and the fact that

G(n, x) = U−1
n (Wn − EWn) + U−1

n EWn (12)

we obtain (4). The proof of Theorem 1 is complete.

2.2 Proof of Theorem 2

Let c = (c0, c1) be fixed in R2. By Lemma 2 and Assumption (A6), we derive that√
|Λn|bnE(cWn) goes to zero as n goes to infinity. Keeping in mind (12) and using

Lemma 4 and Slutsky’s lemma, we have only to prove the asymptotic normality of√
|Λn|bn (Wn − EWn). That is what we establish in the following key result where we

recall the notation η = V(Y0/X0 = x)f(x)
∫
R K

2
c(t)dt.
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Proposition 1
√
|Λn|bn (cWn − E (cWn))

D−−−−−→
n→∞

N (0, η).

Proof of Proposition 1. Let (ξi)i∈Zd be a field of i.i.d. standard normal random variables
independent of (Yi, Xi)i∈Zd and denote for all i in Zd,

Ti =
∆i

|Λn|1/2
and γi =

√
η ξi

|Λn|1/2

where ∆i is given by (9). On the lattice Zd we define the lexicographic order as follows:
if i = (i1, ..., id) and j = (j1, ..., jd) are distinct elements of Zd, the notation i <lex j
means that either i1 < j1 or for some k in {2, 3, ..., d}, ik < jk and il = jl for 1 6 l < k.
Recall that |Λn| is the number of element in the region Λn and let ϕ be the unique
function from {1, ..., |Λn|} to Λn such that ϕ(k) <lex ϕ(l) for 1 6 k < l 6 |Λn|. For all
integer 1 6 k 6 |Λn|, we put

Sϕ(k)(T ) =
k∑
i=1

Tϕ(i) and Scϕ(k)(γ) =

|Λn|∑
i=k

γϕ(i)

with the convention Sϕ(0)(T ) = Scϕ(|Λn|+1)(γ) = 0. Let h be any measurable function
from R to R. For any 1 6 k 6 l 6 |Λn|, we introduce hk,l = h(Sϕ(k)(T ) +Scϕ(l)(γ)). We
denote by B4

1(R) the unit ball of C4
b (R): h belongs to B4

1(R) if and only if it belongs to
C4(R) and satisfies max06i64 ‖h(i)‖∞ 6 1. It suffices to prove that for all h in B4

1(R),

E
(
h
(
Sϕ(|Λn|)(T )

))
−−−−−→
n→∞

E (h (
√
ηξ0)) .

We use Lindeberg’s decomposition:

E
(
h
(
Sϕ(|Λn|)(T )

)
− h (

√
ηξ0)

)
=

|Λn|∑
k=1

E (hk,k+1 − hk−1,k) .

Now, we have hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k and by Taylor’s
formula we obtain

hk,k+1 − hk−1,k+1 = Tϕ(k)h
′

k−1,k+1 +
1

2
T 2
ϕ(k)h

′′

k−1,k+1 +Rk

hk−1,k+1 − hk−1,k = −γϕ(k)h
′

k−1,k+1 −
1

2
γ2
ϕ(k)h

′′

k−1,k+1 + rk

where |Rk| 6 T 2
ϕ(k)(1 ∧ |Tϕ(k)|) and |rk| 6 γ2

ϕ(k)(1 ∧ |γϕ(k)|). Since (T, ξi)i 6=ϕ(k) is inde-
pendent of ξϕ(k), it follows that

E
(
γϕ(k)h

′

k−1,k+1

)
= 0 and E

(
γ2
ϕ(k)h

′′

k−1,k+1

)
= E

(
η

|Λn|
h
′′

k−1,k+1

)
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Hence, we obtain

E
(
h(Sϕ(|Λn|)(T ))− h (

√
ηξ0)

)
=

|Λn|∑
k=1

E(Tϕ(k)h
′

k−1,k+1)

+

|Λn|∑
k=1

E

((
T 2
ϕ(k) −

η

|Λn|

)
h
′′

k−1,k+1

2

)

+

|Λn|∑
k=1

E (Rk + rk) .

