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Abstract

We consider the recursive estimation of the probability density function of continuous

random variables from a strongly mixing random sample. We revisit here earlier research on

this subject by considering a more general class of recursive estimators, including the usual

ones. We derive the quadratic mean error of the considered class of estimators. Moreover, we

establish a central limit theorem by using Lindeberg’s method resulting in a simpli�cation of

the existing assumptions on the sequence of smooth parameters and the mixing coe�cient.

�is is the main contribution of this paper. Finally, the feasibility of the proposed estimator

is illustrated throughout an empirical study.

Keywords: asymptotic normality; density function; quadratic mean error; recursive kernel

estimators; strong mixing.

1 Introduction

A crucial question in statistics is how to estimate the probability density functions of continu-

ous random variables from a random sample. �is problem has been extensively analyzed in the

nonparametric statistics literature for the cases of both independent and dependent data. Starting
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from the empirical distribution function, [23] and [26] introduced the well-known kernel density

estimator, which is still very popular in the statistical community. However, although classical

nonparametric methods are powerful and fairly well established in the statistical �eld, the data
streams problem presents new challenges that are not easily solved with traditional methods. �e

term data streams refers to data sets that continuously and rapidly grow over time. At present,

modern computing tools and acquisition techniques are allowing practitioners to collect large

volumes of data over time. In fact, in many applications, the learning databases used are so large

that it may be impossible for researchers to store them. �is leads to a number of computational

challenges. �e topic of data streams is very recent. However, some tools that can help to solve

various statistical problems raised by such data date back to the last century. Among these meth-

ods, sequential methods for successive experiments have been used for nonparametric density

estimation. Sequential estimators have a decisive computational advantage because they can be

updated easily as new data items arrive over time. �is advantage arises from the fact that a

standard estimator must always be completely recomputed when a new observation is collected,

which is clearly a drawback in a sequential context, particularly when instantaneous estimations

are required.

�e �rst studies that focused on a recursive version of the Parzen-Rosenbla� estimator were pre-

sented by [10], [35] and [36]. Since these pioneering papers, recursive kernel density estimators

have also been studied by [17], [20], [22], [27], [33], [34] and many others. �ere are already

many published papers on the asymptotic properties of recursive kernel density and regression

estimators for independent and identically distributed (i.i.d.) data. However, because most data

streams show serial dependence, the assumption of i.i.d. repetitions is o�en violated in real-life

problems. �ere are also some published papers on the asymptotic properties of recursive kernel

density and regression estimators for dependent (weakly and strongly mixing) data: the density

estimation problem has been investigated by [14], [15], [20], [28], [29], [30] and others, and the

regression estimation problem has been studied by [2], [9], [13], [27], [31], [32] and others.

In this paper, we focus on a family of recursive estimators, introduced by [17], which includes

those introduced by [1], [33] and [35]. In [1], the consistency and asymptotic normality of re-

cursive kernel estimators for strongly mixing random variables were demonstrated. We refer

to [1] and [9] for a more complete bibliography on the recursive estimation of the density and

regression functions for stationary sequences. One can add, among others, a series of recent con-

tributions extending previous works in several directions. For example, [21] extended the result

reported in [1] to the larger class of �-dependent random variables introduced by [11], and [8]

proposed recursive estimators for the invariant density and dri� terms of some ergodic Hamil-

tonian systems. Density estimation in a data stream context has previously been considered by
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[6], who proposed an algorithm based on kernel merging functions, while [7] presented an es-

timation method based on sequences of self-organizing maps. Recently, [3] also studied density

estimation for directional data streams.

Our aim is to provide a new su�cient condition on the strong mixing coe�cients for the consis-

tency and asymptotic normality of recursive kernel density estimators. In particular, we improve

upon the results of [1] in several ways. We have decided to revisit this earlier research for three

major reasons. First, we consider a more general class of recursive estimators introduced by [17],

including the family of estimators introduced by [1]. Second, the proof of the central limit theo-

rem given in [1] is based on Bernstein’s block decomposition. We propose to simplify this proof

by using Lindeberg’s method (see [19]). In particular, some key assumptions regarding the se-

quence of smooth parameters will be relaxed. Finally, we complete the series of previous results

by deriving a mean square error convergence of the recursive estimator.

�is paper is organized as follows. In Section 2.1, we present the model and the studied estima-

tor. Section 2.2 describes the assumptions and theoretical results. In Section 3, we illustrate the

feasibility and e�ciency of the recursive estimator through a brief simulation study. Proofs of

some technical lemmas and main results are given in Sections 4 and 5, respectively.

2 Asymptotic results

2.1 Presentation of the model

For d a positive integer, let (Xi)i∈ℤ be a sequence of ℝd
-valued random vectors, de�ned on a

probability space (Ω, , ℙ). We assume that the random variables (Xi)i∈ℤ are identically distributed

with common law � absolutely continuous with respect to the Lebesgue measure on ℝd
. We

denote by f the unknown probability density function of �. Given two �-algebras  and  of  ,

we recall the �-mixing coe�cient introduced by [25] de�ned by

�( ,) = sup{|ℙ(A ∩ B) − ℙ(A)ℙ(B)| , A ∈  , B ∈ }.

For any positive integer n, we consider the mixing coe�cient �(n) de�ned by

�(n) = sup
k∈ℤ

� ( k−n
−∞ , �(Xk)) where  k−n

−∞ = �(Xi ; i 6 k − n).

Here, we suppose that limn→∞ �(n) = 0. In this case, we say that (Xi)i∈ℤ is strongly mixing.

Let n be a positive integer and x ∈ ℝd
. Consider a density function K ∶ ℝd → ℝ+ (kernel)
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and a sequence of positive real numbers (ℎn)n>0 going to 0 as n goes to in�nity (bandwidth pa-

rameter). In order to estimate f at x from the sample (X1, ..., Xn), Rosenbla� [26] and Parzen [23]

introduced the well known kernel density estimator f PRn (x) de�ned by

f PRn (x) = 1
nℎdn

n
∑
i=1

K (
x − Xi
ℎn ) . (2.1)

In [1], for any � ∈ [0, 1], Amiri introduced the recursive kernel density estimator f �n (x) de�ned by

f �n (x) =
1

∑n
k=1 ℎd(1−�)k

n
∑
i=1

ℎ−d�i K (
x − Xi
ℎi ) (2.2)

which satis�es the autoregressive relation

f �n+1(x) = ∑n
i=1 ℎd(1−�)i

∑n+1
i=1 ℎd(1−�)i

f �n (x) + ℎd(1−�)n+1
∑n+1
i=1 ℎd(1−�)i

f̃n+1 (x) where f̃n+1(x) ∶= 1
ℎdn+1

K ( x−Xn+1ℎn+1 ) .

