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S–UNIFORM SCALAR INTEGRABILITY AND
STRONG LAWS OF LARGE NUMBERS FOR PETTIS

INTEGRABLE FUNCTIONS WITH VALUES IN A
SEPARABLE LOCALLY CONVEX SPACE

CHARLES CASTAING AND PAUL RAYNAUD DE FITTE

Abstract. Generalizing techniques developed by Cuesta and Matrán
for Bochner integrable random vectors of a separable Banach space,
we prove a strong law of large numbers for Pettis integrable ran-
dom elements of a separable locally convex space E. This result
may be seen as a compactness result in a suitable topology on the
set of Pettis integrable probabilities on E.

Contents

1. Introduction 4.1
2. Basic definitions and results 4.4
2.1. The locally convex space E 4.4
2.2. Probability laws and narrow topology 4.5
2.3. Pettis integrability and S–uniform scalar integrability 4.8
3. Narrow convergence and uniform integrability 4.13
4. Strong law of large numbers 4.19
5. Generalized Kantorovich functionals on the space of

S–uniformly scalarly integrable laws 4.25
6. The “sharp topology” on the space of S–uniformly scalarly

integrable laws 4.36
References 4.38

1. Introduction

In [13] and [14], J. A. Cuesta–Albertos and C. Matrán–Bea proved
a very general strong law of large numbers (SLLN) for a sequence of
Bochner integrable random elements of a separable Banach space, with-
out geometric condition on the space. Though formulated in a more
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convenient way, their result (e.g. [13], Theorem 3) is equivalent to the
following:

Theorem . Let (Xn)n be a pairwise independent sequence of Bochner
integrable random vectors of a separable Banach space E, defined on a
probability space (Ω,F , µ), such that

(i) the sequence (Pn)n = (1/n
∑n

i=1 PXi)n is tight (we denote by PX
the law of a random variable X),

(ii) the function ‖.‖ is uniformly integrable w.r.t. the sequence (Pn)n,
i.e.

lim
a→+∞

sup
n∈N∗

∫
{‖.‖>a}

‖x‖dPn(x) = 0,

(iii) for almost every ω ∈ Ω, ‖.‖ is uniformly integrable w.r.t. the
sequence of empirical laws (1/n

∑n
i=1 δXi(ω))n (where δx denotes

the Dirac mass at point x),

Then (Xn)n satisfies the SLLN, i.e.

lim
n→+∞

1

n

n∑
i=1

(Xi − EXi) = 0 a.e.

Note that Condition (ii) may be written

lim
a→+∞

sup
n∈N∗

∫
{‖.‖>a}

sup
x′∈BE′

|〈x′, x〉|dPn(x) = 0,

where BE′ denotes the closed unit ball of the dual space E ′. This
condition is stronger than

(ii)′ lim
a→+∞

sup
n∈N∗

sup
x′∈BE′

∫
|〈x′, .〉|>a}

|〈x′, x〉|dPn(x) = 0.

Let us define analogously Condition (iii)′ for the empirical laws, by
interverting an integral and a supremum in Condition (iii).

Using some of the ideas of [13, 14], we prove in this paper a SLLN
for a sequence (Xn)n of random elements of a separable locally convex
space E, under some hypothesis on E that are satisfied in particular
if E is Suslin. In the case when E is a Banach space, our result may
be formulated as the above theorem, replacing (ii) by (ii)′ and (iii) by
(iii)′. The random vector Xn (n ∈ N∗) need not be Bochner integrable,
but simply Pettis integrable.

Our approach is completely different from that of [24, 34, 42], where
it is proved that a non–measurable function X with values in a non–
separable Banach space “satisfies the SLLN” if and only if the upper
integral

∫ ∗ ‖X‖ is finite. On the contrary, we are concerned here with
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(measurable) separably valued random elements X of E, with possibly∫
‖X‖ = +∞ for a continuous seminorm ‖.‖ on E. All random vectors

X considered in this paper are measurable (i.e. X−1(B) is measurable
for every Borel subset B) and have Radon laws.

Note that, if E is Suslin, (E, σ(E,E ′)) is also Suslin, with the same
Borel tribe and the same Pettis integrable random vectors as E. Thus
our new SLLN also provides a limit theorem in the σ(E,E ′) topology.
Another application is given in the case of elements of L1

E′ [E], where
E is a separable Banach space (see [25] about the space L1

E′ [E]): we
obtain a SLLN in the topology of compact convergence on E ′.

We begin, in Section 2, with some basic definitions and results: first,
we give the topological properties of the space E that will be needed
in the sequel, then we prove a Glivenko–Cantelli type theorem, gener-
alizing to Lindelöf spaces that of [13, 14] (given for Polish spaces), but
with an additional hypothesis. As in [13, 14], this result is the first step
of our proof of the SLLN. We end this section with the definitions and
some elementary properties of Pettis integrable laws and S–uniformly
scalarly integrable families of laws.

The second step of the proof of the SLLN is proved in Section 3,
where we give a general lemma on narrow convergence, uniform inte-
grability and equicontinuity. This result also yields a Vitali conver-
gence theorem for Pettis integrable laws, through a Vitali convergence
theorem of Geitz-Musia l-Castaing [23, 32, 9] and a Skorokhod repre-
sentation theorem of A. Jakubowski [26]. In particular, this result is a
criterion for Pettis integrability. An application of this result to Komlós
convergence of Young measures is also given.

We are then ready to state the SLLN: this is done in Section 4. We
also give some applications and an example which shows that this result
really applies to non necessarily Bochner integrable random vectors.

In Section 5, we define and study a family of semi–distances on the
set MU1

E of S–uniformly scalarly integrable Radon laws on E. This set
contains the Pettis integrable Radon laws on E. Our semi–distances
are “weak analogues” of the Lévy-Wasserstein distance, whose prop-
erties were used by Cuesta and Matrán [14] to prove the SLLN for
Bochner integrable random vectors. As an application, we get another
Glivenko–Cantelli type theorem that contains the SLLN proved in Sec-
tion 4.