Let L be a positive real number.

|Λn|∑
k=1

E|Rk| 6 E
(

∆2
0

(
1 ∧ |∆0|
|Λn|1/2

))

E E

[
Z2

0

bn
K2
c

(
X0 − x
bn

)(
1 ∧ |Z0|√

|Λn|bn

∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣
)]

E E

[
Z2

0

bn
11|Z0|6LK

2
c

(
X0 − x
bn

)(
1 ∧ |Z0|√

|Λn|bn

∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣
)]

+ E

[
Z2

0

bn
11|Z0|>LK

2
c

(
X0 − x
bn

)(
1 ∧ |Z0|√

|Λn|bn

∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣
)]

E
L3√
|Λn|b3/2

n

E

[∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣3
]

+ L−δE
[
|Z0|2+δ

bn
K2
c

(
X0 − x
bn

)]
E

L3√
|Λn|bn

∫
R
|Kc(v)|3f(x+ vbn)dv

+ L−δ
∫
R
E
(
|Z0|2+δ/X0 = x+ vbn

)
|Kc(v)|3f(x+ vbn)dv.

By the Lebesgue density theorem (see chapter 2 in [5]), we have∫
R
E
(
|Z0|2+δ/X0 = x+ vbn

)
|Kc(v)|3f(x+vbn)dv −−−−−→

n→∞
f(x)E

(
|Z0|2+δ/X0 = x

) ∫
R
|Kc(v)|3dv

and ∫
R
|Kc(v)|3f(x+ vbn)dv −−−−−→

n→∞
f(x)

∫
R
|Kc(v)|3dv.

Consequently, we obtain

|Λn|∑
k=1

E|Rk| E

(
L3√
|Λn|bn

+ L−δ

)
.
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Choosing L = (|Λn|bn)
1

2(3+δ) , we obtain

|Λn|∑
k=1

E|Rk| E (|Λn|bn)
−δ

2(3+δ) −−−−−→
n→∞

0.

Moreover,
|Λn|∑
k=1

E|rk| 6
η3/2E|ξ0|3√
|Λn|

−−−−−→
n→∞

0.

So, it is sufficient to show

lim
n→∞

|Λn|∑
k=1

(
E(Tϕ(k)h

′

k−1,k+1) + E

((
T 2
ϕ(k) −

η

|Λn|

)
h
′′

k−1,k+1

2

))
= 0. (13)

For any i in Zd and any integer k > 1, we define V k
i = {j ∈ Zd / j <lex i and |i−j| > k}.

For all integer n > 1 and all integer 1 6 k 6 |Λn|, we denote

E(n)
k = ϕ({1, .., k}) ∩ V mn

ϕ(k) and S
(mn)
ϕ(k) (T ) =

∑
i∈E(n)

k

Ti

where mn is defined by (7). In the sequel, for all function ψ from R to R, we adopt
the notation ψ(mn)

k−1,l = ψ
(
S

(mn)
ϕ(k) (T ) + Scϕ(l)(γ)

)
. More precisely, we are going to use this

notation with ψ equals to h′ or h′′ . Our aim is to show that

lim
n→∞

|Λn|∑
k=1

E
(
Tϕ(k)h

′

k−1,k+1 − Tϕ(k)

(
Sϕ(k−1)(T )− S(mn)

ϕ(k) (T )
)
h
′′

k−1,k+1

)
= 0. (14)

First, we use the decomposition

Tϕ(k)h
′

k−1,k+1 = Tϕ(k)h
′(mn)
k−1,k+1 + Tϕ(k)

(
h
′

k−1,k+1 − h
′(mn)
k−1,k+1

)
.

Since γ is independent of T , we have E
(
Tϕ(k)h

′
(
Scϕ(k+1)(γ)

))
= 0 and consequently,∣∣∣E(Tϕ(k)h

′(mn)
k−1,k+1

)∣∣∣ =
∣∣∣E(Tϕ(k)

(
h
′(mn)
k−1,k+1 − h

′ (
Scϕ(k+1)(γ)

)))∣∣∣ 6 E
∣∣∣Tϕ(k)S

(mn)
ϕ(k) (T )

∣∣∣ .
Moreover,

E
∣∣∣Tϕ(k)S

(mn)
ϕ(k) (T )

∣∣∣ 6 1

|Λn|
∑
i∈E(n)

k

E|∆ϕ(k)∆i| 6 sup
j∈Zd\{0}

E|∆0∆j|.