�e class (2.2) contains the recursive estimators introduced by Wolverton and Wagner [35] (� = 1)
and Deheuvels [10] (� = 0) and a renormalized version of the one introduced by Wegman and

Davies [33] (� = 1/2). �e tuning parameter � plays a role in regulating the quality improvement

of the estimator with respect to the variance and the estimation errors. In fact, [1] prove that the

MSE decreases with respect to � . Nevertheless, as noted in the reference above, the choice of �
does not appear to have a major in�uence on the quality of the estimation. �erefore, in practice,

one can simply use � = 0 or � = 1.

Let (wk)k>1 be a nonincreasing sequence of positive real numbers satisfying ∑k>1 wk = ∞. In

this work, we consider a general class of recursive estimators introduced by Hall and Patil [17]

and de�ned by

f HPn (x) = 1
∑n

k=1 wk

n
∑
i=1

wi
ℎdi
K (

x − Xi
ℎi ) (2.3)

which satis�es

f HPn+1 (x) = (1 − 
n+1)f HPn (x) + 
n+1f̃n+1 (x) where 
n ∶= wn
∑n
i=1 wi .

In particular, the class (2.2) is contained in the class (2.3) since f HP

n = f �n ifwk = ℎd(1−�)k and � ∈ [0, 1].

2.2 Assumptions and theoretical results

Let K ∶ ℝd → ℝ+ such that ∫ℝd K(t)dt = 1 and supx∈ℝd K(x) < ∞ (i.e. K is a bounded density

function). Assume also that lim‖x‖→∞ ‖x‖dK(x) = 0, ∫ℝd ‖u‖2K(u)du < ∞ where ‖.‖ is the usual
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norm on ℝd
and ∫ℝd uiK(u)du = 0 for any 1 6 i 6 d . Let (ℎn)n>1 be a nonincreasing sequence

of positive real numbers going to 0 such that nℎdn → ∞ as n goes to in�nity. Let also (wn)n>1
be a nonincreasing sequence of positive real numbers such that (wnℎ−dn )n>1 is nondecreasing and

∑n>1 wn = ∞. For any integer n > 1 and any (s, t) in ℤ2
, we denote

An,s,t ∶=
1

nℎsnw t
n

n
∑
i=1

ℎsiw t
i .

We consider the following assumptions:

(H1) �ere exists (�0,1, �−d,2) ∈ ℝ2
+ such that limn→∞ An,0,1 = �0,1 and limn→∞ An,−d,2 = �−d,2.

(H2) �ere exists (�, �� ) ∈]0, 1] × ℝ+ such that ℎd(1−�)n ∑n
i=1 w2

i 6 ��nw2
n and ∑k>0 k1/��(k) < ∞.

(H3) (i) �e law of X0 is absolutely continuous with respect to the Lebesgue measure on ℝd

and its density f is Lipschitz and twice di�erentiable with bounded second derivatives.

(ii) For any i ∈ ℤ⧵{0}, the law of (X0, Xi) is absolutely continuous with respect to the

Lebesgue measure on ℝd × ℝd
and there exists c > 0 such that supi∈ℤ⧵{0} |f0,i(x, y) −

f (x)f (y)| 6 c for any (x, y) ∈ ℝd ×ℝd
where f0,i is the joint density function of (X0, Xi).

Assumptions (H1) and (H2) are classical in the context of recursive kernel density estimators

(see [2], [20], [21], [33] and many others). In fact, a link between the bandwidth parameters ℎn,
the weights wn and the strong mixing coe�cients �(n) is necessary for the consistency and the

asymptotic normality of the considered estimator. In particular, these conditions are satis�ed if

ℎdn = n−
 for 0 < 
 < 1 and wn = n−� for 0 < � 6 
 ∧ (1/2 + 
(1 − �)/2) and 0 < � < 1 (see

Proposition 2 below). Assumption (H3) is also standard in kernel density estimation (see [2], [4],

[5], [21] and references therein). However, we lay emphasis on that our assumption (H3)(ii) is

less restrictive than the condition supi≠j ‖fi,j‖∞ < ∞ and ‖f ‖∞ < ∞ assumed for example in [4]

(Proposition 4.2 on page 161).

�e main contribution of this work is to lay emphasis on that the consistency and the asymptotic

normality of the recursive estimator (2.3) hold under mild conditions on the bandwidth parame-

ter ℎn and the strong mixing coe�cient �(n) (see assumptions (H1) and (H2)). In the sequel, for

any x in ℝd
, we denote

� 2x ∶=
�−d,2 f (x)
�20,1 ∫

ℝd
K 2(t)dt. (2.4)

Our �rst result is the following.
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Proposition 1. If (H1), (H2) and (H3) hold then for any x ∈ ℝd ,

lim
n→∞

|nℎdnV[f HPn (x)] − � 2x | = 0 (2.5)

where � 2x is de�ned by (2.4).

Proposition 1 is an extension of �eorem 2.2.6 in [1] where the particular case wn = ℎd(1−�)n
with � ∈ [0, 1] was considered. More precisely, with our notations, it is proved in [1] that if

nℎd+2n → ∞ as n goes to in�nity, �(n) = O (n−�) with � > 0 and there exists �s,0 ∈ ℝ+ such that

limn→∞ An,s,0 = �s,0 for any s ∈] − ∞, d + 2] then (2.5) holds when

(� , �) ∈ [((1/2 − 1/d)+, 1] × ]2, +∞[ and d > 1 (2.6)

or

(� , �) ∈ [0, 1/2 − 1/d[ × ]1 + d/2, +∞[ and d > 3 (2.7)

where x+ = max{x, 0} for any real x . One can notice that (2.6) implies (H2) with � = 1. So, (2.5)

holds when ∑n>0 n�(n) < ∞ which is weaker than �(n) = O (n−�) with � > 2. Similarily, (2.7)

implies (H2) with � = 2(1 + d�)/d and consequently (2.5) holds when ∑n>1 n
d

2(d�+1)�(n) < ∞ which

is weaker than �(n) = O (n−�) with � > 1 + d/2.
Proposition 2. Assume that (H1) and (H3) hold. If (H2) holds with 0 < � < 1 and there exist
0 < 
 < 1 such that ℎdn = n−
 and 0 < � 6 � ∗ where � ∗ = 
 ∧ (1/2 + 
(1 − �)/2) such that wn = n−�
then argmin0<�6� ∗ � 2x = � ∗ and

min
0<�6� ∗

� 2x =  (� ∗)f (x) ∫
ℝd
K 2(t)dt where  (� ∗) = (1 − � ∗)2

1 − 2� ∗ + 

and � 2x is de�ned by (2.4).

