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1. Introduction

In statistics, the nonparametric estimation of probability density functions of
continuous random variables is a basic and central problem. From a given sample
of observations, the main goal for a practitionner is to understand the mecanism
from which the observations have been generated. In the last several decades,
this question has attracted much attention among statisticians since it is of
considerable interest in many applied fields such as forecasting, computer vision
and machine learning. Among the plethora of nonparametric density estimators
is the kernel density estimator introduced by Parzen [31] and Rosenblatt [34]
which received considerable attention in nonparametric estimation for time se-
ries. More precisely, if (X7, ..., X,,) is a sample (observations) drawn from some
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univariate distribution with an unknown probability density f with respect to
the Lebesgue measure on R then the Parzen-Rosenblatt density estimator of f
is defined for any positive integer n and any x in R by

e = g K () (L)

where K is a density function and the bandwidth h, is a positive parameter
which converges to zero such that nh,, goes to infinity. The bandwidth h,, is the
most dominant parameter in the kernel density estimator since it controls its
amount of smoothness. In fact, if h,, is small then the variance of the estimator
is large while the bias is small. This leads to a nonsmooth estimated density.
On the other, if h,, is large then the estimated density will be much smoother
(small variance) but with a large bias leading to an unsatisfactory estimation.
So, in practice, a trade-of between the variance and the bias must be found and
the number of publications which are devoted to this crucial question in the
literature is very extensive and is still a subject of many works in the statistic
community (see for example [8], [17], [22], [38]). From a theoretical but also
practical point of view, it is important to investigate asymptotic properties of
density estimators when the number n of observations goes to infinity. For ex-
ample, the consistency and the asymptotic normality of the estimator are very
important in order to get pointwise estimation and confidence intervals for the
target density f. In his seminal paper, Parzen [31] proved that when the ob-
servations (Xi,..., X, ) are i.i.d. and the bandwidth h,, goes to zero such that
nh,, goes to infinity then (nh,)Y/2(fF%(xq) — E[fFf(z0)]) converges in distri-
bution to the normal law with zero mean and variance f(zo) [ K?(t)dt as n
goes to infinity and this result was extended by Wu and Mielniczuk [44] for
causal linear processes with i.i.d. innovations and by Dedecker and Merlevede
[11] for strongly mixing sequences. Previously, Bosq, Merlevede and Peligrad [6]
established a central limit theorem for the kernel density estimator f,, when the
sequence (X;);ez is assumed to be strongly mixing but the bandwidth param-
eter hy, is assumed to satisfy h,, > Cn~/3logn (for some positive constant C')
which is stronger than the bandwidth parameter assumption in [11], [31] and
[44].

In many situations, practicians are also interested by the relationship between
some predictors and a response. This is a natural question and a very important
task in statistics. The objective is to find a relation between a pair of random
variables X (predictor) and Y (response) using a given sample (X;,Y;)1<i<n
drawn from the unknown law of (X,Y"). A very popular tool to handle this prob-
lem is the kernel regression estimator introduced by Nadaraya [30] and Watson
[41]. More formally, let N be a positive integer and assume that (X;,Y;)1<i<n
are identically distributed RY x R-valued sequence of random variables such
that Y; = R(X;,n;) where R is an unknown functional and (1;);cz are i.i.d. RV-
valued random variables with zero mean and finite variance and independent of
(X;)iez. Let f be the marginal density function of Xg. If 7 is the (unknown)
regression function defined for any = in RY by r(z) = E[R(z,n0)] if f(x) # 0
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and r(z) = E[Yo] if f(z) = 0 then the Nadaraya-Watson regression estimator
W of r is defined for any x in RY by

S YK(@ = X)) en e
NW(g) = Z?:nl K((z — X3)/hn) f > i K((z — Xi)/hy) #0

" 1
n- E Y; else.
i=1

r

(1.2)
The literature on the asymptotic properties of 7" for time series is very ex-
pansive. One can refer to Lu and Cheng [24], Masry and Fan [26], Robinson
[33], Roussas [37] and many references therein. Kernel nonparametric methods
are still very popular and fairly well established in the statistical community
but despite their power, the data streams problem, which refers to data sets
that continuously and rapidly grow over time, present new challenges. In order
to handle such data sets, several recursive versions of the Parzen-Rosenblatt
estimator (1.1) have been introduced (see for example [3], [12], [20], [43], [47]).
For example, if (wg)r>1 is a nonincreasing sequence of positive real numbers
satisfying 3, -, wy = 0o and (hg)k>1 is a sequence of positive real numbers go-
ing to 0 as n goes to infinity (bandwidth parameters) then the resursive kernel
density estimator f% of Hall and Patil [20] is defined by

n

) = o Y i (S5 (13

n
k=1"k i

This estimator is recursive in the sense that it satisfies

f#»Pl(x) = (1 - '7n+1)frIL{P(x) + '7n+1fn+1 (ﬁ) (14)
where ~,, := 7252?% and an(x) = nglﬂiK (x;i(:jl)

Such a property endows recursive estimators with a decisive computational ad-
vantage because they can be easily updated as new data items arrive over time.
More precisely, in order to obtain the estimation ff(z) at time n + 1, using
the recursive equation (1.4), it is sufficient to combine the estimation f7F(z) at
time n (which is known at time n+ 1) with the estimation f,,41(z) at time n+1
based on the single observation X, ;. In fact, a non-recursive estimator must
be fully recomputed whenever a new observation is collected. This clearly repre-
sents a drawback in a data stream context compared to the recursive approach.
The class (1.3) contains the recursive estimators introduced by Wolverton and
Wagner [43] and Deheuvels [12] but also a renormalized version of the one intro-
duced by Wegman and Davies [42] and another class of estimators introduced
by Amiri [3]. It contains also the (non-recursive) Parzen-Rosenblatt estimator
(1.1) when h; = h, and w; = 1 for any 1 < 7 < n. In this work, our aim is
to investigate asymptotic properties for a spatial version of the Hall and Patil
estimator (1.3) in terms of mean squared error and asymptotic normality under
weak and strong dependence conditions. The first studies that focused on a re-
cursive version of the Parzen-Rosenblatt estimator were presented by [12], [43]
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and [47] and later by [20], [25], [29] and many others. Actually, many papers
in the literature are devoted to the asymptotic properties of recursive kernel
density and regression estimators for i.i.d. observations. There are also some
published papers on the asymptotic properties of recursive kernel density and
regression estimators for dependent (weakly dependent and strongly mixing)
data. One can refer for example to [4], [7], [18], [19], [25], [36], [39], [40] and
others.

In our context, we deal with spatial data which is modelized using finite real-
izations of dependent random fields indexed by Z? where d is a positive integer.
More precisely, let N be a positive integer and let (2, F,P) be a probability
space. We consider a stationary R -valued random field (X} )scze such that the
law pg of Xy is absolutely continuous with respect to the Lebesgue measure Ay
on RY and we denote by f the probability density function of jo with respect to
An. Given two sub-o-algebras U and V of F, recall that the a-mixing coefficient
introduced by Rosenblatt [35] is defined by

aU,V) =sup{|P(AN B) —P(A)P(B)|, AclU, B e V}.

Let p be fixed in [1, +00]. The strong mixing coefficients (a1 ,(n))n>0 associated
to (Xk)reze are defined by

a1p(n) = sup {a(o(Xy), Fr), k € 24, T C 2%, || < p, p(T, {k}) > n}

where |I'| is the number of elements in T, the collection Fr is the o-algebra
o(Xg; k €T) and the distance p is defined for any subsets I'; and T'y of Z? by
p(T'1,T2) = min{|u — v|, w € I'1, v € Ty} with |u — v| = maxioca |ue — v¢| for
any u = (ug,...,uq) and v = (vy,...,vq) in Z¢. We say that the random field
(Xk)geza is strongly mixing if lim, o a1 »(n) = 0. Moreover, we are going to
consider also Bernoulli fields defined for any k € Z¢ by

Xk :G(E-?k,u; uGZd) (1.5)

where G : (Rm)zd — RY is a measurable function, (ex)gezq are i.i.d. R™-valued
random variables and m is a positive integer. The class of random fields that
(1.5) represents is huge and it includes many commonly used linear and nonlin-
ear processes (see Wu [46] for a review). Let (£}, )peza be an i.i.d. copy of (ex) ez
and let X; be the coupled version of X defined by X; = G (e}_,; u € Z%)
where e = ¢, if k # 0 and &} = ;. Note that X} is obtained from X} by re-
placing ey by its copy &j. For any positive integer £ and any R’-valued random
variable Z' € LP(€2, F,P) with p > 0, we denote | Z][, := E [||Z||p]1/p where || . ||
is the Euclidian norm on R*. Following Wu [45] and El Machkouri et al. [16],
we define the physical dependence measure coefficient dx, := || Xx — X{||, as
soon as Xy is p-integrable for p > 2. Physical dependence measure should be
seen as a measure of the dependence of the function G (defined in (1.5)) in the
coordinate zero. In some sense, it quantifies the degree of dependence of out-
puts on inputs in physical systems and provide a natural framework for a limit
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theory for stationary random fields (see [16]). In particular, it gives mild and
easily verifiable conditions (see condition (H2)(ii) below) because it is directly
related to the data-generating mechanism.

2. Main results

Let Ag =0, sp =0 € Z% and A,, = {s1,...,8,} C Z% for n > 1. Let (ws, )n>1
and (hs,)n>1 be two nonincreasing sequences of positive real numbers such
that (ws,hyV)p>1 is nondecreasing, hy, goes to 0 as n goes to infinity and
> n>1 Ws, = 00. Let also K : RY — R, be a function (called a kernel) such that
Ja~n K(t)dt =1 and sup, g~ K(z) < oco. Assume that K is Lipschitz and satis-
fies lim ) so0 [|2[| K (@) = 0, [on Ju]?K (w)du < oo where ||. || is the usual norm
on RY and f]RN w; K (u)du =0forany 1 < i < N.Let ® : R — R be a measurable
function such that E [|®(Yy)[*T?] < oo and E [|®(Yy)[*T K, (z, Xo)] < ChYY
for some # > 0 and C' > 0 and assume that u — E[|®(Yy)|?|Xo = u] is con-
tinuous. One can notice that E[|®(Yy)[*T K, (z, Xo)] < ChY is satisfied when
u > E[|®(Yy)|>T?| X0 = u] is continuous (see Lemma 2 below). Let (1x)pcza
be ii.d. RV¥-valued random variables with zero mean and finite variance and
independent of (Xj)eze and consider the regression model Y, = R(X,,s;)
for any 1 < ¢ < n where R is an unknown functional. For any z € RY, we
denote fo(x) = ro(z)f(x) where ro(z) = E[®(Y)|Xo = z] = E[®(R(z,19))] if
f(z) # 0 and re(x) = E[®(Yy)] if f(z) = 0 and we consider the estimator f, o
of fe defined by

fn,‘i)(x) = (Z wsz‘)il Zwsjh;Nq)()/éj)ng (x7XSj) (21)
i=1 j=1

where K, (z,v) = K((z —v)/hs,) for any v € RY and any 1 < j < n. One can
notice that if ®(u) = 1 for any v € R then f,, ¢ reduces to the spatial version
fn,1 of the recursive kernel density estimator of f introduced by Hall and Patil
[20] and defined for any = € RY by

fna(z) = (Z ws, )t Zwsjhs_jNKsj (z, Xs,). (2.2)
i=1

Jj=1

Moreover, for particular choices of the weights (ws, )n>1, the estimator (2.2) re-
duces to the recursive estimators introduced by [3], [4], [12] or [43]. In particular,
one can check that f,, ¢ satisfies the following recursive equation