So, by Lemma 3, we obtain∣∣∣E(Tϕ(k)h
′(mn)
k−1,k+1

)∣∣∣ E b
δ

4+δ
n −−−−−→

n→∞
0.

9



Applying again Taylor’s formula,

Tϕ(k)(h
′

k−1,k+1 − h
′(mn)
k−1,k+1) = Tϕ(k)

(
Sϕ(k−1)(T )− S(mn)

ϕ(k) (T )
)
h
′′

k−1,k+1 +R
′

k,

where

|R′k| 6 2
∣∣∣Tϕ(k)

(
Sϕ(k−1)(T )− S(mn)

ϕ(k) (T )
)(

1 ∧ |Sϕ(k−1)(T )− S(mn)
ϕ(k) (T )|

)∣∣∣ .
Using Lemma 1 and Lemma 3, it follows that

|Λn|∑
k=1

E|R′k| 6 2E

|∆0|

 ∑
|i|6mn
i 6=0

|∆i|


1 ∧ 1√

|Λn|

∑
|i|6mn
i 6=0

|∆i|




6 2
∑
|i|6mn
i 6=0

E|∆0∆i| 6 2md
n sup
i∈Zd\{0}

E|∆0∆i|

E md
nb

δ
4+δ
n −−−−−→

n→∞
0.

So, we obtain (14). In order to derive (13) it remains to control

F1 := E

 |Λn|∑
k=1

h
′′

k−1,k+1

(
T 2
ϕ(k)

2
+ Tϕ(k)

(
Sϕ(k−1)(T )− S(mn)

ϕ(k) (T )
)
− η

2|Λn|

) .

We have

F1 6

∣∣∣∣∣∣E
 1

|Λn|

|Λn|∑
k=1

h
′′

k−1,k+1

(
∆2
ϕ(k) − E(∆2

0)
)∣∣∣∣∣∣+

∣∣η − E
(
∆2

0

)∣∣+ 2
∑
|j|6mn
j 6=0

E|∆0∆j|.

By Lemma 3, we know that

E
(
∆2

0

)
−−−−−→
n→∞

η and
∑
|j|6mn
j 6=0

E|∆0∆j| E md
nb

δ
4+δ
n −−−−−→

n→∞
0.

So, it suffices to prove

F2 :=

∣∣∣∣∣∣E
 1

|Λn|

|Λn|∑
k=1

h
′′

k−1,k+1

(
∆2
ϕ(k) − E(∆2

0)
)∣∣∣∣∣∣ −−−−−→n→∞

0. (15)

Let M be a positive constant and denote EM
(

∆2
ϕ(k)

)
= E

(
∆2
ϕ(k)/FVMϕ(k)

)
where FVM

ϕ(k)

is the σ-algebra generated by (Xs, Ys) for s in V M
ϕ(k). We have F2 6 F ′2 + F ′′2 where

F ′2 :=

∣∣∣∣∣∣E
 1

|Λn|

|Λn|∑
k=1

h
′′

k−1,k+1

(
∆2
ϕ(k) − EM

(
∆2
ϕ(k)

))∣∣∣∣∣∣
10



and

F ′′2 :=

∣∣∣∣∣∣E
 1

|Λn|

|Λn|∑
k=1

h
′′

k−1,k+1

(
EM

(
∆2
ϕ(k)

)
− E(∆2

0)
)∣∣∣∣∣∣ .

The following technical lemma is proved in the appendix.

Lemma 5 ‖∆0‖2
2+δ E b

−δ
2+δ
n .

The next result can be found in [17].

Lemma 6 Let U and V be two σ-algebras and let X be a random variable measurable
with respect to U . If 1 6 p 6 r 6∞ then

‖E(X|V)− E(X)‖p 6 2(21/p + 1) (α(U ,V))
1
p
− 1
r ‖X‖r.