In Proposition 2, we note that if 
 6 1/(1 + �) then � ∗ = 
 and �/(1 + �) 6  (� ∗) = 1 − 
 < 1
whereas � ∗ = 1/2 + 
(1 − �)/2 and �/4 <  (� ∗) = (1 − 
(1 − �))2 /(4�
 ) 6 �/(1 + �) 6 1/2 if


 > 1/(1 + �). So, we understand that the recursive estimator f HPn allows us to halve at least the

asymptotic variance of the non recursive estimator f PRn whenwn = ℎdn = n−
 with 1/(1+�) 6 
 < 1.

We obtain also the convergence to zero of the mean square error of the recursive estimator. For

any sequences (pn)n>1 and (qn)n>1 of positive numbers, the notation pn ≲ qn means that there

exists c > 0 (not depending on n) such that pn 6 cqn.
Proposition 3. If (H1), (H2) and (H3) hold then for any x ∈ ℝd ,

|E[f HPn (x)] − f (x)| ≲ ∑n
i=1 wiℎ2i

∑n
k=1 wk

and V[f HPn (x)] ≲ 1
nℎdn

.

So, if An,2,1 ≲ 1 then ||E[f HPn (x)] − f (x)|| ≲ ℎ2n and E[(f HPn (x) − f (x))2] ≲ n− 4
d+4 for ℎn = n−

1
d+4 .
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�e asymptotic normality of the estimator (2.3) is given by the following result which is the

main contribution of this paper.

�eorem 1. Assume that (H1) and (H3) hold. If (H2) holds with � ∈]0, 1] such that nℎd(1+�)n → ∞
then for any x ∈ ℝd such that f (x) > 0,

√
nℎdn(f HPn (x) − E[f HPn (x)]) Law−−−−−−→

n→∞
 (0, � 2x )

where � 2x is de�ned by (2.4).

�eorem 1 is also an extension of �eorem 2.2.7 in [1] where the author obtained the asymp-

totic normality of the recursive estimator (2.2) when �(n) = O (�n) with 0 < � < 1. Analogous

results of �eorem 1 have been established for the (non recursive) Parzen-Rosenbla� kernel den-

sity estimator for strong mixing random �elds (see [12]) and weak dependent time series (see [4])

using the Lindeberg’s method which appears to be a �exible approach for proving central limit

theorems under mild assumptions both for recursive and non recursive estimators. �e following

result is a direct consequence of Proposition 3, �eorem 1 and Slutsky’s lemma.

�eorem 2. Assume that (H1) and (H3) hold. If (H2) holds with � ∈]0, 4/d[ such that nℎd(1+�)n →∞,
nℎd+4n → 0 and An,2,1 ≲ 1 then for any x ∈ ℝd such that f (x) > 0,

√
nℎdn(f HPn (x) − f (x)) Law−−−−−−→

n→∞
 (0, � 2x )

where � 2x is de�ned by (2.4).

As usual, the conditions nℎd+4n → 0 andAn,2,1 ≲ 1 are only assumed in order to control the bias

of the estimator. In particular, one can notice that this control is achieved when wn = ℎdn = n−

with d/(d + 4) < 
 < d/(d + 2). Finally, we recall that Masry [20] and Khardani and Slaoui

[18] obtained also the asymptotic normality of the recursive estimator introduced by Wolverton

and Wagner [35] and for a large class of recursive estimators de�ned by a stochastic approxima-

tion algorithm respectively for strong mixing time series. �eir results are obtained under some

entrelaced conditions in a complicated way between the bandwidth parameters and the strong

mixing coe�cients which are di�cult to compare with our assumptions (see �eorem 8 p. 265

in [20] and �eorem 2.6 p. 36 in [18]). Such kind of conditions are inherent to the Bernstein’s

method and could be relaxed by using Lindeberg’s method.

3 A toy example

In this section, we provide a simulation study to illustrate the asymptotic results of the recur-

sive kernel density estimator obtained in Section 2. We generated M = 100 times random
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samples of size n = 300 from: (i) a normal mixture distribution made up of observations from

 (� = 1, � 2 = 0.25) and  (� = −1, � 2 = 0.25), each with probability 0.5. (ii) an AR(1) model

given by Xt = 1√2Xt−1 + "t , where "t are iid standard normal variables. For both cases, we calculate

from the simulated data set the kernel density estimator (2.3) at a �xed point x ∈ ℝ, using the

Gaussian kernel, a bandwidth parameter ℎn = n−1/5 and weights functions wn = ℎn. �ese param-

eters are arbitrarily �xed to illustrate the feasibility of the estimator trough a simple example.

We do not investigate in this work any procedure for a data-driven choice of parameters. Such

a study is an important task and will be done in a forthcoming paper. Figure 1 shows kernel

estimates of the density for these data with recursive (dashed curve) and non recursive (do�ed

curve) procedure, along with the true underlying density (the solid curve) for x = −1. �e 300
data points are marked by vertical lines on the horizontal axis. Inspection of Figure 1 shows that

the recursive estimator �ts well to the target density function. Also, estimator (2.3) is competitive

with respect to its natural competitor introduced by [26] and [23].
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Figure 1: Kernel density estimates using recursive (dashed curve) and non recursive (do�ed curve) meth-

ods along with the true underlying density (solid curve) of a normal mixture distribution (le�) and an

AR(1) model (right).

In order to illustrate the result obtained in Proposition 3, we calculate (f HPn (x) − f (x))2 for a

given sample size n and x randomly selected in [-100, 100]. �en, we obtain the value of the mean

square error MSE ∶= E[(f HPn (x)− f (x))2] by taking the arithmetic average of the above value over

100 replications of a Monte-Carlo procedure. Results are summarized in Table 1 for several values
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of sample size. �ese results con�rm empirically the tightness of the mean square error of the

recursive estimator f HPn as n goes to in�nity.

n 50 100 150 200 250 300

normal mixture 0.0042 0.0039 0.0034 0.0026 0.0026 0.0020

AR (1) 0.0056 0.0051 0.0040 0.0034 0.0033 0.0029

Table 1: MSE for kernel density estimates using recursive method (results are multiplied by 100).