W,
D W,
(2.3)
Equation (2.3) is the spatial version of the recursive equation (1.4). It lays
emphasis on that the update of f,, ¢ at time n can be done from f,,_1 ¢ at time
n—1 and the new single observation X, . This is a definitive advantage over the

fr.o(z) = (1—Pn)fn—1,<1>($)+pnh;nN(I>(st)Ksn (z,Xs,) where p,=
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spatial version of the non-recursive Parzen-Rosenblatt estimator f# defined by
(1.1) since it is necessary to consider the whole sample (X, , ..., X5, ) in order to
compute fI'R at any time n. In this work, we consider also the following class
of spatial semi-recursive kernel regression estimator 7, ¢ of ro defined for any
r in RY by

frno(x)
m if ZJ 1 Ws; SJNKSj(vasj)7é0

T, (T) = n (2.4)

nt E Ys, else
i=1

which contains the first two semi-recursive kernel regression estimators intro-
duced by Ahmad and Lin [2] and Devroye and Wagner [13] for time series (i.e. for
d = 1) but also the class of semi-recursive kernel regression estimators consid-
ered by Amiri [4]. Since r, ¢ is defined from f, ¢ and f, 1 , it inherits the good
properties in term of computation time of the recursive estimators f,, ¢ and f, 1
and consequently, in a data stream setting, it has a decisive advantage over the
spatial version of the non-recursive Nadaraya-Watson estimator defined by (1.2).

Now, we are going to present our main contributions. For j € {2,4}, we adopt
the notation 9
+ 0 |<I>Hoo=oo (25)
and for any sequences (a,)n,>1 and (b,,)n>1 of real positive numbers, we denote
an, < by, if and only if there exists k > 0 (not depending on n) such that
apn, < Kby. Recall that (ws, )n>1 and (hs, )n>1 are two nonincreasing sequences
of positive real numbers such that (ws, hs_nN )n>1 is nondecreasing, hs, goes to 0
as n goes to infinity and Zn>1 w,, = 0o and keep in mind that K : RN — R is
a function (kernel) such that fRN (t)dt =1 and |K| := sup,epny K(t) < 0.
For any integer n > 1 and any (p, q) € Z2, we denote also

vi(0) = La|p<oo + =

Apnpg= nhp wq -1 E hE wi.

and we consider the following assumptions:

(H1) There exists (Bo,1,8-n2) € Ri such that lim,_,o Apno,1 = Po,1 and
limy, 00 An,—N2 = B-nN,2-

(H2) There exist 6 > 0 such that E[|®(Yy)|>*?] < oo and
E[|®(Yo)[* K, (z, Xo)] S hY , and 7 €]1 — 14(0), 1] such that

( + dvg (0) (v4(6)+7—1) )

hmn_>oo Tlhsn va(O)+(d—1)(vg(O)+7-1) ) __ — 00 and hN(l T) Z?_l wsl a nwgn.

Moreover, one of the following condition holds:

vy (6)
(1) (Xk)reza is strongly mixing and 3, ;4 || = 104”2(9) (|k]) < oo,

AN +205(0) 42N (g O)F7-1) . )

(ii) (Xk)geza is of the form (1.5) and ), ;4 |k N @ F7 1) 0o

<

Q.
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(H3) (i) The function u — E[|®(Y))|?|Xo = u] is continuous.

(ii) The function fg is twice differentiable with bounded second deriva-
tives.

(iii) For any k € Z¥\{0}, the law of (X, X}) is absolutely continuous
with respect to the Lebesgue measure on RY x RY and there exists
¢ > 0 such that supyeza g0y [fo.x(z,y) — f(2)f(y)| < ¢ for any
(z,y) € RYx RN where fq 1 is the joint density function of (Xq, X}).

Assumptions (H1) and (H3) are classical in the context of recursive kernel esti-
mators (see [4], [25], [28], [42] and many others). In (H2), we assume that the
bandwidth parameter h,, satisfies a condition sligthly stronger than the usual
minimal condition assumed in the non recursive i.i.d. setting (i.e. nhY — o0).

However, this fact seems to be inherent to the case of recursive estimators since

.. . N(1 . . oL
a condition like nhsn( +e) — oo for some € > 0 is assumed in many contributions

for dependent data (see for example [4], [1], [25], [28] or [36]).

For any z in RY, we denote
o3 (x) = By 1 B-n2E[|®(Y0)*| Xo = ] f(2) . K2 (t)dt. (2.6)
R
Our first result gives the asymptotic variance of the estimator f,, ¢ defined by
(2.1).

Proposition 1. Assume that (H1) and (H3) hold and there exists @ > 0 such
that E[|®(Yp)[*T?] < oo and E[|®(Yo)* K, (z, Xo)] < hlY. If there exists

7 €]l — vy(0),1] such that By~ St w? < nw? and one of the following
conditions is satisfied:
(1) (X
(i) (X
where vo(0) and v4(0) are defined by (2.5) then for any x € R,

duy (0)

Jkeza is strongly mizing and ), ;a |k|Wafl(9) (|k]) < o0
d(N+2v5(0)+2N (vg(0)+7—1))

)kezd s of the form (1.5) and Y, 54 K| () E—y 5;;22(0) < o

i [nh Y Vfy 0 (2)] - o3 ()] =0 (27)

where o2 (x) is defined by (2.6).
We obtain also the convergence to zero of the mean square error of f, &.

Proposition 2. Assume that fg is twice differentiable with bounded second
derivatives.

Then, for any x € RN, [E[fn.o(x)]— fo(2)] L (i ws,) "t > w2 = o(1).
So, if Ap2y < 1 then |E[fne(x)] — fo(z)] < k2 and, under assumptions of

Proposition 1, we get E[(fn.o(7) — fo(x))?] < n~ TN for h, = =

The main contribution of this paper is the following central limit theorem.
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Theorem 1. If (H1), (H2) and (H3) hold then for any x € RY,

VI, (Fra(@) = Elfn.o(a)]) =22 N(0,03(x)

n—o0

where o3 (x) is defined by (2.6).

One can notice that Theorem 1 is an extension of Theorem 1 in [1] where
the case of strongly mixing time series is considered. In fact, with our notations,
if d =1and ®(u) = 1 for any v € R then f, ¢ reduces to the recursive
kernel density estimator f, 1 introduced by Hall and Patil [20]. In this case, we
have 15(0) = v4(#) = 1 and (H2)(ii) holds as soon as 3, -, kY7o oo (k) < 00

<+ dvg (0)(rg(0)+7—1) )
dvg (0)+(d—1)(vy(6)+7—1)

. N(1 .
and lim,,_, o nhs, = lim,,— o nhsn( +7) oo which are

exactly the conditions imposed in Theorem 1 in [1]. Using Theorem 1, we derive
the asymptotic normality for the recursive estimator r, ¢ defined by (2.4).

Theorem 2. Assume that (H1), (H2) and (H3) hold. If f is Lipschitz and
twice differentiable with bounded second derivatives then for any x € RN such

that f(x) >0
[ - ) 52 i

with 52 () = V(Q% Jon K2(t)dt and V (z) = E[|®(Yp)[2| X0 = 2] — 2 (z).

Theorem 2 is also an extension of Theorem 2.1 in [36] where the asymptotic
normality of the semi-recursive kernel regression estimator for time series (i.e.
d = 1) introduced by Ahmad and Lin [2] is obtained under more restrictive
conditions on the bandwidth parameter and the strong mixing coefficients. Using
Theorem 2 and Proposition 2, the condition nhé\]n“‘4 — 0 can be imposed for the
control of the bias of the estimator and leads immediately to the following result.

Theorem 3. Assume that (H1), (H2) and (H3) hold. If f is Lipschitz and twice
differentiable with bounded second derivatives, nhévn+4 — 0 and Ap 21 41, then
for any x € RN such that f(z) > 0,

Y (rn,e (@) = ra(x)) —25 N (0,53 (),

n—oo

where 63 (x) is defined in Theorem 2.

3. Preliminary lemmas

This section is devoted to the presentation of several technical lemmas and
propositions which are key tools in the proof of the main contributions in section
4. For any real z, we also define [z] = |z| + 1, where |z] is the largest integer
less or equal than z.
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Lemma 1. Let (ay)reze be a family of real numbers such that as, goes to some
value a € R as n goes to infinity. If lim, ,oc Ay _n2 = B_n2 € R then

N n 2

lim s, s 3ss afB
n—oo nW2 h N2
S — S
—1 i

Proof of Lemma 1. For any positive integers ¢ and n, we denote
bin = w2 hY /(nhw? ) if i < n and b;, = 0 otherwise. Since (hs, )n>1 and
(ws, hyN)n>1 are nondecreasing, for i < n, we have

N 2 /p2N N
b‘ _ h’Si wsi/hsi hsl
in — B
nhd "~ w? /hZN T nhl ntoo

Moreover, Zj;of bin = An_N2 = P_n2 € Rasn = +oo. So, by Toeplitz’s
lemma (see Lemma 3 in [25]), we get

n
lim E binas, = af_n 2.
n—00 4 7

=

The proof Lemma 1 is complete. U
The following lemma will be usefull in order to compute the asymptotic variance
of the estimator f, ¢ (see Propositions 1 and 4).