Unlike the convergence associated with the Lévy-Wasserstein dis-
tance, convergence for this family of semi–distances does not imply
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narrow convergence. This leads us to define in Section 6 a new topol-
ogy on MU1

E, which is the supremum of the topology of narrow con-
vergence and of the topology associated with our semi–distances. The
SLLN proved in this paper appears to be a compactness result in this
topology, as well as the SLLN in [13, 14] is a compactness result in the
topology associated with the Lévy-Wasserstein distance.

2. Basic definitions and results

2.1. The locally convex space E. Throughout, E is a Hausdorff
locally convex topological vector space, and E ′ its topological dual.
We assume that

(E1) E is separable,
(E2) there exists a countable set of continuous functions on E which

separates the points of E.

Note that Property (E2) is equivalent to Property (E′2) below:

(E′2) there exists a countable set of continuous bounded functions on
E which separates the points of E.

Indeed, if (fn)n is a sequence of continuous functions on E which sepa-
rates the points of E, let us define, for each n ∈ N and k ∈ N a bounded
continuous function fn,k on E by fn,k(x) = fn(x) if −k ≤ fn(x) ≤ k,
fn,k(x) = k if fn(x) > k and fn,k(x) = −k if fn(x) < k. The sequence
(fn,k)n,k also separates the points of E.

Properties (E1) and (E2) are satisfied in particular if E is a Suslin
space (see [7, 40]), i.e. if E is the continuous image of a Polish space.
Here are two examples of non–Suslin Hausdorff locally convex spaces
E satisfying (E1) and (E2). Let S = NN, endowed with the product
topology (where N is endowed with the discrete topology). The space S
is Polish. Consider the spaces Cp(S) and Cc(S) of continuous functions
on S, endowed respectively with the topology of pointwise convergence
on S and the topology of uniform convergence on compacta. J.P.R
Christensen has proved that Cc(S) is not Suslin (see Corollary of The-
orem 0.3 and the more general Theorem 3.7 in [11]). From Theorem
5.7.5 of [31], this implies that also Cp(S) is not Suslin. But, from Corol-
lary 4.2.2 in [31], since S is separable and metrizable, Cp(S) and Cc(S)
are separable. Furthermore, let D be a countable dense subset of S,
and define, for each x ∈ D, a continuous function ϕx : Cp(S) → R
by ϕx(f) = f(x). Then the countable set {ϕx; x ∈ D} separates the
points of Cp(S). Thus Cp(S) and Cc(S) satisfy (E1) and (E2).

The set of equicontinuous subsets of E ′ will be denoted by S. The
following topological results about E are proved in [39] and [8]. We
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recall that the elements of S are relatively compact subsets of E ′ en-
dowed with the topology σ(E ′, E), and that the topology of E is the
topology of uniform convergence on the elements of S. This topology
will be denoted by τS. It is also defined by the family of seminorms
NA(x) = supx′∈A |〈x′, x〉| (A ∈ S). Each locally convex topology on
E which is consistent with the duality 〈E, E ′〉 is the topology τS′ of
uniform convergence on the elements of a set S′ of σ(E ′, E)-relatively
compact subsets of E ′, which covers E ′.

2.2. Probability laws and narrow topology. The Borel tribe of a
topological space T with topology τ will be denoted by BT or Bτ . If
(S,Σ, λ) is a probability space, a measurable function X : (S,Σ, λ)→
(T,BT ) will be called a random element of T , and its law denoted by
PX . A probability measure on (T,BT ) will also be called a law on T .

A set D of laws on T is said to be (uniformly) tight if, for every
ε > 0, there exists a compact subset K of T such that, for any P ∈ D,
P (K) ≥ 1− ε. A similar definition holds for a sequence of laws. A law
P on T is tight if the set {P} is tight.

If P is a tight law on E, then it is a Radon measure, i.e. P is
inner regular w.r.t. the compact subsets of E. Indeed, from Property
(E2), every compact subset K of E is metrizable (because its topology
coincides with the topology generated by a countable set of continuous
functions on E which separates the points of E). From [40], Proposition
6 page 117, K is a Radon space (i.e. every finite Borel measure on K is
Radon). Let B ∈ BE and ε > 0. As P is tight, there exists a compact
subset K of E such that P (B∩K) ≥ P (B)−ε/2. But, as the restriction
of P on K is Radon, there exists a compact subset K′ of K ∩ B such
that

P (B ∩ K′) ≥ P (B ∩ K)− ε/2 ≥ P (B)− ε,

which proves that P is Radon. Conversely, if P is Radon, it is clear
that P is tight.

Most of the sequences of laws on E we shall consider will be tight.
This is why we shall be mainly interested in Radon laws.

If E is Suslin, then E is a Radon space ([40], Theorem 10 page 122)
and, for any weaker Hausdorff topology τ on E, the Borel sets (thus
also the laws) associated with τS and τ coincide ([40], Corollary 2 page
101) and (E, τ) is Radon.

Definition 2.1. Let T be a set endowed with a topology τ . We denote
by M1((T, τ)) or M1(τ) the set of Radon laws on T . The narrow
topology associated to τ on the space M1(τ) is the coarsest topology
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for which the functions {
M1(τ) → R
P 7→ P (f)

are continuous for every bounded continuous f : (T, τ)→ R.
This topology will be denoted by [(T, τ) or [(τ).

Note that, if T is not completely regular, this topology may be
strictly coarser than the weak topology w(τ) in the sense of Topsøe
[44]. This will not make a big difference for us in this paper: the topol-
ogy [(τ) is Hausdorff if and only if (T, τ) is an Urysohn space (that is,
the set of continuous functions on T separates the points of T ); in this
case, the topologies w(τ) and [(τ) coincide on any subset K of M1(τ)
which is compact for w(τ).

It is clear from the definition that [(τ) is uniformizable, i.e. com-
pletely regular. Consequently, a subset D of M1(τ) is relatively com-
pact for [(τ) (i.e. D is contained in a [(τ)–compact subset ofM1(τ)) if
and only if every net of elements of D has a subnet which converges to
an element ofM1(τ). A proof of this characterization of relatively com-
pact subsets of a completely regular space is given in [36]. Definitions
and properties of nets and subnets can be found in [28].