Turning to the asymptotic normality result given in �eorem 1, our purpose is to compare the

distribution of the random variable Sn(x) ∶=
√
nℎdn/� 2x (f HPn (x)−E[f HPn (x)])with a standard normal

law. In our simulation study, let x = −1 and n = 300. �e value of � 2−1 is totally computable,

whereas the value of E[f HP300 (−1)] is approximated by the average over a sample of 100 realizations

of the random variable f HP300 (−1). Figure 2 displays the histogram of 100 copies of the random

variable S300(−1) along with the standard normal density. One can observe that the obtained

result seems to �t well to the target distribution, that is the standard normal distribution.
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Figure 2: Histograms of S300(−1) along with the standard normal density when the density is estimated

using data from a normal mixture (le�) and AR (1) model (right).

4 Preliminary lemmas

�e following technical lemmas will be usefull in the proof of our main results in section 5.
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Lemma 1. If there exists � > 0 such that ∑k>0 k1/��(k) < ∞ then there exists a sequence (mn)n>1 of
positive integers going to in�nity as n goes to in�nity such that

lim
n→∞

mnℎd�n = lim
n→∞

1
ℎdn

∑
j>mn

�(j) = 0.

One can notice that mn = o(n) since nℎdn →∞ as n → ∞.

Proof of Lemma 1. For any positive integer n, we de�ne

mn ∶= max
⎧⎪⎪
⎨⎪⎪⎩
vn ,

⎢
⎢
⎢
⎣
ℎ−d�n (∑

j>vn
j1/��(j))

�/2⎥
⎥
⎥
⎦
+ 1

⎫⎪⎪
⎬⎪⎪⎭

where vn ∶= ⌊ℎ
−d�
2n ⌋ and ⌊s⌋ stands for the largest integer less than s for any s in ℝ. Since

∑k>0 k1/��(k) < ∞, we have mnℎd�n ≤ max
{
ℎ

d�
2n , (∑j>vn j1/��(j))

�/2 + ℎd�n
}
−−−→
n→∞

0. Noting that

vn 6 mn, we have mnℎd�n > (∑j>mn j1/��(j))
�/2

. Consequently, we derive

1
ℎdn

∑
j>mn

�(j) 6 1
(mnℎd�n )1/�

∑
j>mn

j1/��(j) 6 (∑
j>mn

j1/��(j))

1/2

−−−−−−→
n→∞

0.

�e proof of Lemma 1 is complete. □

Lemma 2. Let (an)n>1 be a sequence of real numbers going to a ∈ ℝ as n goes to in�nity. If
limn→∞ An,−d,2 = �−d,2 ∈ ℝ then

lim
n→∞

ℎdn
nw2

n

n
∑
i=1

w2
i ai
ℎdi

= a�−d,2.

Proof of Lemma 2. It follows from Toepliz’s lemma (see for example Masry [20]). It is le� to the

reader. □

For any 1 6 i 6 n and any x in ℝd
, we denote

Δi(x) =
nℎd/2n wiZi(x)
ℎdi ∑n

k=1 wk
(4.1)

where Zi(x) = Ki(x, Xi) − E[Ki(x, Xi)].

Lemma 3. If (H1) and (H3) hold then for all x ∈ ℝd , there exists � = �(x) > 0 such that for all
1 6 i ≠ j 6 n,

E[|Δi(x)Δj(x)|] 6
�wiwjℎdn
w2
n

.
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Proof of Lemma 3. Let 1 6 i ≠ j 6 n and x ∈ ℝd
be �xed. �en, we have

E[|Zi(x)Zj(x)|] 6 E[Ki(x, Xi)Kj(x, Xj)] + 3E[Ki(x, Xi)]E[Kj(x, Xj)].

Moreover,

E[Ki(x, Xi)] = ℎdi ∫
ℝd
K(v)f (x − vℎi)dv

and using assumption (H3)(ii), we have

E[Ki(x, Xi)Kj(x, Xj)] = ∬
ℝd×ℝd

Ki(x, u)Kj(x, v)f0,j−i(u, v)dudv

≲ ∬
ℝd×ℝd

Ki(x, u)Kj(x, v)dudv + ∬
ℝd×ℝd

Ki(x, u)Kj(x, v)f (u)f (v)dudv

6 ℎdi ℎdj ((∫
ℝd
K(v)dv)

2
+ ∫

ℝd
K(v)f (x − vℎi)dv × ∫

ℝd
K(v)f (x − vℎj)dv) .

Since f is continuous, using �eorem 1A in [23], we have

lim
n→∞ ∫

ℝd
K(v)f (x − vℎn)dv = f (x) (4.2)

and consequently, we get

E[Ki(x, Xi)Kj(x, Xj)] ≲ ℎdi ℎdj and E[Ki(x, Xi)] ≲ ℎdi . (4.3)

Consequently, we obtain

E[|Zi(x)Zj(x)|] ≲ ℎdi ℎdj . (4.4)

Now, keeping in mind (4.1), we have

Δi(x)Δj(x) =
A−2n,0,1ℎdnwiwjZi(x)Zj(x)

ℎdi ℎdj w2
n

. (4.5)

Combining (4.4) and (4.5) and using (H1)(i), we derive

E[|Δi(x)Δj(x)|] ≲
wiwjℎdn
w2
n

.

�e proof of Lemma 3 is complete. □

For any real random variable X and any p > 0, we denote ‖X ‖p ∶= (E[|X |p])1/p . �e following

inequality is a classical result for strongly mixing random variables (see for example [16]).

Lemma 4. Let  et  be two � -algebras and let X be a real random variable measurable with
respect to  . If 1 6 p 6 r 6 ∞ then ‖E[X /] − E[X]‖p 6 2 (21/p + 1) ‖X ‖r �( ,) 1p − 1r .

Proof of Lemma 4. See [16]. □
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5 Proofs of the main results

Let n be a positive integer and let x ∈ ℝd
be �xed. Recall that

f HPn (x) = 1
∑n

k=1 wk

n
∑
i=1

wiKi (x, Xi)
ℎdi

where Ki(x, v) = K (
x − v
ℎi ) for any v ∈ ℝd .