Lemma 2. Let x € RY be fized and let U1 : R — R and Uy : R — R be
two functions. If u — E[U1(Yy)|Xo = u] is continuous and the conditions
Supyegy (WK (6))] < 00, Ty 1] [Ba(F (6))] = 0 and fyn [ (5 (1))]dt <
oo are satisfied then

lim h:nNE[\Ijl(YO)\IIQ (Ksn ($, Xo))} = E[\Ifl(YQ)‘XO = a:]f(x) /RN \IJQ (K(U)) dv.

n—oo
Proof of Lemma 2. Let x € RY and let n be a positive integer. It is obvious that

E[W,(Y0) ¥, (K, (2, X0))]

n

—h¥ / E[W; (V) | Xo = & — vhe,|Ts (K (v)) f( — vha, )dv.
RN
By Theorem 1A in [31], we derive

lim h,S_nNIE[‘I’l (YQ) \112 (Ksn (J},Xo))] = E[\Ill (Yb) |X0 = x]f(x) /]RN \112 (K(U)) dv.

n— oo
(3.1)
The proof of Lemma 2 is complete. U
For any ¢ € {1,2}, any 1 < ¢ < n and any sequence (my,),>1 of positive integers,
we define
00 (Ys,) Ky, (x, Xs,) — E[@4(Y0) K, (2, Xo)]

Agf) = % N3 and Zg) = E[Agf)
hs;

Hi,mn]

(3.2)
where H; m, = 0(0s;,€s,—k; |k| < my) and @ : R — R is a measurable function.
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Lemma 3. Let { € {1,2} and > 0 such that E[|®,(Y,)|**? K, (z, Xo)] < hYY
then E[|®,(Yy) [P K, (x, Xo)] < hYY for any 0 < p < 2+ 6. Moreover, if (H3)(iii)
holds then suplgi,jgn(hsihsj)_NE[KSi (z, X5, K, (2, X,)] 21

i#]
Proof of Lemma 3. If 0 < p < 2+ 6 then

E[|®¢(Y0)[PKs, (2, Xo)] < B[, (2, Xo)] + E[|®e(Yo) " K, (2, Xo)].

Since E[|®,(Yy)|" K, (z, Xo)] S hY for r € {0,2 4 0}, we get
E[|®(Yo)[P Ky, (x, Xo)] < hY . In the other part, using (H3)(iii), for any
1 < 4,5 < n such that i # j we have

E[Ks, (x, Xs,) K, (2, X, /K mudu/ K, (z,v)dv

]
E[K, (z, Xo)|E[K, (z, Xo)]
ﬂ(h% th)
The proof of Lemma 3 is complete. O

Lemma 4. If (p,q) € {1,2}% and 6 > 0 such that E[|®,(Yy)|**?] < oo and
E[@e(Yo)| 0 Ko, (2, Xo) | < B2 for any £ € {p.q) then

sup  (hs, hs ) [|A(p)A(Q)H (3.3)
1<4,5<n
i#£]
U ([ o [ ) < o0
where vy = % if min ([[@p]|oo, [|Pglloc) = 00
375 else.

Proof of Lemma 4. Let ¢ and j be two positive integers such that ¢ # j and
(p,q) € {1,2}? and let § > 0 such that E[|®,(Yy)[*™K,, (z,Xo)] < h) and

E[|®,(Yy)|2+?] < oo for any £ € {p, q}. Keeping in mind the notations A and
Agg) defined by (3.2), we have the following bound

N
2

+ 3E[|®, (Yo)| K, (2, Xo)|E[|Pq(Y0) | K, (2, Xo)].
(3.4)

Note that the second term of the right hand side of (3.4) can be dealt with using
Lemma 3. Therefore, we focus on the first part of the right hand side only. Let
L > 1 be fixed then

E[|®, (Y5, ) @q(Ys,) | K, (2, X, ) K (2, X5, )]
= E[10,(Ye)Po(Ye)) [ Lja, (v.1<L 11|<1>q<nj)|<LKsi(w7X DK, (2, X))
F E[|0p (Y ) (Ys)) Lo, (v i<z Loy (vi, 1> L K, (2, X, ) K (2, X, )]
+ E[|0p (Y ) (Ye)) [ 0, (v. 1> L Lo, (ve < K, (7, XSL)KSJ(J? Xs,)]
+ E[[@p(Ys,)Rq(Ya) Lo, (v ) 1> L Loy (v LK, (2, X)) K (2, X )]
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Using Cauchy-Schwarz’s inequality, we obtain
E[|®p(Ys,) g (Ye, )| K, (2, X, ) K, (2, X))
S LA ®plloo) (LA N1Rgllo0) BIK, (2, Xs,) Ko, (w, X))
+ B2, (Y0) PKZ (2, Xo)] /Bl @4 (Yo)? Wy, oy 1. K, (3 Xo)
B (Vo) L, )£ K2 (@, Xo) [y B[ @ (Vo) K, (2, Xo)]

+ \/EH‘I’p(Yo)P Lia, (vo)|>L K3, (%Xo)]\/EH‘I’q(Yo)P Lia, (vo) > K3, (2, Xo)].

Since E[|®,(Y)|?>T?] < oo and E[|®(Yy) > K, (x, Xo)] < hé\i forany ¢ € {p,q},
we apply Lemma 3 and we get
E[‘(I)P(}/—Si)q)q(}/;])‘KSz (x7X5i)K5j (:EvXSj )}

(LA @plloc) (LA [[®glloc) (B, s, )™ +L_9/2(hsihsj)N/2(~ )
3.5

Optimizing (3.5) with respect to L, we derive
EH(I)p(YSi)(I)q(YSj)|KSi (z, XS¢)KSJ- ($7X8j )]

n2pl?
N6
@, |25 (o) ™20 [|@,]], < oo and || @]l = o0
_6 =T .
< ||(I)q||§§9 (hSihsJ‘)2(2+9) if Hq)pHoo = 00 and Hq)qlloo <

N/2
25l [1Pqll (’}ngihsj) if [ @, <ocand [|®g],, < oo
(hoshsy) 9

e
=

[ @yl = o0 and [|@¢|, = oo.
(3.6)

Combining (3.4), (3.6) and Lemma 3, we obtain (3.3). The proof of Lemma 4 is
complete. 0

Lemma 5. Let (Eg)reze be a family of non negative real numbers.
de

If ZkeZd |k‘\TlgEk < oo for some positive constants {1 and lo then there exists
a sequence (My,)n>1 of positive integers satisfying
lim m,, = +o0, nli)n;omflhﬁi =0 and lim A3 Y Ep=0.

n— 00 n— 00 n
|k|>my

Notice that if {1 < N and nhé\; — 00 then md = o(n).

n

Proof of Lemma 5. Let {1, ¢35 and r be positive constants such that r > £5/¢;
and let (my,)n>1 be the sequence defined for any integer n > 1 by

i
de
m, = max-<{ v, hel/d< Z k|’125k> and vn:thfl/(Qd)J.

Sn
|E|>vn,
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Since v, — oo, we have m,, — co as n goes to infinity. Moreover,

1
déy T
mehl < max hﬁﬁ( > Jk[® Ek> +hE S ——— 0.

n—o0
[k|>vs

Since v,, < m,, we have

dae T
minty > (3 =)

[k|>m,

dey
Since Yz [k| @ Ex < oo and r > fy/l, we get

22 at de -5
e S om< i) ® Y wHEa<( X wEa) T oo

|k|>my, |k[>my, [k|>my,

The proof of Lemma 5 is complete. O
Lemma 6. Let ¢ € {1,2} and 0 > 0 be ﬁmed such that E[|<I>E(Y0)|2+9] < oo and

E[|®¢(Yo) [P K, (2, Xo)] <
(3.2).

Proof of Lemma 6. Let > 0 and ¢ € {1,2} such that E[|®,(Y)[**?] < oo and
let 1 < i< n, we have

< hg 2+9 where Agl s given by

_ 20120(0) K, (2. X0) 349 2 (E[IDe(Y0) K (@, Xo)))?
Ry i ny '

Since supyep~ | K (t)] < 0o and E[|®,(Yy) [>T K, (z, Xo)] < BY
we get E[|®,(Yo)Ks, (2, Xo)[*T?] < kY. Moreover, using Lemma 3, we have

' _on
E[|®,(Y0)|Ks, (x, X0)] < hYY and we obtain ||Agf)||§+9 < hs, >, The proof of

Lemma 6 is complete. t

Proposition 3. Let M be a positive integer and let x € RN . If (X )peza is of the
form (1.5) and ® : R — R is a measurable function such that [|®(Yp)l[, 4 < 00
for some 0 €]0,400] then for any positive integer n and any family (cx)ken,, of
real numbers and any (p,q) € [2,+00[x]0, +00] such that p+q < 2+ 0, we have

—9q
< 8pMIK|Z C(p, ¢ (Zc ) hert Yy 5;;‘1,

7]>M

p

where
W, = ®(Ys,)Ks, (2, Xs,) — E[®(Ys,) K, (2, Xs,)

i i

i M) (3.7)



El Machkouri and Reding/Recursive estimators for random fields 13

2p+q -4
C(p,q) =277 [[2(Y0)ll, 4, KI5
e O(R(z,m)) — P(R(y,
FIRIE | sup 12U noH)) (R(y,m0))|
(2,y)€RN x BN z —yl|
T#yY p
and
K(z) - K
Hirs =0 (oot H < M) and Ky, = sup DKW
(z,y) RN xRN ”aj - y”

TFy

Proof of Proposition 3. Let M be a positive integer and let 2 in RY and 1 <
i < n be fixed. Recall that Y;, = R(Xs,,ns,) and let W; = O(Y;,) K, (x, Xs,) —
E[®(Ys, ) K, (x, X5, )| Hi,nr] where Hi ar = 0 (15,5 €5,—1 5 |k| < M). We follow the
same lines as in the proof of Proposition 1 in [16]. Let 2 < p < 2+ 6 and
denote by H; the measurable function such that W; = H;(H; o) with H; oo =
o (nsi,asi,k ke Zd). Let 7 be a bijection from Z to Z?% and ¢ in Z be fixed.
We define the projection operator P, by Ppf = E[f|F] — E[f|Fe—1] for any
integrable function f, where Fy = o (ET(j);j < E). One can notice that the
operator P, depends on the bijection 7. The proof of the following technical
result is postponned to section 5.