A subset D ofM1(τ) is said to be tight if, for each ε > 0, there exists
a compact subsetK of (T, τ) such that P (K) ≥ 1−ε for every P ∈ D. If
D is tight, then it is relatively compact for [(τ) (in fact it is relatively
compact for w(τ), see e.g. [44, 40]). When the converse implication
holds true, (T, τ) is said to be a Prokhorov space. Polish spaces are
Prokhorov spaces (see [37, 6, 35, 44, 40]), but not all Lusin spaces:
for example, if E is a Fréchet space, the Lusin space (E, σ(E,E ′) is a
Prokhorov space if and only if it is nuclear [22] (in particular, if E is
a separable Banach space, then (E, σ(E,E ′)) is a Prokhorov space if
and only if E is finite dimensional).

According to Corollary 10.3 of [44], since there exists a countable
set of continuous bounded functions on E that separates the points
of E, each relatively compact subset D of (M1(E), [(τS)) is relatively
sequentially compact, i.e. any sequence in D admits a convergent sub-
sequence.

Definition 2.2. ([30], page 373) Let (Pn) and (Qn) be two sequences
in M1(T, τ), where (T, τ) is a topological space. We shall say that
(Pn) and (Qn) are [(τ)–equivalent (or shortly equivalent) if, for every
subsequence (Pnk)k of (Pn) which narrowly converges to a limit P ,
the subsequence (Qnk)k also converges to P , and, conversely, for every
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subsequence (Qnk)k of (Qn) which narrowly converges to a limit P , the
subsequence (Pnk)k also converges to P .

If (Pn) is relatively sequentially compact for [(τ) and if (Pn) and
(Qn) are [(τ)–equivalent, then (Qn) is relatively sequentially compact
for [(τ).

Lemma 2.3. Let T be a topological space such that there exists a count-
able set H of continuous bounded functions on T , which separates the
points of T . Let (Pn) and (Qn) be sequences in M1(T ) such that the
set

K = {Pn; n ∈ N} ∪ {Qn; n ∈ N}
is relatively sequentially compact in (M1(T ), [(T )). Then (Pn) and
(Qn) are equivalent if and only if

∀f ∈ H, lim
n→+∞

Pn(f)−Qn(f) = 0.

Proof. Let Let [ = [(T ) and let [′ be the coarsest topology onM1(T )
such that the mappings{

M1(T ) → R
P 7→ P (f)

are continuous for every f ∈ H. The topology [′ is Hausdorff and
coarser than [. We only need to prove that, for any sequence (Rn) in
K, (Rn) converges for [ to a law R if and only if it converges to R for [′.
If (Rn) converges to R for [, then it is clear that it converges to R for [′.
Conversely, assume that (Rn) converges to R for [′. As K is relatively
sequentially compact for [, we can extract from any subsequence (R′n)
of (Rn), a subsequence (R′′n) which converges for [ to a law P , and
necessarily P = R. Thus (Rn) converges to R for [.

The following Glivenko–Cantelli type result is an adaptation of The-
orem 2 in [13]. It will be the first main step in the proof of the SLLN.
We denote by δx the Dirac mass at point x.

Theorem 2.4 (Glivenko–Cantelli Theorem). Let T be a topo-
logical space such that there exists a countable set H of continuous
bounded functions on T , which separates the points of T . Let (Xn)
be a sequence of pairwise independent random elements of T , defined
on a probability space (Ω,F , µ). Assume that the sequence (Pn)n =
(1/n

∑n
i=1 PXi)n is tight. Then, µ–almost everywhere, the sequence

(Qω
n)n = (1/n

∑n
i=1 δXi(ω))n is tight and (Pn)n and (Qω

n)n are [(T )–
equivalent.
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Proof. For any bounded (borel) measurable function f : T → R, we
have, for almost every ω ∈ Ω,

(2.1) lim
n→+∞

1

n

n∑
i=1

(f(Xi(ω))− Ef(Xi)) = 0 a.e.

Indeed, this is a consequence of the SLLN proved by Csörgo, Tandori
and Totik ([12], Theorem 1), or of the similar one proved by Etemadi
([19], Corollary 1). As H is countable, we have, for almost every ω ∈ Ω,

∀f ∈ H, lim
n→+∞

1

n

n∑
i=1

(f(Xi(ω))− Ef(Xi)) = 0.

From Lemma 2.3, as {Pn; n ∈ N} is relatively compact, we only
need to show that, for almost every ω ∈ Ω, {Qω

n; n ∈ N} is relatively
compact.

For each m ∈ N∗, there exists a compact subset Km of T such that,
for any n ∈ N∗, Pn(Km) > 1 − 1/m. Application of formula (2.1) to
the function f = 1lKm gives

lim inf Qω
n(Km) ≥ 1− 1

m
a.e.,

i.e. there exists for µ-almost every ω ∈ Ω an integer n(ω,m) such that

n ≥ n(ω,m)⇒ Qω
n(Km) ≥ 1− 2

m
.

Let

K(ω,m) = Km ∪ {Xi(ω); 1 ≤ i ≤ n(ω,m)}.
Then K(ω,m) is compact and, for any n ∈ N∗,

Qω
n(K(ω,m)) ≥ 1− 2

m
.

So, there exists Ω′ ∈ F with µ(Ω′) = 1 such that, for every ω ∈ Ω′,
(Qω

n)n is tight, thus relatively compact.

2.3. Pettis integrability and S–uniform scalar integrability. A
law P on E is said to be scalarly integrable if , for every x′ ∈ E ′,∫
|x′| dP is finite. A scalarly integrable law P is Pettis integrable if,

for each B ∈ BE, there exists an element of E, denoted by
∫
B
x dP (x),

such that, for every x′ ∈ E ′,

〈x′,
∫
B

x dP (x) 〉 =

∫
B

〈x′, x〉 dP (x).
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A random element of E is scalarly integrable (respectively Pettis in-
tegrable) if its law is scalarly integrable (respectively Pettis integrable).
If X : (Ω,F , µ)→ E is Pettis integrable, we use the notations

EX =

∫
X dµ =

∫
E

x dPX(x).