Proof of Proposition 1. In the sequel, we consider the notations Δi(x) and Zi(x) de�ned by (4.1).

nℎdnV[f HPn (x)] = E [
n
∑
i=1

Δi(x)√n ]

2

= 1
n

n
∑
i=1

E[Δ2i (x)] +
2
n

n
∑
i=1

n
∑
j=i+1

E[Δi(x)Δj(x)]. (5.1)

Moreover,

|||||
1
n

n
∑
i=1

(E[Δ2i (x)] − � 2x)
|||||
6

|||||
A−2n,0,1ℎdn
nw2

n

n
∑
i=1

w2
i

ℎdi (ℎ
−d
i E[Z 2

i (x)] − f (x) ∫
ℝd
K 2(v)dv)

|||||

+
|||||
An,−d,2
A2n,0,1

− �−d,2�20,1

|||||
f (x) ∫

ℝd
K 2(v)dv.

Using (H1), we have

lim
n→∞

|||||
An,−d,2
A2n,0,1

− �−d,2�20,1

|||||
= 0.

Since f is Lipschitz, using (4.2), we have

||||
ℎ−di E[Z 2

i (x)] − f (x) ∫
ℝd
K 2(v)dv

||||
=
|||||
∫
ℝd
K 2(v) (f (x − vℎi) − f (x)) dv − ℎ2di (∫

ℝd
K(v)f (x − vℎi)dv)

2|||||
≲ ℎi ∫

ℝd
‖v‖K 2(v)dv + ℎ2di ≲ ℎi .

Consequently,

lim sup
n→∞

|||||
1
n

n
∑
i=1

(E[Δ2i (x)] − � 2x)
|||||
≲ lim sup

n→∞

A−2n,0,1ℎdn
nw2

n

n
∑
i=1

w2
i

ℎdi
ℎi = 0 (by Lemma 2). (5.2)

Now, it su�ces to prove

lim
n→∞

1
n

n
∑
i=1

n
∑
j=i+1

E[Δi(x)Δj(x)] = 0.

Let mn be de�ned by Lemma 1 and recall that mn/n goes to zero as n goes to in�nity. �en,

1
n

n
∑
i=1

n
∑
j=i+1

E[Δi(x)Δj(x)] =
1
n

n
∑
i=1

(i+mn)∧n
∑
j=i+1

E[Δi(x)Δj(x)] +
1
n

n
∑
i=1

n
∑

j=(i+mn)∧n+1
E[Δi(x)Δj(x)].

12



Consequently, using Lemma 3 and keeping in mind that (wk)k>1 is nonincreasing, we derive

1
n

n
∑
i=1

(i+mn)∧n
∑
j=i+1

||E[Δi(x)Δj(x)]|| ≲
ℎdn
n

n
∑
i=1

(i+mn)∧n
∑
j=i+1

w2
i

w2
n
6 mnℎd�n × ℎ

d(1−�)
n
nw2

n

n
∑
i=1

w2
i .

Using (H2), we obtain

1
n

n
∑
i=1

(i+mn)∧n
∑
j=i+1

||E[Δi(x)Δj(x)]|| ≲ mnℎd�n . (5.3)

Now,

1
n

n
∑
i=1

n
∑

j=(i+mn)∧n+1

||E[Δi(x)Δj(x)]|| ≲
ℎdn
nw2

n

n
∑
i=1

n
∑

j=(i+mn)∧n+1

w2
i ||E[Zi(x)Zj(x)]||

ℎdi ℎdj
.

By Rio’s covariance inequality ([24], �eorem 1.1), for j > i, we have

||E[Zi(x)Zj(x)]|| 6 2 ∫
2�(j−i)

0
QZi (x)(u)QZj (x)(u) du

where QZi (x)(u) = inf{t > 0 / ℙ (|Zi(x)| > t) 6 u}, u ∈ [0, 1]. Since K is bounded, we have

sup06u61 supx∈ℝd QZi (x)(u) ≲ 1 and consequently

||E[Zi(x)Zj(x)]|| ≲ �(j − i). (5.4)

Keeping in mind that (ℎn)n>1 is nonincreasing and using (H1), we derive

1
n

n
∑
i=1

n
∑

j=(i+mn)∧n+1

||E[Δi(x)Δj(x)]|| ≲
1
ℎdn

∑
j>mn

�(j). (5.5)

Combining (5.3) and (5.5) and using Lemma 1, we derive

1
n

n
∑
i=1

n
∑
j=i+1

||E[Δi(x)Δj(x)]|| ≲ mnℎd�n + 1
ℎdn

∑
j>mn

�(j) −−−−−−→
n→∞

0. (5.6)

Combining (5.1), (5.2) and (5.6), the proof of Proposition 1 is complete. □

Proof of Proposition 2. Let (
 , �) ∈]0, 1[2 such that ℎdn = n−
 and ∑n>1 n1/��(n) < ∞. Let also

0 < � 6 � ∗ ∶= 
 ∧ (1/2 + 
(1 − �)/2) < 1 such that wn = n−� . One can notice that

An,0,1 =
1
nwn

n
∑
i=1

wi =
1
n

n
∑
i=1

1
(i/n)� −−−−−−→n→∞

1
1 − � =∶ �0,1

and

An,−d,2 =
ℎdn
nw2

n

n
∑
i=1

w2
i

ℎdi
= 1
n

n
∑
i=1

1
(i/n)2�−
 −−−−−−→n→∞

1
1 − 2� + 
 =∶ �−d,2.

13



Moreover,

Bn ∶=
ℎd(1−�)n
nw2

n

n
∑
i=1

w2
i =

n−
(1−�)
n

n
∑
i=1

1
(i/n)2� .

If � < 1/2 then Bn ≲ 1. If 1/2 < � 6 1/2 + 
(1 − �)/2 then Bn ≲ n−1+2�−
(1−�) ≲ 1. Finally, if � = 1/2
then Bn ≲ n−
(1−�) log n ≲ 1 since � < 1. Consequently, assumptions (H1) and (H2) are satis�ed

when � < 1. Let  be the function de�ned for any t ∈ ℝ by  (t) = (1 − t)2/(1 − 2t + 
). Since

�−d,2/�20,1 =  (�) and  is decreasing from  (0) = 1/(1 + 
) to  (� ∗) on the interval [0, � ∗], we get

argmin0<�6� ∗ � 2x = � ∗ and

min
0<�6� ∗

� 2x =  (� ∗)f (x) ∫
ℝd
K 2(t)dt.