Using Lemma 5 and Lemma 6 with p = 1 and r = (2 + δ)/2, we derive

F
′′

2 6 ‖EM
(
∆2

0

)
− E(∆2

0)‖1 6 6‖∆0‖2
2+δ α

δ
2+δ

1,∞(M) 6 6 b
−δ
2+δ
n α

δ
2+δ

1,∞(M). (16)

In the other part,

F
′

2 6
1

|Λn|

|Λn|∑
k=1

(
J1
k (M) + J2

k (M)
)

where
J1
k (M) =

∣∣∣E(h′′(M)
k−1,k+1

(
∆2
ϕ(k) − EM

(
∆2
ϕ(k)

)))∣∣∣
and

J2
k (M) =

∣∣∣E((h′′k−1,k+1 − h
′′(M)
k−1,k+1

) (
∆2
ϕ(k) − EM

(
∆2
ϕ(k)

)))∣∣∣ .
Since h

′′(M)
k−1,k+1 is σ(γi ; i ∈ Zd) ∨ FVM

ϕ(k)
-measurable and (γi)i∈Zd is independent of

(Yi, Xi)i∈Zd then J1
k (M) = 0. Moreover, if L is a positive real number then

J2
k (M) 6 E


2 ∧

∑
|i|<M
i 6=0

|∆i|√
|Λn|

∆2
0

 6
L√
|Λn|

∑
|i|<M
i 6=0

E|∆0∆i|+ 2E
(
∆2

0 11|∆0|>L
)

6
MdL√
|Λn|

sup
i∈Zd\{0}

E|∆0∆i|+ 2L−δE
(
|∆0|2+δ

)
.

Applying again Lemma 3 and Lemma 5, we derive

J2
k (M) 6

LMdb
δ

4+δ
n√
|Λn|

+ 2L−δb−δ/2n .

11



In particular, for

L =
|Λn|

1
2(1+δ)

M
d

1+δ b
δ2+6δ

2(4+δ)(1+δ)
n

we obtain

J2
k (M) E

M
dδ
1+δ

|Λn|
δ

2(1+δ) b
−δ2+4δ

2(4+δ)(1+δ)
n

.

Now, choosing M such that M
(2d−1)δ+6d−2

2+δ = b
−δ
2+δ
n then

J2
k (M) E

bθn

(|Λn|bn)
δ

2(1+δ)

where
θ =

dδ3(4 + δ) + δτ 2

(1 + δ)(4 + δ)τ 2
and τ = (2d− 1)δ + 6d− 2.

So, we obtain F ′1 −−−−−→
n→∞

0. Using (3) and (16), we derive

F
′′

2 EM
(2d−1)δ+6d−2

2+δ α
δ

2+δ

1,∞(M) −−−−−→
n→∞

0.

Consequently, we obtain (15). The proof of Proposition 1 is complete.

Combining (2) with Lemmas 2 and 4 and Proposition 1, we derive Theorem 2.

3 Numerical results
In this section, we consider the autoregressive random field (Xi,j)(i,j)∈Z2 defined by

Xi,j = 0.75Xi−1,j + 0.2Xi,j−1 + εi,j (17)

where (εi,j)(i,j)∈Z2 are iid random variables with standard normal law. From [11], we
know that (17) has a stationary solution Xi,j given by

Xi,j =
∑
k1>0

∑
k2>0

(
k1 + k2

k1

)
(0.75)k1(0.2)k2εi−k1,j−k2 (18)

and one can check that Xi,j has a normal law with zero mean and variance σ2 = 3.8346.
If we denote by f the density of Xi,j then f(0) = 0.2037. Let s be a positive integer.
We simulate the εi,j’s over the grid [0, 2s]2 ∩Z2 and we obtain the data Xi,j’s for (i, j)
in Λs = [s+ 1, 2s]2 ∩ Z2 following (18). Thus, we construct

u00(s) =
1

s2bs

∑
(i,j)∈Λs

K
(
Xi,j

bs

)
, u11(s) =

1

s2bs

∑
(i,j)∈Λs

(
Xi,j

bs

)2

K
(
Xi,j

bs

)