This definition of Pettis integrability of a random element seems
somewhat weaker than the usual one: if X is Pettis integrable in our
sense, then, for each B ∈ F of the form B = X−1(B̃) (B̃ ∈ BE), there
exists an element

∫
B
X dµ of E, such that, for every x′ ∈ E ′,

〈x′,
∫
B

X dµ〉 =

∫
B

〈x′, X〉 dµ.

But, for X to be Pettis integrable in the usual sense (e.g. [43]), we
should have the same property for any B ∈ F . We shall see later in
Proposition 2.11 that both definitions coincide if E is quasi–complete
(i.e. if every bounded closed subset of E is complete).

Let us first investigate some links between Pettis integrability and
uniform integrability.

Definition 2.5. Let D be a set of laws on E and H a set of measur-
able functions defined on E with values in R. We shall say that H is
uniformly integrable w.r.t. D if

(2.2) lim
a→+∞

sup
f∈H, P∈D

∫
|f |≥a
|f | dP = 0.

If H is a family (fi)i∈I , we shall say that H is uniformly integrable
w.r.t. D if {fi; i ∈ I} is uniformly integrable w.r.t. D. We shall make
the analogous convention for D.

Equation (2.2) implies in particular that each f ∈ H is integrable
w.r.t. each P ∈ D.

It is easy to extend de la Vallée Poussin’s criterion to this definition.
We recall [29] that an N -function is a (necessarily continuous) convex

even function ϕ : R→ R such that limt→0
ϕ(t)
t

= 0 and limt→+∞
ϕ(t)
t

=
+∞.
Lemma 2.6 (Generalized de la Vallée Poussin’s criterion). Let
D and H be as in Definition 2.5. The following are equivalent:

(i) H is uniformly integrable w.r.t. D.
(ii) There exists a convex even function ϕ : R→ [0,+∞[ such that

limt→+∞ ϕ(t)/t = +∞ and

(2.3) sup
f∈H, P∈D

∫
ϕ ◦ f dP < +∞.
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(iii) There exists an N-function ϕ satifying (2.3).

Proof. Let XP (P ∈ D) be the coordinate mappings on ED and con-
sider the probability space

(S,Σ, λ) = (ED, ⊗
P∈D
BE, ⊗

P∈D
P ).

Then, for each P , the law of XP is P , and we have, for every f ∈ H
and every Borel subset A of E,∫

A

f dP =

∫
X−1
P (A)

f ◦XP dλ.

Thus, Condition (2.2) may be written

lim
a→+∞

sup
f∈H, P∈D

∫
|f◦XP |≥a

|f ◦XP | dλ = 0.

Analogously, Inequality (2.3) may be written

sup
f∈H, P∈D

∫
ϕ(|f ◦XP |) dλ < +∞.

The conclusion follows from the usual de la Vallée Poussin’s criterion
(e.g. [16, 33], see also [1] for a sophisticated version), applied to the
set {f ◦XP ; f ∈ H, P ∈ D}.

Definition 2.7. We shall say that a set D of laws on E is S–uniformly
scalarly integrable if every element of S is uniformly integrable w.r.t.
D.

A set H of random elements of E defined on a probability space
(S,Σ, λ) is S–uniformly scalarly integrable if the set {PX ; X ∈ H} is
S–uniformly scalarly integrable.

Our definition of S–uniform scalar integrability is slightly less gen-
eral than the definition of S–uniform scalar integrability in [3].

Remark 2.8. (S–uniform scalar integrability and Pettis inte-
grability) From Lemma in [32], if P is a Pettis integrable law on E,
then {P} is S–uniformly scalarly integrable. The converse implication
is true if E is a separable Fréchet space (see Proposition 2.9 below, and
[45, 33] for the case of Banach spaces), but not in general: for exam-
ple, if E is a separable Banach space, (E, σ(E,E ′)) is Suslin, with the
same Borel tribe and the same Pettis integrable laws as E. But the
S–uniformly scalarly integrable laws on (E, σ(E,E ′)) are simply the
scalarly integrable laws on E, which are not always Pettis integrable
(see Example 4.1 of [33]).
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Proposition 2.9. Suppose that E is a Fréchet space and let P be a
law on E. If {P} is S–uniformly scalarly integrable, then P is Pettis
integrable.

Proof. Let B ∈ BE. Let y be the linear form on E ′ defined by y(x′) =∫
B
x′ dP . Let E ′σ = (E ′, σ(E ′, E)). The dual of E ′σ is E. Thus, in order

to prove that y ∈ E, we only need to show that y is continuous on E ′σ.
But, from a theorem of Banach ([8], Corollaire 1 page III.21), as E is
complete, this amounts to the same as to show that, for any A ∈ S, the
restriction of y to A is continuous for the topology induced by σ(E ′, E).
Let A ∈ S. If (x′n)n is a sequence of elements of A which converges
to an element x of A, it is straightforward from Vitali Theorem that
y(x′n) converges to y(x′). As A is metrizable for σ(E ′, E), this proves
that y is continuous on A for σ(E ′, E).

The set of S–uniformly scalarly integrable random vectors defined
on (Ω,F , µ) is endowed with the family of semi–norms

X 7→ NA(X) := sup
x′∈A

∫
|〈x′, X〉| dµ (A ∈ S)

(we have NA(X) < +∞ because PX is S–uniformly scalarly inte-
grable).

Here is an easy lemma.

Lemma 2.10. If X and Y are Pettis integrable random vectors of E
defined on (Ω,F , µ), then, for every A ∈ S,

NA(EX − EY ) ≤ NA(X − Y ).