�e proof of Proposition 2 is complete. □

Proof of Proposition 3. Let x ∈ ℝd
and let n be a positive integer. We have

E [(f
HP
n (x) − f (x))

2
] = V (f HPn (x)) + (E[f HPn (x)] − f (x))

2 .

By Proposition 1, we have V[f HPn (x)] ≲ 1/(nℎdn). Moreover, we have also

||E[f HPn (x)] − f (x)|| =
|||||

1
∑n

k=1 wk

n
∑
i=1

wi ∫
ℝd
K(v) (f (x − vℎi) − f (x)) dv

|||||
.

Using Taylor’s formula and (H3)(i), we derive

||E[f HPn (x)] − f (x)|| ≲
∑n

i=1 wiℎ2i
∑n

k=1 wk
.

Using (H1) and An,2,1 ≲ 1, we obtain
||E[f HPn (x)] − f (x)|| ≲

ℎ2nAn,2,1
An,0,1 ≲ ℎ2n. Finally, for ℎn = n

−1
d+4 , we get

E[(f HPn (x) − f (x))
2] ≲ n −4

d+4 . �e proof of Proposition 3 is complete. □

Proof of �eorem 1. Let n be a positive integer and x ∈ ℝd
such that f (x) > 0. �en

√
nℎdn(f HPn (x) − E[f HPn (x)]) = 1√n

n
∑
i=1
Δi

where Δi = Δi(x) is de�ned by (4.1). Let ' ∶ ℝ → ℝ be a function with compact support and

two continuous derivatives. Let (Yi)i>1 be independent Gaussian random variables with mean

zero and variance E[Y 2
i ] = E[Δ2i ] which are assumed to be independent of the sequence (Xi)i>1.

Keeping in mind (5.2), it su�ces to show that the term

In(') = E [' (
n
∑
i=1

Δi√n)] − E [' (
n
∑
i=1

Yi√n)]

14



goes to zero as n goes to in�nity. Let 1 6 k 6 n be a positive integer and de�ne

Uk = Δ1 + ... + Δk + Yk+1 + ... + Yn.

Applying Lindeberg’s method, we write

In(') =
n
∑
k=1

E [' (
Uk√n)] − E [' (

Uk−1√n )] =
n
∑
k=1

ak(') (5.7)

where

ak(') = E [' (Wk +
Δk√n) − '(Wk)] − E [' (Wk +

Yk√n) − '(Wk)]
and

Wk =
1√n (Δ1 + ... + Δk−1 + Yk+1 + ... + Yn) .

Using Taylor’s formula, we have

ak(') = E['′(Wk) ×
Δk√n] + E[

'′′(�k)Δ2k
2n ] − E['′(Wk) ×

Yk√n] − E[
'′′(�k)Y 2

k
2n ]

with

|�k − Wk | 6
|Δk |√n and |�k − Wk | 6

|Yk |√n .

Moreover,

ak(') =E ['
′(Wk) ×

Δk − Yk√n ] + E [
('

′′(�k) − '′′(Wk)) Δ2k
2n ]

− E [
('

′′(�k) − '′′(Wk)) Y 2
k

2n ] + E ['
′′(Wk) ×

Δ2k − Y 2
k

2n ] .

Let " > 0 be �xed and let � > 0 such that |'′′(x) − '′′(y)| 6 " for any (x, y) satisfying |x − y| < � .

In particular, if |Δk | < �
√n and |Yk | < �

√n then |�k − Wk | < � and |�k − Wk | < � and consequently

|'′′(�k) − '′′(Wk)| 6 " and |'′′(�k) − '′′(Wk)| 6 ". So,

ak(') = n−1/2E[(Δk − Yk)'
′(Wk)] + (2n)−1E[(Δ2k − Y 2

k )'
′′(Wk)] + E[Rk]

where

|Rk | 6
‖'′′‖∞
n (Δ2k1l|Δk |>�√n + Y 2

k 1l|Yk |>�√n) +
"
2n (Δ2k + Y 2

k ) .

Since Wk is independent of Yk and E[Yk] = 0, we have

n−1/2E[(Δk − Yk)'
′(Wk)] = n−1/2E[Δk'

′(Wk)]
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and

(2n)−1E[(Δ2k − Y 2
k )'

′′(Wk)] = (2n)−1E[(Δ2k − E[Δ2k])'
′′(Wk)].

So, we obtain

ak(') = n−1/2E[Δk'
′(Wk)] + (2n)−1E[(Δ2k − E[Δ2k])'

′′(Wk)] + E[Rk]. (5.8)

Since K is bounded, using assumption (H1), we have

|Δk | =
|||||
wknZkℎd/2n
ℎdk ∑n

i=1 wi

|||||
=
|||||
wkZkℎd/2n A−1n,0,1

ℎdkwn

|||||
≲ ℎd/2n wk

ℎdkwn

where Zk ∶= Kk(x, Xk) − E[Kk(x − Xk)]. Since (wnℎ−dn )n>1 is nondecreasing, we obtain |Δk | ≲ ℎ−d/2n .

Consequently,

n
∑
k=1

E[|Rk |] 6
‖'′′‖∞
�
√
nℎdn

× 1n
n
∑
k=1

E[Δ2k] +
‖'′′‖∞
�√n × 1n

n
∑
k=1

E[|Yk |3] +
"
n

n
∑
k=1

E[Δ2k].

Noting that E[|Yk |3] =
√8/� × (E[Y 2

k ])
3/2 ≲ ℎ−d/2n E[Δ2k] and using (5.2), we obtain

lim sup
n→∞

n
∑
k=1

E[|Rk |] ≲ "� 2x . (5.9)

Let (mn)n>1 be the sequence de�ned in Lemma 1 and recall that mn/n → 0 as n → ∞. Since Δk is

independent of (Yj)j>k and E[Δk] = 0, we have

|||||
1√n

mn

∑
k=1

E[Δk'
′(Wk)]

|||||
=
||||||

1√n
mn

∑
k=1

E[Δk ('
′(Wk) − '

′

(
n
∑
j=k+1

Yj√n))]
||||||
≲ 1
n

mn

∑
k=1

k−1
∑
j=1

E[|ΔkΔj |].