12



and
u01(s) = u10(s) =

1

s2bs

∑
(i,j)∈Λs

(
Xi,j

bs

)
K
(
Xi,j

bs

)
where K is the gaussian kernel defined for any real u by K(u) = 1√

2π
exp(−u2/2). From

the data set
Yi,j =

2

1 +X2
i,j

+ εi,j

(that is, g(u) = 2/(1 + u2) for any real u), we define also

w0(s) =
1

s2bs

∑
(i,j)∈Λs

Zi,jK
(
Xi,j

bs

)
and w1(s) =

1

s2bs

∑
(i,j)∈Λs

Zi,j

(
Xi,j

bs

)
K
(
Xi,j

bs

)

with Zi,j = g(Xi,j)+εi,j−2. The local linear estimator Ĝ(s, 0) of the regression function
g at the point x = 0 is given by

Ĝ(s, 0) =

(
u00(s) u10(s)

u01(s) u11(s)

)−1(
w0(s)

w1(s)

)
=:

(
τ̂0(s)

τ̂1(s)

)

For s ∈ {10, 20, 30, 40} and bs = |Λs|−1/3, we take the arithmetic mean value m̂(s) of
300 replications of

τ̂0(s) + τ̂1(s)

bs

and the following table

s |Λs| = s2 bs = |Λs|−1/3 m̂(s)

10 100 0.215 −0.408
20 400 0.136 −0.309
30 600 0.104 −0.271
40 1600 0.085 −0.114

put on light that m̂(s) decreases to zero when s increases. In order to illustrate the
asymptotic normality of the estimator, we consider 300 replications of

2× π1/4
√
|Λs|bs (τ̂0(s) + τ̂1(s))√

3× f(0)× V(Y0/X0 = 0)
= 1.703×

√
s2 × bs (τ̂0(s) + τ̂1(s))

for (s, bs) ∈ {(10, 0.215); (20, 0.136); (30, 0.104); (40, 0.085)} and we obtain histograms
(see figure 1) which fit well to the standard normal law N (0, 1).
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Figure 1: Asymptotic normality of the local linear estimator.

4 Appendix
Proof of Lemma 3. Let i in Zd\{0} be fixed. Applying Rio’s covariance inequality
([18], Theorem 1.1), we obtain

|E (∆0∆i) | = |Cov(∆0,∆i)| 6 4

∫ α1,1(|i|)

0

Q2
∆0

(u)du

14



where Q∆0 is defined by Q∆0(u) = inf{t > 0 ; P(|∆0| > t) 6 u} for any u in [0, 1].
Since Q∆0(u) 6 u

−1
2+δ ‖∆0‖2+δ, using Lemma 5, we derive

|E (∆0∆i) | E b
−δ
2+δ
n α

δ
2+δ

1,1 (|i|).

In the other part, let L > 1 be a fixed real number. Arguing as in the proof of Lemma
5.2 in [10], we denote ∆

(1)
j = ∆j 11|∆j |6L and ∆

(2)
j = ∆j 11|∆j |>L for any j in Zd. So, we

have
E|∆0∆i| 6 E|∆(1)

0 ∆
(1)
i |+ E|∆(1)

0 ∆
(2)
i |+ E|∆(2)

0 ∆
(1)
i |+ E|∆(2)

0 ∆
(2)
i |.

Moreover,

sup
i∈Zd\{0}

E|∆(1)
0 ∆

(2)
i | E

√
E
(
Z2

0

bn
11|Z0|6LK

2
c

(
X0 − x
bn

))
×

√
E
(
Z2

0

bn
11|Z0|>LK

2
c

(
X0 − x
bn

))

E L−δ/2

√
E
(
Z2

0

bn
K2
c

(
X0 − x
bn

))
×

√
E
(
|Z0|2+δ

bn
K2
c

(
X0 − x
bn

))

E L−δ/2

√∫
R
E (|Z0|2/X0 = x+ vbn)K2

c(v)f(x+ vbn)dv

×

√∫
R
E (|Z0|2+δ/X0 = x+ vbn)K2

c(v)f(x+ vbn)dv.

Applying again the Lebesgue density theorem (see chapter 2 in [5]), we derive

sup
i∈Zd\{0}

E|∆(1)
0 ∆

(2)
i | E L−δ/2.