Proof. . Indeed we have, for any A ∈ S,

NA(EX − EY ) = sup
x′∈A
|〈x′,

∫
X dµ−

∫
Y dµ〉|

≤ sup
x′∈A

∫
|〈x′, X − Y 〉| dµ = NA(X − Y ).

We now prove that, if E is quasi–complete, our definition of Pettis
integrability of random vectors is equivalent to the usual one.

Proposition 2.11. Assume that E is quasi–complete. Let X be a
scalarly integrable random element of E defined on a probability space
(Ω,F , µ). Then X is Pettis integrable if and only if, for any B ∈ F ,
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there exists an element of E, that we shall denote by
∫
B
X dµ, such

that, for every x′ ∈ E ′,

〈x′,
∫
B

X dµ〉 =

∫
B

〈x′, X〉 dµ.

Proof. The sufficiency is obvious.
For the necessity, let us assume that X is Pettis integrable. Let FX

be the subtribe of F generated by X. For every FX–measurable simple
function h : Ω→ R, hX is Pettis integrable.

Now, if h is a bounded countably valued FX–measurable function
defined on Ω, it follows from quasi–completeness of E and countable
additivity of the mapping FX → E, B →

∫
B
X dµ (see [43], this is

a consequence of the Orlicz–Pettis Theorem) that hX is still Pettis
integrable.

Let h be a bounded FX–measurable function defined on Ω, and
let (hn)n be a sequence of FX–measurable countably valued functions
which uniformly converges to h. It is easy to see that the sequence
(
∫
hnX dµ)n is scalarly bounded, thus bounded. Furthermore, let A ∈

S, ε > 0 and n ∈ N such that, for any p ∈ N, ‖hn+p−hn‖∞ ≤ ε/NA(X).
We have, for any p ∈ N, using Lemma 2.10,

NA(Ehn+p − EhnX) ≤ NA((hn+p − hn)X)

= sup
x′∈A

∫
|hn+p − hn| |〈x′, X〉| dµ

≤ εNA(X),

which proves that (
∫
hnX dµ)n is Cauchy. From quasi–completeness of

E, it has a limit x ∈ E which satisfies 〈x′, x〉 =
∫
〈x′, hX〉 dµ.

Finally, let B ∈ F . Let h = E( 1lB/FX) be the conditional expec-
tation of 1lB given FX . The mapping hX is Pettis integrable and we
have, for any x′ ∈ E ′,

〈x′,
∫
hX dµ〉 =

∫
B

〈x′, X〉 dµ,

which proves our claim with
∫
B
X dµ =

∫
E( 1lB/FX)X dµ.

In the sequel all weakly integrable laws will be Radon. The set of
scalarly integrable (respectively Pettis integrable) Radon laws on E
will be denoted by MW1

E (respectively MP1
E). These sets obviously

remain the same if we replace τS by a topology consistent with 〈E, E ′〉
which has the same Borel sets.

The set of Radon S–uniformly scalarly integrable laws on E will be
denoted by MU1

E. We have thus MP1
E ⊂ MU1

E ⊂ MW1
E.
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From a result of the first author (given in [46], § 0.13, pages 17–19),
if E is weakly sequentially complete, then MP1

E = MW1
E.

3. Narrow convergence and uniform integrability

The following general lemma is essential in this section. It is the
second and last main step in our proof of the SLLN.

Lemma 3.1 (Narrow convergence and uniform integrability).

1. Let T be a separable topological space. Let (Pγ)γ∈Γ be a net of
laws on T , narrowly converging to a law P ∈ M1(T ). Let H be a set
of continuous functions on T with values in R and assume that H is
uniformly integrable w.r.t. (Pγ)γ. Then H is uniformly integrable w.r.t.
P and, for every f ∈ H,

(3.1) Pγ(f)→ P (f).

2. If furthermore H is equicontinuous, then the convergence in (3.1) is
uniform w.r.t. H.

Proof.
1. Step 1. We first prove the Lemma in the case when H has a single
element f . We assume also that f ≥ 0, the extension to general f
being standard. For every a > 0, let us define a continuous function
ua : R+ → R+ such that

ua(x) ≤ x for every x ≥ 0, ua(x) = x if x ≤ a and ua(x) = 0 if x > a+ 1.

We have, by Fatou’s Lemma, P (f) = lima→+∞ P (ua(f)). As, for any
a > 0,

P (ua(f)) = lim
γ
Pγ(ua(f)) ≤ sup

γ
Pγ(f) < +∞,

this proves that f is P–integrable.
Let ε > 0. There exists a > 0 such that P (f 1lf>a) < ε and

supγ Pγ(f 1lf>a) < ε. Thus

lim inf Pγ(f)− ε ≤ lim
γ
Pγ(ua(f)) ≤ P (f)

≤ P (ua(f)) + ε ≤ lim supPγ(f) + ε,

which proves Step 1.
Step 2. We now turn to the general case. Let ε > 0. Let a > 1 such

that

sup
f, γ

∫
|f |>a−1

|f | dPγ < ε.
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Let v : x 7→ x− ua−1(x). Using Step 1, we get, for each f ∈ H,∫
|f |>a
|f | dP ≤

∫
v(|f |) dP

= lim
γ∈Γ

∫
v(|f |) dPγ ≤ lim inf

γ∈Γ

∫
|f |>a−1

|f | dPγ < ε,

thus

sup
f∈H

∫
|f |>a
|f | dP < ε.

2. Step 1. Let us consider the semi–distance δ on T defined by
δ(x, y) = supf∈H |f(x)− f(y)|. From the equicontinuity of H, δ is con-
tinuous. Let T/δ be the separable metric space, quotient of T by the
equivalence relation δ(x, y) = 0, and let S be its completion, endowed

with the quotient distance δ̂. The canonical projection pr : T → S is

continuous. Let us denote by Q̂ the image pr(Q) on S of a probability

Q on T . The net (P̂γ)γ∈Γ narrowly converges to P̂ . On the other hand,

each f ∈ H may be written f = f̂ ◦ pr, for a function f̂ : T/δ → R.
We have, for all x, y ∈ T/δ,

(3.2) δ̂(x, y) = sup
f∈H
|f̂(x)− f̂(y)|,

so the set {f̂ ; f ∈ H} is uniformly equicontinuous, and its elements
may be extended over S. Let us use the same notation for any function

f̂ (f ∈ H) and its extension, and let Ĥ be the set of these extensions.