Lemma 7. Almost surely, it holds that B[W;|Fy_1] = E[Hi(HEQOHfZ]
with ,Hz(izo =0 (nswg;—(z)v €si—k s ke Zd\{sz - T(E)})
Using Lemma 7, we obtain
¢ ¢
| PaWill, = B (M 00)| Fe) — EH(H2O)\Fellp < [Hi(Hioc) = Hi(H[20) -
(3.8)
Now, denoting ’H@])VI =0 (775,-76;(@,83i—k;/f € ZN\{s; — 7(£)} and |Kk| < M),

)
we have
Hy(Hioo) = DV, ) Ky, (2, Xs,) — E[D(Ys,) K, (2, X, )| Hinr V H ),

Z ’ ’ ’ ’ l
Hz‘(H( ) ) = ‘I’(Yi,T(Z))KSi (z, Xi,f(z)) - E[2(Y; (4))K5i (%Xm(zm HE])\/[ V Hi,m]

1,00 T, T

where X;)T.(é) = G(E;—(g);gsi—k k€ ZN\{s; — 7(¢)}) and Yi:T(Z) = R(X;)T(é)7 Ns; )-
So, we derive

[1PeWill,, < 20 @ (Ve ) s, (2, X5, ) = (Y] 70)) K5 (25 X5 7 0)) -

So, for any L > 1, we get the bound
2L || K|
hs,

4[K]oo

pta
PeWill, < Tan 2(Yo)ll, g

1 Xs: = Xzl +

oKl | sup  [2UEEm0) = PRy, m))]

(z,y) RN xRN ||$ - y”
T#Y p

1 Xs: = Xiro)llp
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where

1, = Xinollp = 1GEsi—rik € Z) = Glepey, s, k € Z\{si = T(O)Dl
= 1G(Ear—r(y—ri b € Z%) = Gleg,ear—rie—ts b € Z\{si = 7(O)})
= Xsi—rp = X3 7ol
=90

s:—7(€),p

Optimizing this last inequality in L, we get the following bound

1P, < 20K|& Cp, @)hdT 817 ) (3.9)
where
2p+q =
Clpyq) =277 [|2(Yo)ll 1 [IKIIEs

—L P(R —®(R
+ |K|£q sup | ( (Iaﬁo)) ( (217770))|
(x,y)€RN xRN Hx—yH
TFy »
Now, we are going to obtain another bound for ||PgWi||p. Let £>0and¢>1

be two integers. We denote by I'; o the set of all k in 7% such that |s; — k| = £
and we define

¢
ag:= Y [Ti | =20+ 1)%
j=0
On the lattice Z¢ we define the lexicographic order as follows: if u = (u1, ..., uq)
and v = (v1,...,vq) are distinct elements of Z?, the notation u <y, v means
that either w1 < wv; or for some k in {2,...,d}, up < vx and uy = vy for

1 < ¢ < k. We consider the bijection 7; :]0, +00[NZ — Z% defined by 7;(1) = s,
Ti(u) €T if a1 <u < apand £ >0, and 7;(u) <jex 74(v) if

a1 < u < v < agand £ >0 Let Gy = U(nsi,an(j);lgjéM) and
recall that H; pr = 0 (Ns;,€s,—k; |k < M). Since 1 < j < apr if and only if
|s; — 7i(4)| < M, we have G, o,, = H; n- Consequently,

W; = Z D,
{>ans
where Dy g = B[®(Y,, JKy, (2, X,.)|Gse] — EIB(Ys )Ks, (2, X,)|Gor 1]

Given that (D;¢),-, is a martingale difference sequence with respect to the
filtration (G; ¢)e>1, we apply Burkholder’s inequality ([10], remark 6, page 85)

and we obtain
1/2
2
[Will, < (21? > ||Di,e||p> : (3.10)

>anr
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Since X;,n(e) = G(s;i(e), sk k € ZW\{s;—7;()}) and YZ () = R(X;m(é), Ms; )
we have E[@(Kz)KS7 (vaSz‘) - ] = [(I)(Y;’,-,—i(e))KSi (ani7.,.i(g))|gi,l] and

1Diell, < NPVs)Ks, (2, Xs,) = DY 7 0))Kosi (25 X5 1))l

/L)

Arguing as before, for any L > 1, we derive

L K]l
TPHX& - Xz ,7i ( Z)HP

2K

pta
1Dill, o IR0,

i

®(R(x,m0)) — 2(R(y,n ‘
+ |K|oo sup ‘ ( ( 0)) ( ( 0))‘ ||X51 _Xi,‘r,;(Z)HP

(z,y)eRN xRN ”x _y”
TFY

p

with || X, — X; n(é)”P = 0g,—r,(0),p- Optimizing this last inequality on L and
noting that s; — 7;(¢) = —79(¢), we obtain
|Dielly < IKIZ7 Clp, q)hs,” 7677

—70(£),p

Consequently, we get

|PWilly < 2[Will, < 20/2p|KIET Clp.q)he 7 S 6750,

L>ans
<2V2|K|Z Cp, q)ha Pt > 51’“. (3.11)
|k|>M

Since (31, ¢s, PeW;) ez s @ martingale difference sequence with respect to the
filtration (Fy)eez, the Burkholder inequality (see [10], remark 6, page 85) implies

2\ 3
|P5Wi||,,> .

(3.12)

1
2

< 20> (Z [
=1

LEL

< 2pz

LEL

Z Cs; PgW

n
E Csi
i=1

Moreover, by the Cauchy-Schwarz inequality, we have

n 2 n mn
(zwsinmwﬁnp) S e, <SP (3
i=1 i=1 j=1

Now, keeping in mind that Py is defined from the bijection 7 and using (3.9)
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and (3.11), we have

sup 3 [PVl <swp 3SRl s 3D (P,
€4 =1

1<i<n € 1<i<n
|si—T(£)|<M |si—7(€)|>M
<2V/BMYKIZ Clp s Y 6L
|k|>M
p+q _ﬁ ﬁ
+2|K| ( aq)hsn Z 651.77([)71)
1<i<n
|si—T()|>M
d ﬁ _ﬁ p+q
2 (M4/3p+1) |K|E" Clp,)he " S 67
|k|>M

Similarly, we have also

sup Y [PWilly < sup > P Willp+ sup Y0 (1P,

1<ign

ez SISn ey Sisn cz
lsi—7(6)|<M lsi—7(6)|>M
2\/>Md‘K|gg—q C(p, hsnp+q Z 6p+q
|k|>M

AR Co,he™ Y 6T,
tez,
|si—T(0)|>M

2(Md\/%+1) K57 Clp, q)hs, 7 Y 515?-

|k|>M

Combining (3.12) and (3.13) with the last two bound above, we get

\/Qp 2(Md\/2p + 1))2|K|Z7 C(p, @) <Zc> S oy

|k|>M

p

Noting that /2p + 1 < 24/2p, we obtain

1
n 2 —q _q
< MUK o) (z) WY 7,

i=1 k| >M

n
E cs, W,
i=1

p
The proof of Proposition 3 is complete. O
4. Proofs of the main results

Now, we denote by V(Z) the variance of any square-integrable R-valued random
variable Z and we consider a sequence (my,)n>1 of positive integers. For any



El Machkouri and Reding/Recursive estimators for random fields 17

x € R and any ¢ € {1,2}, denote

fr(f)(‘r) = fn,q)z (3?) = (Z wsi)_l Zwsihs_qu)f(Yrsl)KSz (x7X5i)
=1 =1

and 71 (2) = E[fO (@) Him, ] (4.1)

where @y : R — R is a measurable function and H; ,,,, = 0(ns,, €s,—k; |k] < mp).
First, we note that Proposition 1 is a particular case of the following result.

Proposition 4. Assume that (H1) and (H3)(iii) hold. Let (p,q) € {1,2}? and
z € RN be fizred. Let 0 > 0 such that E[|®¢(Yy)|* K, (z,X0)] < hY and
E[|®¢(Y0)[?*?] < oo for any ¢ € {p,q}. Assume also that the function

u = E[®,(Y0)®,(Yo)| Xo = u] is continuous. If there exists T €]1 — v, 1] such

that hi\:flfﬂ Sy wgi < nw?n and one of the following conditions is satisfied:

(i) (Xk)keza is strongly mizing and 3, ;a4 |l<:|v+dil of | ([k]) < co.
d(N+2742N (v+7=1)

(i) (Xk)geza is of the form (1.5) and Y, ,a k|~ 2NOF7—D 52’2 < o0.
where v is defined by

- 1 if max (||Py||ocs [|[Pyllec) < +00
=Ly 1 el 1l w2
246

then

lim nh)) Cov [f{P)(x), f{? ()] = By 1 B-n2E[®)(Y0)®4(Y0)| Xo = 2 f(x) [ K (t)dt.

n—oo RN

Proof of Proposition 4. Let x € RY and let (p,q) € {1,2}? be fixed. Using the
notations (3.2) and (4), for £ € {p, q}, we have

FO@ ~ B [10@)] = (0 wa) Y wn by VAL,
i=1

i=1

Keeping in mind that A, 01 = (nws,) ' > 1, ws,, we get
nhd Cov [11(2), £ (x)]

= nhi\;(zn: ws,) °E (Zn: wsihsiNﬂAgf)) (Zn: wsihuN/2Agg)>]

i=1 =1 =1
Ay [ :
n,0,17"sn — _
= o ZwihsiNE[Aé’j)AE‘f)] + Z ws,ws; (hs;hs;) N/QE[AE’Z)A&Z)]
Sn i=1 i,j=1

i#]
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So, we obtain

héN A_2 n
nhl Cov [fP)(x), £V ()] — ;T’;“Zw;h;NE[Ag@Agg)]
1=1
Anoals, N/2|R[ AP A (@)
Tt wa (hs b)) VPEADAD] (4.3)
b

Moreover, for any 1 < i < n,
E[AP AWD)]
= h N (B[, (Yo)Pq(Yo) K2 (2, Xo)] — E[@y(Yo) K, (2, Xo)|E[@q(Yo) K, (2, Xo)]) -

i

Using Lemma 2 and Lemma 3, we derive
lim [E[APAWD] — E[@,(Y0) Py (Yo)| Xo = 2] f / K2(t)dt| = 0.
1—00

So, using Lemma 1 and (H1), we derive

n

lim An 0 1 Z h; N 2 (p)A(q)]

= 801 8- 2E[®,(Y0) Py (Yo)| Xo = ] f () . K2(t)dt.  (4.4)

Now, we are going to prove that

. nOl 5n

Jim = }jw&ws] hehs)) VEEAPAD] =0, (4.5)
1,7=1
i#]

Using Lemma 4, we have |E[Ag€)A§3)H < (hsihsj)% for any 7 # j where 7 is

d =,
defined by (3.3). Moreover, since ), ;4 k|71 o] 1 (Jk]) < oo, using Lemma
5, there exists a sequence (my)n>1 of positive integers such that

nh_{rgom RO _nh—>Holoh Ny Z a?71(|k|) =0. (4.6)
kez?
|k|>my

So, we have

waws] hoohs,) N2 E[AD AW
S" i,j=1
i#£]

= 78; Z Ws; Ws; (hSith)iN/2|E[Ag€)Agz)]| QB+ Fap
an" 1<i<jsn
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where N
h N(1
Sy —N(1-v)/2
Eip = —5 § : Ws; Ws;; (hsihsa‘)
nw
Sn 1<i<i<n
|si—sj|<mp
and

hY -

Bon =i D, waws(hohs) VPEIADAD]L
Sn 1Ki<j<n
‘si_sj|2mn

Since v < 1, using the inequality 2ab < a® + b2, we have

RN RN 5 5
Sn Sn
Bim < nw? Z Wy sy S 2nw? Z (ws * wsj)

Sno1<i<j<n Sn1<i<j<n
[si—sj|<mn [si—sj|<mp
djp Ny n
mnhsn ’LU2
an Si
Snoj=1
hN(l—’T) n
_ s
Qo1 o M TS
nw )

Sno =1

Using (4.6) and keeping in mind that hé\i(l_r) S w2 dnw? | we get
lim,,_, o E1 n = 0. Now, we are going to control the term FEs , when (X)gezq is
assumed to be strongly mixing. Using Rio’s inequality ([32], Theorem 1.1), we

have forany 1 <i< j<n,
2a1,1(|si—5;1)
EAPAD) <2 [ Qi (W)@ pi0 ()
0 & by

where Q o (u) = inf{e > 0|P(JAY)| > ¢) < u} for any u € [0,1] and any
se
e {i,j}.