Similarly, supi∈Zd\{0} E|∆
(2)
0 ∆

(1)
i | E L−δ/2 and supi∈Zd\{0} E|∆

(2)
0 ∆

(2)
i | E L−δ. Finally,

sup
i∈Zd\{0}

E|∆(1)
0 ∆

(1)
i | 6 E

(
|Z0|√
bn

11|Z0|6L

∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣× |Zi|√bn 11|Zi|6L

∣∣∣∣Kc

(
Xi − x
bn

)∣∣∣∣)
+ 3

(
E
|Z0|√
bn

11|Z0|6L

∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣)2

6
L2

bn
E
∣∣∣∣Kc

(
X0 − x
bn

)
Kc

(
Xi − x
bn

)∣∣∣∣+ 3L2bn

(∫
R
|Kc(v)|f(x+ vbn) dv

)2

E
L2

bn

∫
R

∣∣∣∣Kc

(
u− x
bn

)
Kc

(
v − x
bn

)∣∣∣∣ |f0,i(u, v)− f(u)f(v)|dudv

+
L2

bn

∫
R

∣∣∣∣Kc

(
u− x
bn

)
Kc

(
v − x
bn

)∣∣∣∣ f(u)f(v)dudv

+ L2bn

(∫
R
|Kc(v)|f(x+ vbn) dv

)2

.
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Using Assumption (A3) and the Lebesgue density theorem (see chapter 2 in [5]), we
derive

sup
i∈Zd\{0}

E|∆(1)
0 ∆

(1)
i | E

L2

bn

(∫
R
|Kc(v)|bndv

)2

+
L2

bn

(∫
R
|Kc(v)|f(x+ vbn)bndv

)2

+L2bn E L2bn.

Consequently, we obtain supi∈Zd\{0} E|∆0∆i| E
(
L−δ/2 + L2bn

)
. Choosing L = b

−2
4+δ
n , it

follows that
sup

i∈Zd\{0}
E|∆0∆i| E b

δ
4+δ
n .

In the other part, we have

E(∆2
0) =

1

bn

(
EZ2

0K
2
c

(
X0 − x
bn

)
−
(
EZ0Kc

(
X0 − x
bn

))2
)
.

Moreover,

EZ0Kc

(
X0 − x
bn

)
= E (Y0 − g(x)− g′(x)(X0 − x))Kc

(
X0 − x
bn

)
= E (g(X0)− g(x)− g′(x)(X0 − x))Kc

(
X0 − x
bn

)
=

∫
R

(g(u)− g(x)− g′(x)(u− x))Kc

(
u− x
bn

)
f(u) du

=
1

2

∫
R
(u− x)2g′′(x+ θ(u− x))Kc

(
u− x
bn

)
f(u)du avec |θ| < 1

=
b3
n

2

∫
R
g′′(x+ θvbn)v2Kc(v)f(x+ vbn)dv.

Using the Lebesgue density theorem (see chapter 2 in [5]), we obtain

EZ0Kc

(
X0 − x
bn

)
E bn.

In the other part,

1

bn
EZ2

0K
2
c

(
X0 − x
bn

)
=

∫
R
E(Z2

0/X0 = x+ vbn)K2
c(v)f(x+ vbn)dv.

Noting that

E(Z2
0/X0 = x+ vbn) = V(Y0/X0 = x+ vbn) −−−−−→

n→∞
V(Y0/X0 = x)

and applying again the Lebesgue density theorem (see chapter 2 in [5]), we obtain
E∆2

0 −−−−−→
n→∞

η. The proof of Lemma 3 is complete.
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Proof of Lemma 5.

‖∆0‖2
2+δ E

(
E
∣∣∣∣ Z0√
bn

Kc

(
X0 − x
bn

)∣∣∣∣2+δ
) 2

2+δ

E b−1
n

(
E

[
E
(
|Z0|2+δ/X0

) ∣∣∣∣Kc

(
X0 − x
bn

)∣∣∣∣2+δ
]) 2

2+δ

E b
−δ
2+δ
n

(∫
R
E
(
|Z0|2+δ/X0 = x+ vbn

)
|Kc(v)|2+δ f(x+ vbn)dv

) 2
2+δ

.

By the Lebesgue density theorem (see chapter 2 in [5]), we obtain

‖∆0‖2
2+δ E b

−δ
2+δ
n .

The proof of Lemma 5 is complete.
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