Formula (3.2) still holds true, and Ĥ is uniformly equicontinuous. Fur-
thermore we have, for each f ∈ H and each probability Q on T ,∫

T

fdQ =

∫
S

f̂dQ̂.

Therefore, we only need to show the lemma for S, (P̂γ)γ∈Γ and Ĥ.
Step 2. So, we can (and shall) make without loss of generality the

assumption that T is a Polish space endowed with a distance d, and
that H satisfies, for all x, y ∈ T ,

(3.3) sup
f∈H
|f(x)− f(y)| ≤ d(x, y).

From Van der Vaart and Wellner’s representation theorem ([49], Theo-
rem 1.10.3), there exist a net (Xγ)γ∈Γ of random elements of the Polish
space T , defined on a probability space (S,Σ, λ), and a random element
X of T defined on (S,Σ, λ), such that PXγ = Pγ (γ ∈ Γ), PX = P and

(Xγ)γ∈Γ converges almost uniformly to X (recall that Egorov’s theorem
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is no more valid for nets). Now, the line of proof is similar to that of
Proposition 2.1 in [3]: there exists for each ε > 0 a set Bε ∈ Σ such
that λ(Bε) ≥ 1− ε and (Xγ)γ∈Γ converges uniformly to X on Bε. Let
ε > 0. The family (f ◦Xγ)f,γ is uniformly integrable, thus there exists
η > 0 such that, for any A ∈ Σ,

λ(A) ≤ η ⇒ sup
f∈H,n∈N

∫
A

|f ◦Xγ| dλ <
ε

3
.

Let B = Bη. Let γ0 ∈ N such that

γ ≥ γ0 ⇒ sup
ω∈B

d(Xγ(ω), X(ω) <
ε

3
.

We have, for γ ≥ γ0,

sup
f∈H
|Pγ(f)− P (f)|

≤ sup
f∈H

(∫
B

|f ◦Xγ − f ◦X| dλ+ |
∫
Bc
f ◦Xγ dλ|+ |

∫
Bc
f ◦X dλ|

)
≤ ε

3
+
ε

3
+
ε

3
= ε.

Here is a first application of Lemma 3.1, with the help of a Vitali
theorem of K. Musia l [32] and of a Skorokhod representation theorem
of A. Jakubowski [26]. This result will not be needed in the proof of
the SLLN. Note that Musia l’s result was first given by R. Geitz [23]
for Banach spaces and perfect probability spaces. An alternative proof
of Musia l’s result is also given (for Banach spaces, but the arguments
remain unchanged in locally convex spaces) in [9] and [2].

Theorem 3.2 (Generalized Vitali convergence theorem). Let us
assume that E is quasi–complete. Let (Pn)n be a S–uniformly scalarly
integrable sequence in MP1

E, narrowly converging to a law P on E. Let
us also assume that (Pn)n is tight (we recall that, if E is not Prokhorov,
narrow convergence does not imply tightness). Then P ∈ MP1

E and

lim
n→+∞

∫
x dPn(x) =

∫
x dP (x).

Proof. From Jakubowski’s result ([26], Theorem 2), as (Pn)n is tight
and as the points of E are separated by a countable set of bounded
continuous functions on E, there exist a subsequence (Pnk)k of (Pn)n
and random elementsX andXk (k ∈ N) of E, defined on ([0, 1],B[0,1], λ)
(where λ is the Lebesgue measure on [0, 1]), such that PX = P , PXk =

Pnk (k ∈ N) and (Xk)k converges a.e. to X. From S–uniform scalar
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integrability of (Pn)n and Proposition 2.11, each Xn is Pettis integrable
in the usual sense. Furthermore, for each x′ ∈ E ′, from the usual Vitali
Theorem, (〈x′, Xk〉)k converges to 〈x′, X〉 in L1

R, because the sequence
(〈x′, Xk〉)k is uniformly integrable. Thus, for any B ∈ B[0,1] and any
x′ ∈ E ′, we have

lim
k→+∞

|
∫
B

〈x′, Xk〉 dλ−
∫
B

〈x′, X〉 dλ|

≤ lim
k→+∞

∫
B

|〈x′, Xk −X〉| dλ ≤ lim
k→+∞

∫
[0,1]

|〈x′, Xk −X〉| dλ = 0.

Furthermore, from Lemma 3.1, P is S–uniformly scalarly integrable,
i.e. for every A ∈ S, (〈x′, X〉)x′∈A is uniformly integrable.

From Musia l’s version of Vitali Theorem ([32], Theorem 1), this im-
plies that P ∈ MP1

E.
But, from Lemma 3.1,

lim
n→+∞

Pn(x′) = P (x′)

for every x′ ∈ E ′, uniformly on any element of S, i.e.

lim
n→+∞

〈x′,
∫
x dPn(x)〉 = 〈x′,

∫
x dP (x)〉

uniformly on any element of S.

Remark 3.3. Even if (Pn) is S–uniformly scalarly integrable, (Pn)
may be narrowly convergent but not tight. This can be illustrated as
follows, by a slight adaptation of an example of X. Fernique ([20], Ex-
emple 1.6.4). Let H be a separable Hilbert space and (ek)k∈N an orthog-
onal sequence of unit vectors of H. Assume that E = (H, σ(H,H ′)).
Let (αn)n∈N be a sequence of elements of ]0,1[ such that (n3 logαn)n is
bounded by a number β. Set, for every n ∈ N,

Pn = (1− αn)
∑
k∈N

αknδnek

(where δx denotes the Dirac measure concentrated on x). X. Fernique
has shown that (Pn) is not tight but narrowly converges to δ0.

It is easy to see that each Pn is Pettis integrable: for example, we
have

Pn(‖.‖) = n(1− αn)
∑
k∈N

αkn = n < +∞.