First, we assume that ||®, e = 00 or ||®|lcc = 0o. In this case, ¥ = 0/(2 + 0).
_N#
Using Lemma 6, we have HA@?HQW < hs,? " for any ¢ € {p,¢} and any
e

. __1
1 <r < n. So, we derive @, (u) Ju”27hs*  and

s

-~ pZonallsizsh) o, N3
IB[APAD]] Q2 (hyhs,) / wrodu 9 (he,hs;) 2 o] y(Isi—s;]).
0
Consequently, we get
hév —N(3+1) =
EQ»" S] nw; Z wsiwsj (hsihsj) ; OZ’1Y,1(|$i - Sj|)'

Sno1<i<j<n
[si—sj]>mp
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Using again the inequality 2ab < a® + b2, we derive

N - N -
Sn 2 1 —N(+1 2 1 —N(H+1 y . )
EZv" g nw?2 § : (wsih’si ( ) + ijth ( )) O‘l,l('Sl - SJD
Sno1<i<j<n

[si—sj|>mnp

hY Il w? - 5
Sn Si —N7v 2 . .
(nwg N hg,, E 041,1(|51 — s4)-
n = ' 1<i<j<n
|si—sj|>mnp

IA

Using (H1) and (4.6), we get

Epm Shi N > af (k) —0 (4.7)
kezd
|k|>my,

and finally, we obtain (4.5). Now, we deal with the case ||®,| < oo and
|®qlloc < oo. In this case, we have 4 = 1. So, noting that |Ag€)| < p N2
for any £ € {p,q} and any 1 < r < n, we derive Q) (u) < h;NW/z and
|E[Ag’;)Agg)]| < (hsihsj)_JW/2 ozil(|si —5;]). Arguing as before, we obtain (4.7)

and consequently (4.5) holds.

Finally, combining (4.3), (4.4) and (4.5), we obtain

Jim kY Cov 79 (2), £ (a)] = 52 2L, ()0, () Xo = 2l (o) | (0.
0,1 N

Now, we assume that (X)geza is of the form (1.5).

. AN +23 2N (ETo1) o o AN
Since )y cza k| PNGFOTT 5, < coimplies Yy ga [K[PNGFTED |E[Y0) , < o0
and using Lemma 5, there exists a sequence (my,),>1 of positive integers such
that

N |~
. _ . —(2+7 5
lim mdhYO+7=D = fim hsn(2 ) E [k|%6) 5 = 0.
n— oo " n— oo ) ’
A
|k|>my

Keeping in mind (3.2) and (4), we have nhl Cov P (), ()] = Crm +
Cg,n + C&n + C4,n where

)

Crn = nhY CovlfP(x) = T (2), 119 (2) — T ()]
Co = nh Cov[fP) (2) — 1 (2). T ()]
Ci = nh Cov[F (@), £ (2) - T ()]

()

First, we assume that ||®, e = 00 or ||®|lcc = 0o. In this case, ¥ = 0/(2 + 0).
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Moreover, we have

N2 _
/Anolzws‘th/z(A A(P)
\/711}5” P i'ls
/2 4~
Anol Zw h N/Q(A(q) A(Q))

2

X
\Fwsn i=1 2
Using (H1) and Proposition 3, we obtain for any ¢ € {p, q},
a2 Ay 0
(ninﬂzwslhs N/Q(A(f AS’_ )
Vs, i=1 2
1/2
hN n w2 + -
d Sn Si 7 2t ) dsy
] 2 3 IR W AEL Ll
Sn =1 Si kEZd kGZd
|k|>m., |k|>my,
(4.8)
So, we derive
2
_(N_.s -
Cral 2 [m ST s, | o
’ n— 00
kezd
[k[>mp,
Similarly, we have
hé\i/zA—l n .
|02,n| < \/ETW Zwsih;Nﬂ(Ag) - AS))
Sno =1 2

hN/2 —1 n

A
sn_Ano,1 N/2K
NG E ws, hy, A
nws ;
" 1=1

X

2

From (4.8), we know that

N/2 4—1 n
e A0t g, V(AP - B

_ ﬂJ’Jy -
\/HT < hg ( 2 ) Z |k|d5z,2'
Sno =1

n

2 kezd
|E|>mp,

(CI) (Q)

Moreover, since A" and A" are independent as soon as |si — s;| > 2my,, we
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have
2
WAL, & @
n ZwaLhS N/2A
fwg" i=1 2
hNAn01 - _ )2
SR S e
i=1
2nN A%
2n01 Z we,we, b iN/Qh N/QE[A(Q)A(q)]
nws,, 1<i<j<n

|si—s;|<2my,

and, keeping in mind HA ||2 <1 (see Lemma 3) and (H1), we have also

hlv An0 1 — _ hN A2
2 3 =N AD)2 n,0,1 2 =N Ala))2
E ws h, VAL < E w? h, VAV |5 < 1.
nwin i=1 e ” % ”2 b ann i=1 o ” - H2 a

Denoting W\ = &,(V,,)K,, (z, Xs,) — B[®(Ys,) K, (2, Xo,)[Hs.m, ] where
Him, = (nsl,ssz,k, |k] < my,) for any 1 < i < nand any £ € {p, ¢} and noting

that ALY — Zg) = h;.N/QWi(Z), we have

EAYAY) - E[ADAWD] < h N2 @Dy + RN AD o[ WLDl2
QN2 (||W}q>||2 +IW2)

Sn

Using (3.11), we obtain

EBYAY] - EADAD] < by £+9) 3 6, (4.9)
kez?
[k|>my
Consequently, using Lemma 4, we obtain for any i # j,
Ny (N5 .
| [A(q)A(q)H <] (h h ) 5 +hsn< p) +'Y) Z 5;2

kezd
|k|>mp,

where 7 is defined by (3.3). Since v < 1 and using the inequality 2ab < a® + b2,
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we derive
RN A2
s ,0,1 _ _ — (@)~ (a)
S0l N wg b YRV EBRY R
an v J S °J Si SJ
= —
n 1<i<jsn
|si—s;]<2mp
hN A2
Sn*n,0,1 2 : —N/2
< -5 wsiws]- (hsihsj-) /
nwg et
n 1<i<j<n
[si—s;|<2my,
N~/2 —(%4"3’) 5
x (hSz'th) + hs, E : 5k,2
kez?
|k|>mp,
N 4—2 2 2
hsn An,O,l Z ws, + Ws;
2nw?2 hN(1*’7)
Sn 1<i<j<n Sn
|si—s;|<2m.,
hNA—2 N~ -
$n*"n,0,1 27 -N 2, -NY . —(5+7) o4
—ehBl S (Y wd ) e S 6,
Sn 1<i<j<n kezd
[si—s;|<2my, |k|>my,

Using (H1) and keeping in mind that hi\;(lfﬂ S w2 dnw? | we get
hY A% (@)
—bl ST w2 ERY R
nw? L
n 1<i<j<n
|si—s;]<2mn
(N5 .
At 4 p 5§ gy o0 (a0)
n ¥ n—oo
kez?
k| >mn

Consequently, we derive

hN/2 -1 n @
sn “An0,1 _N/2x (4

2
and .
Conl <) ST kT, —0.
keZd n—roo
|k|>my,

Similarly, one can notice that

(N5 N
|C3.n| S hsn( 3+) Z [k|%6y 5 —— 0.
’ n—oo

kezd
|k|>my,
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Now, we have to control the last term

A;% 1hév - 2, —Npra® (2
C4,n = W ;wsihsi E[Asl Asi ]
2472 BN (o)
7’”’0’21 on Z Ws; Ws; (hSihS]‘ )_N/2]E[AS)ASZ)]
nw;g, ’

1<i<j<n
[si—s;|<2my

We are going to prove that

-2
lim An,o,lhé\i Xn:wQ th]E[Z(P)Z(Q)]

n— 00 nwg Si7 784 s
n

i=1
_ B-n2 _ 2
= 5 E[®p(Y0) @y (Y0)[ Xo = 2] f(x) [ K(t)dt (4.11)
Boa RN
and
242 WY N e (D)
. n,0,1"%s,, —N/2 (P)~(2) _
nh_}rrgo o E ws,ws, (hs,hs;) E[A, A, ] =0. (4.12)
sn 1<i<j<n

|si—s;|<2mn,

Keeping in mind (3.11) and arguing as in (4.9), we have

i P _ _ ﬂ_;'_“ -
ERYAY-EADAD] 2 h Y (10 + WP )e) 255 ST s,

kezd
|k|>my,

Using (H1), we obtain

-2 n
Aanh£; 2 N mrA® (@) ®) A (9) —-(5+9) ds9 }
2 Zwsihsi ‘E[Asl Asi ] ]E[Asl Asi ]| Sl hsn Z |k| 6k 2 0.
nwsn P pezd ' n—oo
“‘7‘>mn

Using (4.4), we obtain (4.11). Now, arguing as in (4.10), we get

W A2 o
Dm0l N g (R hey) TN RERY A
1<i<j<n
|si—s;|<2my,

2
nwg

_ _ ﬂ+" ~
ﬂmglhé\a(%ﬁ 1)+h3n(2 7) Z |k|d5z72 mo.
kez?
[k|>m.,

So, (4.12) holds.

Finally, if |®p]lcc < 00 and ||®¢ljec < oo then ¥ = 1 and the proof follows
exactly the same lines as above. The proof of Proposition 4 is complete. (]
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Proof of Proposition 2. Let € R? and let n be a positive integer. We have

E[(fn,0(@) = fo(2))*] = V(fa,6(@)) + (Elfn,e(@)] — fo(@))*.

Moreover,

IEfa(2)] - Zws lzwsl/ K(0) (fa(z — vhe,) — fa(z)) dul.

Using Taylor’s formula, we derive

E[fn,o(x)] — Zws@ 1Zw81h§1
i=1

Using (H1) and A, 21 < 1, we obtain |E[f, o ()] — fo(z)| < An% 14n 2, 1h <

h? . Finally, using Proposition 1, we have V[f, ¢(z)] < (nhé\i) and for

hs, = nﬁ, we get E[(fn.a(x) — fo(x))?] n#N . The proof of Proposition 2
is complete. O

Proof of Theorem 1. We are going to split the proof in two parts. In the first
part, we deal simultaneously with the strong mixing case and the weakly mix-
ing case (see (4.15) below) whereas, in the second part, the two dependence
conditions are investigated separately.