Using Lemma 1 and Lemma 3 and assumption (H2), we derive

1
n

mn

∑
k=1

k−1
∑
j=1

E[|ΔkΔj |] ≲ mnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
j=1

w2
j ≲ mnℎd�n −−−−−−→

n→∞
0

and consequently

lim
n→∞

1√n
mn

∑
k=1

E[Δk'
′(Wk)] = 0. (5.10)

For any function  ∶ ℝ → ℝ, we adopt the notation

 s,t =  (
s

∑
j=1

Δj√n +
n
∑
j=t

Yj√n)
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for any 0 6 s < t 6 n + 1 with the usual convention

 0,t =  (
n
∑
j=t

Yj√n) and  s,n+1 =  (
s

∑
j=1

Δj√n) .

Now,

n
∑

k=mn+1
E[Δk'

′(Wk)] =
n
∑

k=mn+1
E[Δk'

′
k−mn ,k+1] +

n
∑

k=mn+1
E[Δk('

′
k−1,k+1 − '

′
k−mn ,k+1)]. (5.11)

Moreover,

n
∑

k=mn+1
E[Δk'

′
k−mn ,k+1] =

n
∑

k=mn+1

k−mn

∑
i=1

Cov (Δk , '
′
i,k+1 − '

′
i−1,k+1) .

Applying again Rio’s covariance inequality, for k > i, we have

|||Cov (Δk , '
′
i,k+1 − '

′
i−1,k+1))||| 6 2 ∫

2�(k−i)

0
Q|Δk |(u)Q|'′i,k+1−'

′
i−1,k+1 |

(u) du.

Since |Δk | ≲ ℎ−d/2n and |'′
i,k+1 − '

′
i−1,k+1| ≲ (nℎdn)

−1/2
, we have

sup
u∈[0,1]

Q|Δk |(u) ≲ ℎ−d/2n and sup
u∈[0,1]

Q|'′i,k+1−'
′
i−1,k+1 |

(u) ≲ (nℎdn)
−1/2

and consequently

|||Cov (Δk , '
′
i,k+1 − '

′
i−1,k+1)||| ≲

�(k − i)√nℎdn
.

So, we derive

n−1/2
|||||

n
∑

k=mn+1
E [Δk'

′
k−mn ,k+1]

|||||
≲ 1√n

n
∑

k=mn+1

k−mn

∑
i=1

�(k − i)√nℎdn
6

1
ℎdn

∑
j>mn

�(j).

Using Lemma 1, we obtain

lim
n→∞

1√n
n
∑

k=mn+1
E[Δk'

′
k−mn ,k+1] = 0. (5.12)

Now,

|||||
1√n

n
∑

k=mn+1
E [Δk('

′
k−1,k+1 − '

′
k−mn ,k+1)]

|||||
≲ 1
n

n
∑

k=mn+1

k−1
∑

j=k−mn+1
E[|ΔkΔj |].

Noting that

1
n

n
∑

k=mn+1

k−1
∑

j=k−mn+1
E[|ΔkΔj |] =

1
n

n−1
∑
j=2

(j+mn−1)∧n
∑

k=(j+1)∨(mn+1)
E[|ΔkΔj |]
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and using Lemma 3, we obtain

1
n

n
∑

k=mn+1

k−1
∑

j=k−mn+1
E[|ΔkΔj |] ≲ mnℎd�n × ℎ

d(1−�)
n
nw2

n

n
∑
j=1

w2
j .

Using assumption (H2) and Lemma 1, we derive

lim
n→∞

n−1/2
|||||

n
∑

k=mn+1
E [Δk ('

′
k−1,k+1 − '

′
k−mn ,k+1)]

|||||
= 0. (5.13)

Combining (5.10), (5.11), (5.12) and (5.13), we obtain

lim
n→∞

1√n
n
∑
k=1

E[Δk'
′(Wk)] = 0. (5.14)

So, in order to complete the proof, we have to prove that

lim
n→∞

1
n

n
∑
k=1

E[(Δ2k − E[Δ2k]) '
′′(Wk)] = 0. (5.15)

Let M = ⌈ℎ−d�n ⌉ where ⌈x⌉ is the smallest integer larger than x for any x ∈ ℝ. Since mnℎd�n → 0
and nℎd�n →∞, without loss of generality, we assume that mn 6 M 6 n. �en,

1
n

n
∑
k=1

E[(Δ2k − E[Δ2k]) '
′′(Wk)] = Dn + En + Fn

where

Dn =
1
n

n
∑
k=1

E [(Δ2k − E[Δ2k | k−M
−∞ ]) '

′′
(k−M)+,k+1] = 0,

En =
1
n

n
∑
k=1

E [(Δ2k − E[Δ2k | k−M
−∞ ]) ('

′′
k−1,k+1 − '

′′
(k−M)+,k+1)] ,

Fn =
1
n

n
∑
k=1

E [(E[Δ2k | k−M
−∞ ] − E[Δ2k]) '

′′
k−1,k+1]

with  k−M
−∞ = � (Xj ; j 6 k − M) and (k − M)+ = max{k − M, 0} for any 1 6 k 6 n. Moreover,

|En| 6
1
n

n
∑
k=1

E [(Δ
2
k + E[Δ2k | k−M

−∞ ])(2 ∧
||||||

k−1
∑

j=(k−M)++1

Δj√n

||||||)] 6
1
n

n
∑
k=1

(E1,k + E2,k + E3,k) .

where

E1,k = E [Δ
2
k

||||||

k−1
∑

j=(k−M)++1

Δj√n

||||||]
, E2,k = 2‖E[Δ2k | k−M

−∞ ] − E[Δ2k]‖1 and E3,k = E[Δ2k]
‖‖‖‖‖‖

k−1
∑

j=(k−M)++1

Δj√n

‖‖‖‖‖‖1
.
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Noting that |Fn| 6 1
2n ∑

n
k=1 E2,k , we obtain

1
n
|||||

n
∑
k=1

E [(Δ2k − E[Δ2k])'
′′(Wk)]

|||||
≲ |En|. (5.16)

Using |Δk | ≲ ℎ−d/2n and Lemma 3, we have

1
n

n
∑
k=1

E1,k ≲
1

n3/2ℎd/2n

n
∑
k=1

k−1
∑

j=(k−M)++1
E[|ΔkΔj |] ≲

ℎd/2n
n3/2w2

n

n
∑
k=1

k−1
∑

j=(k−M)++1
w2
j

= ℎd/2n
n3/2w2

n (
M
∑
k=1

k−1
∑
j=1

w2
j +

n
∑
k=M+1

k−1
∑

j=k−M+1
w2
j ) 6

2Mℎd�n√
nℎdn

× ℎ
d(1−�)
n
nw2

n

n
∑
j=1

w2
j .