This proves that Pn is the law of a Bochner integrable random vector
of H, thus ([43], Theorem 3 or [33], Proposition 5.1) Pn is a Pettis
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integrable law on H. As E and H have the same Pettis integrable
laws, Pn is a Pettis integrable law on E.

Let us show that (Pn) is S–uniformly scalarly integrable. Let x′ =∑
k∈N λkek ∈ E. For any a > 0 and n ≥ 1, we have

Pn(|x′| 1l{|x′|>a}) = (1− αn)
∑

|λk|>a/n

αkn|nλk|.

But the number of indexes k such that λk > a/n is at most cn =
‖x′‖2n2/a2. Let us denote by [cn] the integer part of cn. As (αkn)k is
decreasing, and as |λk| ≤ ‖x′‖ for every k ∈ N, we have thus

Pn(|x′| 1l{|x′|>a}) ≤ (1− αn)
∑

0≤k≤[cn]−1

‖x′‖nαkn

= n‖x′‖(1− α[cn]
n )

≤ n‖x′‖ (1− exp(cn logαn))

≤ n‖x′‖(−cn logαn) ≤ β‖x′‖3

a
.

Thus
lim

a→+∞
sup
n∈N

Pn(|x′| 1l{|x′|>a}) = 0.

The following is an application of Lemma 3.1 and Theorem 3.2 pro-
viding a new Komlós type convergence result for Young measures.

We recall that a Young measure on E defined on a probability space
(Ω,F , µ) is a measurable mapping from (Ω,F , µ) to (M1(E), [(τS)).
The set of Young measures on E defined on (Ω,F , µ) is denoted by
Y(Ω,F , µ, E).

Lectures on Young measures are [48] and [4].

Theorem 3.4. Suppose that E is a separable Fréchet space and that
H is a subset of Y(Ω,F , µ, E) satifying

(i) for any sequence (λn)n in H, there exists a sequence (νn)n in
Y(Ω,F , µ, E) such that, for every n ∈ N, νn is in the convex
hull co{λm; m ≥ n} of {λm; m ≥ n} and such that, for almost
every ω ∈ Ω, (νnω)n narrowly converges in M1(E);

(ii) for each ω ∈ Ω, the set Hω = {λω; λ ∈ H} is S–uniformly
scalarly integrable.

Then, for any sequence (λn)n in H, there exist a subsequence (λα(n))n
and λ∞ ∈ Y(Ω,F , µ, E) such that, for each further subsequence (λβ(n))n,
the following hold:

(a) for almost every ω ∈ Ω, the sequence
(

1/n
∑n

j=1 λ
β(j)
ω

)
n

nar-

rowly converges to λ∞ω ,
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(b) λ∞ω ∈ MP1
E a.e.,

(c) for almost every ω ∈ Ω,

lim
n→+∞

∫
E

x
1

n

(
n∑
j=1

λβ(j)
ω

)
(dx) =

∫
E

xλ∞ω (dx).

Proof. In view of (i) and Proposition 3.8 in [10], for any sequence
(λn)n in H, there exist a subsequence (λα(n))n and λ∞ ∈ Y(Ω,F , µ, E)
such that, for each further subsequence (λβ(n))n and for almost every

ω ∈ Ω, the sequence
(

1/n
∑n

j=1 λ
β(j)
ω

)
n
[(τS)–converges to λ∞ω (the

negligible subset depends on the subsequence (λβ(n))n). Let (λβ(n))n be
a subsequence of (λα(n))n and N the corresponding negligible set. Fix
ω ∈ Ω \N . For simplicity set

P n
ω =

1

n

n∑
j=1

λβ(j)
ω .

From Proposition 2.9, and Condition (ii), each P n
ω is Pettis integrable.

The conclusion follows from Theorem 3.2.

The use of Lemma 3.1 in the proof of the SLLN will be made through
the following theorem.

Theorem 3.5. Let (Pn) and (Qn) be two [(τS)–equivalent and [(τS)–
relatively sequentially compact S–uniformly scalarly integrable sequences
in MP1

E. Then

lim
n→+∞

(

∫
x dPn −

∫
x dQn) = 0.

Proof. Let A ∈ S. Let (P ′n, Q
′
n) be a subsequence of (Pn, Qn). From

the relative sequential compactness of (Pn) and the equivalence of (Pn)
and (Qn), there exists a subsequence (P ′′n , Q

′′
n) of (P ′n, Q

′
n) such that

(P ′′n ) and (Q′′n) narrowly converge to a law P . From Lemma 3.1, P is
S–uniformly scalarly integrable, and

lim
n→+∞

sup
x′∈A
|
∫
〈x′, x〉 dP ′′n −

∫
〈x′, x〉 dP | = 0

= lim
n→+∞

sup
x′∈A
|
∫
〈x′, x〉 dQ′′n −

∫
〈x′, x〉 dP |,

hence

lim
n→+∞

NA(

∫
x dP ′′n −

∫
x dQ′′n) = 0.
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Thus

lim
n→+∞

NA(

∫
x dPn −

∫
x dQn) = 0.

4. Strong law of large numbers

Theorem 4.1 (SLLN for Pettis integrable random vectors). Let
(Xn)n be a sequence of pairwise independent Pettis integrable random
elements of E, defined on a probability space (Ω,F , µ). Assume that:

(i) The sequence (1/n
∑n

i=1 PXi)n is tight.

(ii) The sequence (1/n
∑n

i=1 PXi)n is S–uniformly scalarly integrable.

(iii) For almost every ω ∈ Ω, the sequence (1/n
∑n

i=1 δXi(ω))n is S–
uniformly scalarly integrable.

Then (Xn)n satisfies the SLLN, that is

lim
n→+∞

1

n

n∑
i=1

(Xi − EXi) = 0 a.e.

Proof. By (iii) and Theorem 2.4, there is an element Ω′ of F with
µ(Ω′) = 1, such that, for every ω ∈ Ω′, the sequence (1/n

∑n
i=1 δXi(ω))

of empirical laws is tight and S–uniformly scalarly integrable and such
that the sequences ( 1

n
Σn
i=1PXi)n and ( 1

n
Σn
i=1δXi(ω))n are equivalent.