First part

Let n be a positive integer and € RN be fixed. One can notice that

Vi o) = Bl ool = =30

%\

where
oo e A SR (o X)) — BIO(Y0) K, (x, Xo)]
- hé\j/QwsnAn 0,1 B hé\j/2

(4.13)
In the sequel, (my),>1 is the sequence defined by Lemma 5 which satisfies

mih?jf”“wHT*l) — 0 and either h;nNVZ(e) 2 (k| 0/1’20(3 (|k]) = 0 (if (Xg)peza

is strongly mixing) or hsn(u2(9)+ ?) E\kbmn

k|76723" — 0 (if (Xp)peza is of the
form (1.5)) where v5(6) = Lo _<oo} —I—ﬁoo 1{a)_=oco}- Moreover, if (Xj) ez
is of the form (1.5), we consider the notations

As, = E[Ag,|Him,] and ﬁsi = E[Us,;|Him,]-

where Him, = 0(Ms;, €s;—k; [k] < myp).
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Note that Us, and Us, are independent if |s; — s;| > 2m,. Using (H2) and
Proposition 3, we derive

= — —(V2(9)+%) d v (9)
§_ (Us, = Us,)|| < hs, § k|6, —=0 (4.14)
i=1 2 kezd

|k|>mg,

From now on, we denote

| (Us;,my)  if (X;);eza is strongly mixing
(Zs:, Mn) = { (To2mn) if (Xy)sege is of the form (1.5) (4.15)
and it suffices to prove the asymptotic normality of the partial sums n—1/2 S Zs,
as n goes to infinity. Let (§)rcze be independent normal random variables in-
dependent of (X)geze and (k) pezae and such that E[¢;] = 0 and E[¢Z] = E[Z7].
Let 1 <4 < n and define Ty, = n~'/2Z,, and Z,, = n~/2¢,,. One can notice
that Y7 | =, is a gaussian "random variable with zero mean. If (Xk)peze is
strongly mixing then Z;, = Us, and

\Y% (Zn: H&) ZE [U2]
ha Ao ol Z E[®(Y,)2K2 (z, Xo)] — (E[®(Yo) Ky, (x, Xo)])?
an gV hY '

Keeping in mind (2.6) and (H1) and using Lemma 1, Lemma 2 and Lemma 3,

we get
_ 2
nEIEOOV ( g Hs7> =o0g(x). (4.16)

i=1

If (Xk)peze is of the form (1.5) then Z;, = U, and applying (3.11), we get

2

N
thw LETO) S o,

B2 BV < 210l |0 = Tl 2 s

IkﬁEZd
>my,
Using (H1), we derive
RY S g Nw? uz(e +5) 0)
LS sz o B 00 3 g
A2
nwg n,0,1 |kk|€Zd
>mpy,
” O+5 v 9)
<h ) 5
keZd ’l"L*)OO

|[k|>my
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So, we get also (4.16) when (X})geza is of the form (1.5). Let ¢ be any measur-
able function from R to R. For any 1 < i < j < n, we introduce the notation

% n
> Tot ) B
(=1 l=j

Let h : R — R be a three times continuously differentiable function such that
maxg<i<s |A? ] 0 < 1. Keeping in mind (4.16), it suffices to prove lim,, o |Ln| =

0, where
h(ZTSJ h(ZE)]
i=1 i=1

Using Lindeberg’s idea [23] (see also [9]), we have

Ly = Elhnni1 — hoa] = ZE[hi,m — hi—14]

= Z ( ivit1 — Pic1iv1] — Elhi—1, — hi—l,i+1])~

Applying Taylor’s formula, we get

n

Ly = Z (E[Tsihgl,i+l+2T821hN i1 8| —E[Eihi_, zJr1—|—2ﬁ2 Ry Hl—l—pz})

i=1
where |3;| < Ti (1A |Ts,|) and |p;] < Z2 2, (LA |Es,]). Since =3 2 and hY_ 1ip1 are
independent, E[E,, ], ;,,] =0 and E[Z2] = n_lE[Zi], we obtain

n

Ly = Z <]E[T81 i—1i1] E[(T2 —n'E[Z2)) b1 ] + BB — Pi])-

i=1

Since, for any 1 < ¢ < n, the random variable &, is gaussian with zero mean
and variance E[Z2 ], we have

E[le,, )] = v/3/7 (B[22))"* < \/8/x (E[U2])*°.

. —N . .
Moreover, since (ws, h; " ),>1 is nondeacreasing, we get

1/2
hN th2 3/2
ElU2 3/2 _ Sn sz sn Usi E[A2
( [Usq]) th2 2 hé\{wg A201 ( [ 37])

sp*™n,0,1 n,0,
N
< e ) w18

Using (H1) and E[A? ] <1 (see Lemma 3), we get

ZE| 1 hNAn%l i 2 h_N( [Ag ])3/2 4 (nhN)71/2 0
pll = 1/7”LhN win 4 Wi ls s - n n—+oo

i=1
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In the other part, if ||®| ., < oo then |Us,| < hs_nN/2 (since (ws, hyN)pz1 is
nondeacreasing) and

n 1 n
D B8 < =5 D _ElZ.,
i=1 =1

1 n
3 3
] < REYE) ZEHUSi

—1/2
— E[U. — 0.
nhN x Z ) n—+o0

Since (ws, hy¥)n>1 is nondeacreasing, if || @] = oo then

Sn

2 0
— hé\ib/zwsl hi\;/2wSL E A
]_ hN/2 A N/2 “ Si
s; wsn n,0,1 hs; wsnAn,O,l

o M (né s, )h‘NTg—h‘NTB s, s, (4.17)
_WA%M R 7 e 7 E P

E[|Us,

2+9]

)
Consequently, if d,, := (nhé\i) 2(0+1) then

S E(A < T o X ZEIU&

=1

d n
2+9 4+ 4n DL

N n 2
AnO 1h wsi

’q d79 hN —6/2 -
da, (n sn) X w? n £ N
Using (H1), we get
En E[|5]] < v +d, = 2d, — 0.

d? (nhé\i)

Now, we have to prove that

n

Jm Y (BIb ]+ o) L2~ EIZZDH 1)) =0, (419

i=1

For any 1 <i < j < n and any function ¢ from R to R, we define also

i—1 n
M, -
vl =v | Y Tu+) .
r=1 r=j
|se—si|>M,
Using Taylor’s formula, we have
i—1
M’Vl " M’V’L
Tohi 141 =Ts, hz( 1 125—1 + Ts, Z 1, hi—(l,i—i)-l + Bi
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with
i—1 i—1
BI<2|T | D T | 1] Do Tof||-  (419)
=1 =1
|S@75,’,‘<I\/fﬂ, |5275i|<Mn

In order to obtain (4.18), we have to prove

Tim BT AN =0, (4.20)
=1
n i—1 .
lim BT, S, [ =0 (4.21)
= |527€T|1<M7L
lim S E[B)) =0, (4.22)
=1
and
1l
Jim = E((25 - EIZ2) by i) = 0. (4.23)
=1

Second part
First, we assume that (Xj)peza is strongly mixing. We are going to prove (4.20).
Since Z is independent of T', then E [Tsih, (ZZ:Z-H Es)} = 0. So, if we define
EE") ={1<j<i||sj—s;i| > M,} and 7 is a one to one map from [1, |E§")|]OZ
to EE") such that [sr») — si| < |sz—1) — 5i| then

n
T., (hi“f:;ll —H ( > :>>
r=i+1

’ ¢ - .
wherety = h (Erzl Tsiry + 2ormisn :ST) and 22:1 T, ., = 0. Since (Xj) ez
is strongly mixing, using Rio’s inequality ([32], Theorem 1.1) and keeping in
mind that |sr) — 8| < [Sxe—1) — si], We get

1B

E[T, h M) 1 =E = 3 Cov[Ty, te —te],
=1

Si'Yi—1,141

ES”” 2alyoo(|s,,r(z>—sq3|)

\
BT, 0 ) <2 Y / Qr, (1)Quy 1, (u)du.
=1

Assume that ||®]. < oo and let u €]0,1[ be fixed. Since b’ is Lipschitz and
|Us,| < ha N2 (because (ws, by )y>1 is nondeacreasing), we have
max{QTSi (u)7QQ,Q_1(u)} < (nhé\i)_l/z and we derive

n n B

"(M,, 1 _
DOBIT S = DT DT o (s = sil) 0N Y0 v (K.
i=1 Sno=1 (=1 kezd

|k|>M,
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Using Lemma 6, if ||®|lcc = oo then

1 N N/2
270 ey
QTS’L (’LL) g u 2+ ||Us1 ||2+9 S’ u ':VG v N/]F;sn Ws,
Vn JIhZZTT hs Tws, Ano
and
= 1 N/2

u” 2+e ||Us7r(z) ||2+0 U s hsn/ W, )
Qt,—t, , (u) < < % 73 '
\/ﬁ \/~h2(2+s> hsﬂ(e) An,0,1

Consequently, using again the inequality 2ab < a? + b%, we obtain

ot o |1B{"|

n
’ 'LU w
§ (My) § : 2 : Sn s; Wsr (o 25
|]E[T5ihi—l,i+1 — N/2 N/2 o <|S‘ﬂ’ Sl|)
» hs /w2 A2
=1 =1 (=1 97 Sr(e) Vsn*n,0,1

2
- AnOl s,

2
T hs, " X Tow? Z Z ( hzsv” w) a7 (1520 — i)

Sn i=1 f=1 S (e)

2 2
— ko 2 ’”01 Sn Wy, Wy, a2+9 (|8 s, |)
= hsg, E E
nw2 hY B T

\s 751\>Mn

She, T x =By Do Y aZT (k).
frod=l S gepd
|k|>M,,
Using (H1), we get
- (0,) - &5 L
BT ) QRS T af (kD).
i=1 kez®
|k|> M,

Finally, we proved that

S IET B  < hNO ST a2 O (k) ——— 0

nezd n—-+4oo
|k|> M,

where 15(0) = ]l{”q>“oo<°°} + ;ﬁ ]l{H‘I’”oo:OO}' So, (4.20) holds.
The proof of the following lemma is postponed to section 5.