Using (H2), we obtain

1
n

n
∑
k=1

E1,k ≲
Mℎd�n√
nℎdn

. (5.17)

In the other part, using Lemma 4 with p = 1 and r = ∞, we have

1
n

n
∑
k=1

E2,k ≲ ℎ−dn �(M). (5.18)

Now, we note that

1
n

n
∑
k=1

E3,k 6
1
n3/2

n
∑
k=1

E[Δ2k] ×

√
k−1
∑

j=(k−M)++1
E[Δ2j ] + 2

k−1
∑

j=(k−M)++1

j−1
∑

i=(k−M)++1
E[ΔiΔj]. (5.19)

Keeping in mind that |Δj | ≲ ℎ−d/2n , we have

k−1
∑

j=(k−M)++1
E[Δ2j ] ≲ Mℎ−dn . (5.20)

Lemma 5.1. For any positive integer M such that mn 6 M 6 n, we have

sup
16k6n

k−1
∑

j=(k−M)++1

j−1
∑

i=(k−M)++1
|E[ΔiΔj]| ≲ n(mnℎd�n + ℎ−dn ∑

j>mn

�(j)) .

Combining (5.2), (5.19), (5.20) and Lemma 5.1, we obtain

1
n

n
∑
k=1

E3,k ≲
√

M
nℎdn

+ mnℎd�n + ℎ−dn ∑
j>mn

�(j). (5.21)
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From (5.16), (5.17), (5.18) and (5.21) and M = ⌈ℎ−d�n ⌉ , we derive

1
n
|||||

n
∑
k=1

E [(Δ2k − E[Δ2k]) '
′′(Wk)]

|||||
≲ 1√

nℎdn
+ M1/��(M) +

√
1

nℎd(1+�)n
+ mnℎd�n + ℎ−dn ∑

j>mn

�(j).

Using Lemma 1 and keeping in mind that nℎd(1+�)n → ∞ and ∑k>0 k1/��(k) < ∞, we obtain (5.15).

Finally, combining (5.7), (5.8), (5.9), (5.14) and (5.15), we derive

lim sup
n→∞

|In(')| ≲ "� 2x .

Since " is arbitrarily small, we obtain limn→∞ |In(')| = 0. �e proof of �eorem 1 is complete. □

Proof of Lemma 5.1. Let 1 6 k 6 n and mn 6 M 6 n be �xed. In the sequel, we denote

S(k) ∶=
k−1
∑

j=(k−M)++1

j−1
∑

i=(k−M)++1
|E[ΔiΔj]|.

Keeping in mind Lemma 3 and (5.4), for any 1 6 i < j 6 n, we have

E[|ΔiΔj |] ≲
w2
i ℎdn
w2
n

and |E[ΔiΔj]| ≲
w2
i ℎdn�(j − i)
ℎdi ℎdj w2

n
.

Assume that k 6 mn 6 M 6 n. Using (H2), we have

S(k) ≲
k−1
∑
j=1

j−1
∑
i=1

w2
i ℎdn
w2
n

6 mn
n
∑
i=1

w2
i ℎdn
w2
n

= nmnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
i=1

w2
i ≲ nmnℎd�n .

If mn < k 6 M 6 n then

S(k) =
k−1
∑
j=1

j−1
∑
i=1

|E[ΔiΔj]| =
mn

∑
j=1

j−1
∑
i=1

|E[ΔiΔj]| +
k−1
∑

j=mn+1

j−mn

∑
i=1

|E[ΔiΔj]| +
k−1
∑

j=mn+1

j−1
∑

i=j−mn+1
|E[ΔiΔj]|

≲
mn

∑
j=1

j−1
∑
i=1

w2
i ℎdn
w2
n
+

k−1
∑

j=mn+1

j−mn

∑
i=1

w2
i ℎdn�(j − i)
ℎdi ℎdj w2

n
+

k−1
∑

j=mn+1

j−1
∑

i=j−mn+1

w2
i ℎdn
w2
n

≲ mnℎdn
w2
n

n
∑
i=1

w2
i +

1
w2
n

k−1−mn

∑
i=1

w2
i

ℎdi

k−1
∑
j=i+mn

�(j − i) +
k−2
∑
i=2

w2
i ℎdn
w2
n

(i+mn−1)∧(k−1)
∑

j=(i+1)∨(mn+1)
1

≲ nmnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
i=1

w2
i + ×

ℎdn
nw2

n

n
∑
i=1

w2
i

ℎdi
× n
ℎdn

∑
j>mn

�(j) + nmnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
i=1

w2
i .

Using (H1) and (H2), we get

S(k) ≲ n(mnℎd�n + ℎ−dn ∑
j>mn

�(j)) . (5.22)
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If mn 6 M < k 6 n then

S(k) =
k−M+mn

∑
j=k−M+1

j−1
∑

i=k−M+1
|E[ΔiΔj]| +

k−1
∑

j=k−M+mn+1

j−mn

∑
i=k−M+1

|E[ΔiΔj]| +
k−1
∑

j=k−M+mn+1

j−1
∑

i=j−mn+1
|E[ΔiΔj]|

≲
k−M+mn

∑
j=k−M+1

j−1
∑

i=k−M+1

w2
i ℎdn
w2
n
+

k−1
∑

j=k−M+mn+1

j−mn

∑
i=k−M+1

w2
i ℎdn�(j − i)
ℎdi ℎdj w2

n
+

k−1
∑

j=k−M+mn+1

j−1
∑

i=j−mn+1

w2
i ℎdn
w2
n

≲ mnℎdn
w2
n

n
∑
i=1

w2
i +

k−1−mn

∑
i=k−M+1

k−1
∑
j=i+mn

w2
i �(j − i)
ℎdi w2

n
+

k−2
∑

i=k−M+2

w2
i ℎdn
w2
n

(k−1)∧(i+mn−1)
∑

j=(i+1)∨(k−M+mn+1)
1

≲ nmnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
i=1

w2
i +

ℎdn
nw2

n

n
∑
i=1

w2
i

ℎdi
× n
ℎdn

∑
j>mn

�(j) + nmnℎd�n × ℎ
d(1−�)
n
nw2

n

n
∑
i=1

w2
i .

Using (H1) and (H2), we get again the bound (5.22). �e proof of Lemma 5.1 is complete. □

Proof of �eorem 2. �e proof is a direct consequence of Proposition 3, �eorem 1 and Slutsky’s

lemma. It is le� to the reader. □
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