Lemma 8. [t holds that supi<; j<n E[|Us, Us, |] < ws,ws, w *2h§YL”4(9>

i#]
where v4(0) = 1jo|_<oco} + 4%9 Ljj@|| =cc} -
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Since (Xi)peze is strongly mixing, we have Z,, = Us, for any 1 < ¢ <
Moreover, using (4.19), we have

n n i—1 n i—
|Zs, |Zs. | 2
DElGN<2Y B\ Y | =0 > ElULU]
i=1 i=1 vn j=1 vn i j=1
[sj—si|<Mn |sj—s:| <My
(4.24)
and
n i—1 n i—1
" Zs,| 1Zs, |
ez, A DCERIES o1 L) B S
i=1 =1 i=1 vn j=1 vn
[se—si|<Mp |sj—s;i| <My
1 n i—1
= ﬁ Z Z EHU&USJ H (4 25)
i=1 j=1
|S‘7751|<Mn
Using Lemma 8 and the inequality 2ab < a? + b?, we get
n i—1 Nvg(0) n NV4 ) mn i—1
1 MZhg," )
;; 2 E[|Us, U] < W; Z Z Ws; -
Sj_si,‘<Mn |9'_§1‘<Mn
Moreover,
n i—1 n—1 n n
)OI DENTIES SITHED SEEEST) i)
i=1 j=1 j=1 i=j+1 i=1
[sj—sil<Mp |si—s;| <M,
Consequently, using (H1), we obtain
n i—1 Nuyg(0) n
1 Mdhgn *
NS smans >t
i=1 j=1
‘57757‘<Mn
AN G0 Fr) hal S
= M h 4 X W ;’LUSL
md N (va@)+7=1) — 20 (4.26)

Combining (4.24), (4.25) and (4.26), we obtain (4.21) and (4.22).
Now, it suffices to prove (4.23). Let 8 > 1 be a positive integer. For any

1 < j < n, the notation Eg [ZS].] will stand for the conditional expectation
of Z, with respect to the o-algebra o (Zs, ; £ < jand |s; — s;| > (). Then,

1 n
oY IE((Z2 ~E[Z2 DR ) <D+ D,
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where
ZIE (23 —EslZ2]) hi_y i44]] and Io = Z\E[(E@[Zi]— [ZZ D1 il
i=1

The next result can be found in [27].

Lemma 9. Let U and V be two o-algebras and let X be a random variable
which is measumble with respect to U.

If1< < oo, then |E[X V] — E[X], < 227 + 1) (a(U4, V))?

Since (Xk-)kezd is strongly mixing, we have Z,, = U,, for any 1 < i < n. If
|®|lcc = oo then using Lemma 9 with p =1 and r = (2 + 6)/2, we derive

1 n ) ) 6@2+9
L< > IEs[UZ] - E[UZ ] < Z 1Us, 115+6-
i=1
From Lemma 6, we have
hs. 55 Y w
1Us: 1310 < gl b s,
* hilw2 A7 o,
Consequently, using (H1), we get
_ o e A72 BN 2 - X0
n,0,1"%sy, S;
I A 7 alil(B) x ngn ; W < hs, "afti(ﬂ)

Similarly, if [|®||,, < oo then |Ay,| < haN/? and since (ws, by N)p>1 is nonde-

Sn
creasing, we have |Us,| < h_N/2 nd

1 n
I < Ga oo (B) x — Z 10513 2 A en,00(8)-

Finally, keeping in mind that v5(6) = Ly _<co} + %9 L) =cc}, it means
that

]. - —Nv v2
I < =3 [Bs[UZ] ~ BIUZ] [ 9 by MO0l (5). (4.27)

Now, we make the choice

—Nvg(0)(rg(0)+7—1)
8= {h;z:z(eww DwaO)F7= 1)] (4.28)

220 ()
Consequently, since ), ;a |k Ok 1aV2( (|k]) < 0o means
dvg (0)+(d—1)(vg(8)+7—1) 0
Yool va(@F7—1 0411/2;;)(@ < 0o, we derive

dva(0)+(d—1)(vy (0)+7—1)
I, <43 T v2(0)
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Since h; (

find that E[(Zﬁi — B[22 )k, 7, 1] = 0 and consequently

E[(Z2 Eﬁ[Z2])hz 1z+1} :E[(Z2 Eﬁ[Z2]) (hz 1,i+1 h;/(ﬁl)wl)}

Keeping in mind that

Z\]E (2% -

E,B Zz]) i— 1z+1]|

we obtain
I < lzn:na: on| S 2 (22 + E4[Z2))
nia Jj=1 \/ﬁ
[s;j—si|<B
If || @], = oo and L > 0, then
L & i—1 2
I < Wzl Zl IEHZS]HZ& ]].‘Z%|<L]+521E[Z |Z1|>L]
i= j= =
IS]_51‘<B
n i—1 VA
+=3"E||2n = | (Bsl22)—E[22])
i=1 Jj=1 \/ﬁ
L [sj—s:|<B
Lo -1
+-NE|]2n ZI || E[Z2]
n ; Jj=1 \/ﬁ )
L |Sj*SL\<B

Since Z,, = Uy, for any 1 < i < n, we derive

L n i—1
1 372 Z Z E[|U31Us]| ZEU ]]-\U |>L + — Z”Eﬁ U2
= ‘Sjijjgﬂ
1 n i—1 Usj
tad Z 7= B

|5 —s;|<B 2

33

i1 18 U(H%ng,l < k < n,|sk — s;| > B,¢ € N*)-measurable, we

E[UZ]Ih
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Arguing as in (4.26) and Lemma 9, we derive
6dLhN(”4(9)+T—1) L9

Sn ]E
i e

1 n i—1 Usj
ﬁ; X A

Jj=1
[sj—si|<B

L g P 4 R N a0 ()

2
Using (4.17), (4.28) and (Hl), we get
dLhéV(m(@)%ﬂrfl) ) g (0)4(d—1) (1 (0) 47 1)
I < o n\/ﬁ '|-L_‘9hsn2 +p BT alfég)(ﬁ)
1 n i—1 U
+ =Y E[U?) J
lsj—si|<P 9
Moreover,
2
i1 ) el i
si|l 9
Z \/ﬁ o E Z E[USJ] + Z E[Usj USg]
I =1 JA=1
|s;—s:|<B 9 |s;—si|<B max{|s;—s;|,|se—s:|}<B
J#L

If ||®||oo = oo then using (H1) and (4.17), for L' = (B nhsn ) i , we have

1—1 ’ ’ n
1 dr'2 L ¢ L
~ ) EUZ]< L L E[|U,,[***] < 5 L0
n ° 7 n n 4
Jj=1 j=1
|sj—si|<B

_6
Bd 216
=2 .
(s

If ||®|lcc < oo then |Us,| < h;nN/Q (since |Ag,| < h;N/Q
nondecreasing) and consequently

and (ws, hs_nN)n>1 is

1< 2y B

n Z IE[USJ]_nhfg\’
Jj=1

[sj—si|<B

1 i—1 ﬂd v2(0) (1+ dvg(0)(v4(0)+7—1) ) —v2(0)

_ § E[U2] q 4 nhs dvg(0)+(d—1)(vg(0)+7—1) 0.

n = 8i1 — nhé\; - " n—oo
[sj—s:|<B

(4.29)



El Machkouri and Reding/Recursive estimators for random fields

Moreover, we have

35

i—1 -2 N i—1
1 A 0.0, ws; ws, [E[As; A,
- > [E[U, Us, ]| < =225 3 ONBLE
3 =1 Sn j=1 S5 7S¢
max{|s;—si|,|se—si[}<B max{|s;—si|,[se—si|}<B
J#L YEA
-2 N i—1
n,0, 1h Sn ij wsg
— 2 2 : N(1—-v4(9))
nw : 2= ra0))
Sn j.e=1 (hsj-hw) 3
max{|s;—s;|,[se—si[}<pB
J#L, |se—sj|<Mn
i—1 v2(0)
Ws; Ws, 01 o (|85 — Se)
+ Z N(+vs(0))
JAt=1 (th th 2
max{|s;—s;i|,[se—s:;|}<B
J#L, |se—s;|>My
-2 N i—1 2 2
n,O,lh’sn Z wSJ wsl
2 N(l 1/4(9)) N(l—V4(9))
’I’stn je=1 h sj hSZ
max{|s; — Szl [se—si|}<B
J#L, |se—s;| <My
i—1 2 2
AnOl wSJ wsg 052()(|8—S |)
nw? 2 PN w2 @) N Ts@) | Yo ST s)s
s je=1 Se
max{|s;—s;|,|s¢—s:[}<B
J#L, |se—s51>Mp
Since v4(0) < 1, we have
1 1—1
. E ‘E[USJ-US@H
n
Jl=1
max{[s;—s;|,|se—s:[}<p
J#L
d NV4(9) n -2 N n 2
MShs 9 A oahs, Ws; ~Nus(0 Vz(9)
B UL o R asLL < b o2 (k)
nw? A i nw?2 N "
sntn,0,1 ;1 Sn =18 Kezd
[k|> M,

Using (H1) and (H2), we derive

1—1
1 v
n > [E{U, U, )| @ migh O =D ph N @37 a2 (k).
=1 kez?
max{]s;—sil,lse—si]} <P IS M,

J#L
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Consequently, denoting

Sn

N(1+d gev)x(e;(m)(eng—l) )) —v2(0)
v -1 —1 —
Ei — | nh 2(0)+ (va(@)+7 + mihé\il(v4(9)+7 1)

—Nuv2(6) v2(0)
+ h, Z ar’s (K]) —=0

kez?
[k|>mp

we get

n i—1 -2 ;N n 9 2

1 Us, A oqh wi E[AZ]

_ ]E 2 J q n,u, Sn Si Sq n < "
n ;:1 U] ;—1 v T E N xen e

= i—1 si
[sj—sil<B 9

<1

and finally,

dppNa@)+r=1) —No dvp (0)+(d=—1) (g (O)+7-1) 0
I, < B sn\/ﬁ +L70h5"2 + 8 Va0 F7 1 a’lfféo)(ﬂ) Te,.

Optimizing in L, we get

a0 N@(u4(9)9+7—1)
110 h 1+ dvg (0)4(d—1) (v (6)+7—1)
q e 2 A G 0(9) 4
N\ 2(+0) ’
(nhsn)

I

—dN vy (0)(v4 () +7—1)
. dvo (0 d—1)(vg4 (0 —1 .
Since, g < hgr2@HADEAOTTT Do derive

_ =6 NO(d—1)(vy (0)+r—1)2 vy () +(d—1) (v (8)+7—1)
- Do = 0
[1 < (nhé\i) 2(1+0) h§:1+9)(d 2(0)+(d—1)(rg () +7-1)) + 5 V2@ Fr—1 v (0)

+&, — 0.

n—-+o0o

So, we obtain (4.23).

36

a1 o (B)

Now, we assume that (Xj)pecza is of the form (1.5). As before, we have to prove

(4.20), (4.21), (4.22) and (4.23). Now, we have Z;, = Us, for any 1 < i <

n.

Moreover, Uy, ans U, are independent as soon as |s; — sj\ > M, where

M,, = 2m,,. So, (4.20) holds since

! — = ./ Us Es
S = T | S ey s S|
/=1 \/ﬁ [:i+1\/ﬁ

|se—si|>My,

Arguing as in (4.24) and (4.25), we have
n 2 n

i=1 i=1 J

Isj

N

i—1
Sil Mn
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and

n

i—1 . 1 n i—1
(]\/In) T7T 7T
E E TSi E TSe hz’—l,i+1 < ﬁ ]EHUSiUS]H
i=1 (=1 i=1 j=1
[se—si|<Mp [s;j—si| <My

The proof of the following lemma is postponed to section 5.

Lemma 10. For any positive integer n,
1 n n
ﬁ Z EH USi Usj H

H
<.
Il

dy N(va(0)+7—1 7(ﬂ+l’2(0)) dsv2(9)
o R IV SLA D S
kezd
|k|>mg,

Consequently, we obtain (4.21) and (4.22). In order to finish the proof, it

suffices to prove (4.23). Let L > 0 be fixed. Keeping in mind that U, and Us].
are independent if |s; — s;| > M,,, we have

E[(22 -E[22]) h 0]

e |(@ e[| T Tray bl
- - (=1 vn Iz:i+1\/H

‘sl_s'i|>Mn

So, we have

1 — 1 —
n Z |E[ (Z52 -E [Zf]) h;/fl,iJrl” =
i=1

IE[ (T2 ~E02)) (Mg — 045

i—1,i+1

n i—1
1 U —2 —2
<=S"E||2n 5¢ (US.+EUS.)
s 2y | e
‘Sé_éz‘gMn
I n i—1 o n )
< W Zl ; EHUSZU& ] + g EE[US Il|ﬁsi\>L]
h ‘56_‘57§Mn =
1 n i—1 U )
~Y E|[2A | E[U
+oD 7= || BT
=1 =1
I-SZ_Si‘gMn
L 1 - — 2070 C
<= x— > E[U.U. 1+ - > E(|U,, 7]

1 i=1
[se—si|<Mp

37

)]
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25531 WD IR B0}

2
Moreover,
2
=T i—1 i—1
S DS 7.0
seff _ 2 E[U,,] + Z E[T,,Ts,]
/=1 \/ﬁ n — Py
[sg—si| <My 9 |se—si| <My max(|se—s:|,|s; —si]) <My
L]
. —2 .
Noting that E[U},] < E[U2] and using (4.29), we get
1 v (0) (vg(0)+7—1) —v2(6)
1 ¢ 9 N(1+ 4 2(0)(vq ) D
Y B0 (”hsn( R 1>>> —
n n— o0
=1
lse—si|<Mn

Using Lemma 10 and keeping in mind that U,, and ﬁsj are independent if
|se — sj| > M, we have

i—1 n
1 — — 1 —
E E |E[USZUS]']| E E § |E[USZUSJH —0.
£,j=1

N

n— oo
J {=1 j=1
max(|se—s;|,[s5—s:[)<Mp [se—s;|<Ms,
7 i
Consequently,
lim s S
111 up =
n—-+4o0o 1<i<n — \/ﬁ
|s¢—s:| <My 5
and
1| « U,
i >, | EW
n—+oo N P —~ \/ﬁ
|se—si| <My, 5
BY A% O u E[A2 2w
< lim Sn ;’0’1 Z Si 1[\[51] X sup Z S¢ —0.
n—-+400 nwyg =1 hsi 1<i<n — \/ﬁ
lsg—s:| <M, 9
a1
Using (4.17) and (H1), we obtain
Ly 2 21\, 1 L 1 n o g =NO
E;E[(Z§77]E[Zg7]) 'L'—l,i-‘rl] Sl 7’[7‘XE Z IEHUS[U&: }+L hSn2 +0(1)
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Optimizing in L, we get

1 « , 1 « R
S BI(ZZ-EIZZ)A ) S hY)T | S3T ST EULTL | (D).
i=1 =1 L=

Using Lemma 10, we obtain (4.23). The proof of Theorem 1 is complete. O

In the proof of Theorem 1, the asymptotic normality of the estimator f, o
is obtained using the Lindeberg’s method based on the stability of the standard
normal law. This approach seems to be superior to the so-called Bernstein’s
method (see for example [5] and [21]) since it allows us to obtain mild condi-
tions on the weak and strong dependent coefficients of the considered random
field. This fact is of theoretical importance and has already been observed in
[1], [14] and [15].

Proof of Theorem 2. Let n be a positive integer and € RY such that f(x) > 0.
Then,

Tn,a(x)—

E[fn,a(x)]
E[fn1(z)]
_ Una(@) = Elfne(@))E[fn1(2)] = (foa(z) = Elfna(@))E[fne(@)]
fra(2)E[fn1(2)] .

Using Proposition 1 and Proposition 2, we obtain that f, 1(z) converges in

probability to f(x) and [f”i"g))]] converges to re(x) as n — o0o. So, using
Slutsky’s lemma, it is sufficient to prove

Ay /bl (fr,0(@) = Elfpn,e(2)]) + A2y /nhl (fo1(z)—E[fn1(2)])
—‘%N(O PAl 2 (7))

n—oo

where

s 2) = (FE(B(0) X0 = al-+2Adara (o) #9022 () [ K3 (00
R

for any (A1, \2) € R2.

Let (A1, \2) € R? be fixed. Then,

Ay/nhl, (fa.e(@) = Elfne(@)]) + A2y /nhg, (fo1(z) — E[fn1(2)])
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where ®(z) = A\ ®(z) 4+ A for any = in R. Since u — E[|®(Y))[*| X0 = u] is
continuous, one can notice that u + E[|®(Y)|?|Xo = u] is continuous. More-
over, since E[|®(Yp)[*™] < oo and E[|®(Y))|*T K, (z, Xo)] < hl, we have

E[|®(Yo)*™’] < oo and E[|®(Yo)[*T K, (z, Xo)] < hl. Consequently, using
Theorem 1, we get the result. The proof of Theorem 2 is complete. O

One can notice that the asymptotic normality of the regression estimator 7, ¢
obtained in the proof of Theorem 2 is a direct consequence of Theorem 1. In
some sense, it means that Theorem 1 is quite a deep result since it contains
both the asymptotic normality of the kernel density estimator f,, ; and that of
the regression estimator 7y, 1.

Proof of Theorem 3. Let x € RY such that f(x) > 0. Then, according to
Theorem 2, we have

Elfne()]) vaw 2
m (Tn,é(fc) - E[fng(x)]) — N (0,53 (2)),

where 62 (z) = %B%Nf Jan K2(t)dt and V(z) = E[|®(Y)|?| X0 = 2] — r3 ().

Applying Proposition 2, we have

Elfno(@)] = fo(@)| DT, and  [E[fna(2)] - f(z)] < BT .

Recall that re(x) = f}"((;). Then, for n sufficiently large, we have

‘]E[fn,é(x)] ~re(2)| = (Elfn.0(2)] — fo(2)) f(2) = (E[fna1(2)] — f2)) fa(2)] o
E[fn1(2)] f@)E[fn1()] -
Finally, using Slutsky’s lemma, we obtain

VY (a0 (@) = re (@) == N (0,53 (x)) -
The proof of Theorem 3 is complete. O

5. Appendix

Proof of Lemma 7. First, we note that E [W;|Fy—1] is Fe-measurable. It suffices
to show that for every A € F;, we have E[E[W;|F,_1] 14] = E {Hi(Hgﬁo)lA].
One can notice that the collections P = {ANB|A € Fo_1,B € o(e;(r))} and
A= {A € Fe|E[E[W;|Fe—1] 14] =E [Hi(?—[@ )1,4} } are respectively a w-system

and a \-system which satisfy o (P) = Fy. Since (€+(j))jez and (E(T[’()j))jez are

identically distributed where E(f()j) =¢e.) ifj# L and E‘(FE()Z) = E;_(e), it holds for
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cvery C € Fy_1 that E[1cWi] = E |10 H; (1" )}. Then, if A= A, N Ay € P

,0O0

with Ay € Fy—1 and As € o(e;(p)), we obtain

E[E[Wi|Fe-1] 1a] = E[E [14, W;|Fe-1] 14,] =

{1A1Hi,oo(Hz('Qo)] E[14,]
{1A1Hi,oo(sz(’Qo)1Az}

E
E
B | Hioo () 14]

So, we obtain A € A and finally P C A. Applying Dynkin’s lemma, we get the
desired result. The proof of Lemma 7 is complete. O

Proof of Lemma 8. Let 1 < i < n such that ¢ # j. From Lemma 4, we
N

have E[|Ag, A, [] < (hs,hs,) * . Keeping in mind (4.13), we have

hé\iwsiwsjE“AsiASjH < Ar:,%,lhé\;wsinj

]EHUSiUSjH =

(hsihsj)%wg Az w2 (hg,hs, )NA-va(0)/2°
Since v4(0) < 1 and using (H1), we derive E[|Us, Uy, |] < wy, ws,w *Qhé\i”“(g)
The proof of Lemma 8 is complete. O

Proof of Lemma 10. For any 1 < 4,7 < n such that ¢ # j, we have

|EHU51USJH _EHUSiUSj|]| HUSJH ”US sl

s; US]' ||2

S;

and for any 1 < £ < n, using (3.11), we get

N/2 N/2
U, ||2 = hsn/ ws, [|As, |2 4 hsn/ Ws,
sell2 = TN/ = " N/2
Sy wsnAn,O,l hsz wsnAn,O,l
and
N, ~ N, —(F+va(6
U, —T.| _hsn/2wseHA5g_ASg||2 hsn/2105/Lsn(2 v2(0) Z 51/2 (0)
Sy Sy 2 — N/2 N/2 .
his, anAn’O,l Psy wsnAn,O,l kezd
|k|>M,
Consequently, we get
72 Z E(|T.Ts, 1] - E[|U, U, ]
\sjfsl|<M
1#]
n 0 1 Ws; W F4ve 9) u2(9
nwz Z Z NNz <l o > %
hs)" s, kezd
\SJ Sz|<Mn |k|>M,,

i#]
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hN An% 1 Xn: Z w:i wi < h F+va(0)) Z 51/2 (0)
- nw2 hY hg S"

kez®
\sjfsz|<Mn \kéMn
MY A72 0 g2
d S$n*tn,0,1 S; +V2 9) V2(0
< 2M¢ (an Z iy > e
n =1 i keZd
|k|> My,
Using (H1), we obtain
1 n 1—1 + (9
JRE— d v 9
LS Y [EITLT - EUL U ) 9 mdns > 5"
i=1 j=1 kez?
Iw—ﬁ§Mn |k[>m,
i#]

(N, N
Shsn(ZJr 2(6)) Z |k\d5k,22(9)-

kezd
[k|>man
Using Lemma 8, we obtain
1 < n
=3 > E[U.U]
=1 j=1
lsi—s; <My,
i#j
hNV4(9) n n - . ;
S] SHTZ Z % +hsn( 2+V2( )) Z |k’|d5V2 9)
i=1 j=1 Sn st
S k[ >m.,
177
h]\;w;(Q) n n ) 9
B SED MR R e WL+
Sn =1 j=1 et
|si—s;|<Mp B
dpNva(0) n
my hs, 2 — (5 +v2(0)) 4 V2(9
S g 2t e S k.
oo kez?
|k|>mn
Using (H2), we derive
1 < n
=Y > E[U.TL]]
=1 j=1
lsi—s;|<My
i#]

@m0 gy (5O) S a0 g,
" n—00

kezd
|E|>my,

The proof of Lemma 10 is complete. (]
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