Now let ω ∈ Ω′ be fixed. The sequences (Pn)n = ( 1
n
Σn
i=1PXi)n and

(Qω
n)n = ( 1

n
Σn
i=1δXi(ω))n, are relatively sequentially compact for the

topology [(τS) of narrow convergence. Thus, from Theorem 3.5,

lim
n→+∞

(

∫
x dPn −

∫
x dQω

n) = 0,

i.e.

lim
n→+∞

(
1

n

n∑
i=1

EXi −
1

n

n∑
i=1

Xi(ω)) = 0.

In the case when E is a separable Banach space, the following corol-
lary is exactly Theorem 3 in [13]. A random element X : (Ω,F , µ)→ E
is said to be absolutely summable if, for each A ∈ S,

∫
NA(X) dµ < +∞

(if E is a separable Banach space, we also say that X is Bochner inte-
grable). If E is quasi–complete and X is absolutely summable and PX
is Radon, then X is Pettis integrable (see the proof of Theorem 3 in
[43]).
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Corollary 4.2 (SLLN of Cuesta and Matrán). Let (Xn)n be a
sequence of pairwise independent absolutely summable random elements
of E, defined on a probability space (Ω,F , µ). Assume that:

(i) The sequence (1/n
∑n

i=1 PXi)n is tight.

(ii)′ For every A ∈ S, NA is uniformly integrable w.r.t. the sequence
(1/n

∑n
i=1 PXi)n.

(iii)′ There exists Ω′ ∈ F , with µ(Ω′) = 1, such that, for any ω ∈ Ω′

and any A ∈ S,

(4.1) lim
n→+∞

1

n

n∑
i=1

(NA(Xi(ω))− ENA(Xi)) = 0.

Then (Xn)n satisfies the SLLN.

Proof. Let us denote, as in the above proof, Pn = 1/n
∑n

i=1 PXi and

Qω
n = 1/n

∑n
i=1 δXi(ω) (n ∈ N∗, ω ∈ Ω).

First, it is clear that Condition (ii)′ implies Condition (ii) of Theo-
rem 4.1.

Moreover, from Theorem 2.4, (Qω
n)n and (Pn)n are almost everywhere

tight equivalent sequences, thus there exists Ω′′ ∈ F such that Ω′′ ⊂ Ω′,
µ(Ω′′) = 1 and (Qω

n)n and (Pn)n are equivalent for every ω ∈ Ω′′.
Fix ω ∈ Ω′′ and A ∈ S. Equation (4.1) may be written

(4.2) lim
n→+∞

(Qω
n(NA)− Pn(NA)) = 0.

Let us define, for every a > 0 a bounded continuous function ua : R+ →
R+ such that ua(t) = t if t ≤ a−1, ua(t) = 0 if t ≥ a and 0 ≤ ua(t) ≤ t
for every t ≥ 0. Set va(t) = t − ua(t) (t ≥ 0). From the tightness and
the equivalence of (Qω

n)n and (Pn)n, we have, for every a > 0,

lim
n→+∞

(Qω
n(ua ◦NA)− Pn(ua ◦NA)) = 0.

Using (4.2), this yields

lim
n→+∞

(Qω
n(va ◦NA)− Pn(va ◦NA)) = 0.

But, from Condition (ii)′, we have

lim
n→+∞

Pn(va ◦NA) = 0.

Thus,
lim

n→+∞
Qω
n(va ◦NA) = 0,

i.e. NA is uniformly integrable w.r.t. (Qω
n)n.

Thus Condition (iii) of Theorem 4.1 is fulfilled, and (Xn)n satisfies
the SLLN.
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Let E be a separable Banach space. Let E ′c be the dual space of E,
endowed with the topology τc of uniform convergence on the compact
subsets of E. We recall that E ′c is a Lusin space (because it is a count-
able union of metrizable compact sets), and that a random element
of E ′c is Pettis integrable if and only if it is scalarly integrable. In-
deed, from Mackey Theorem, the topology of E ′c is consistent with the
duality 〈E ′, E〉, thus MP1

E′c
= MP1

E′σ
, where E ′σ = (E ′, σ(E ′, E)). Fur-

thermore, as E ′σ is semi–reflexive, MP1
E′σ

= MW1
E′σ

(see e.g. Corollary
4.1. of [43]).

If (Ω,F , µ) is a probability space, we shall denote by L1
E′ [E](Ω,F , µ),

or shortly by L1
E′ [E], the set of random vectors X defined on (Ω,F , µ)

such that PX ∈ MP1
E′c

and
∫

Ω
‖X‖ dµ < +∞ (see [25] about this space).

The elements of L1
E′ [E] are thus absolutely summable random vectors of

E ′c. Note that X is not necessarily measurable for the norm topology on
E ′, but the measurability of ‖X‖ follows from the scalar measurability
of X and the separability of E.

Corollary 4.3 (SLLN for elements of L1
E′ [E]). Let E be a sepa-

rable Banach space. Let (Xn)n be a sequence of pairwise independent
elements of L1

E′ [E](Ω,F , µ). Assume that:

(i) The sequence (Pn)n = (1/n
∑n

i=1 PXi)n is a tight sequence of

elements of M(E ′c).
(ii)′ The function ‖.‖ is uniformly integrable w.r.t. (1/n

∑n
i=1 PXi)n.

(iii)′ The sequence of real random variables (‖Xn‖)n satisfies the
SLLN, that is,

lim
n→+∞

1

n

n∑
i=1

(‖Xi‖ − E‖Xi‖) = 0 a.e.

Then (Xn)n satisfies the SLLN in E ′c, i.e. there exists Ω′ ∈ F , with
µ(Ω′) = 1, such that, for any ω ∈ Ω′ and any compact subset K of E,

lim
n→+∞

sup
x∈K

∣∣∣∣∣ 1n
n∑
i=1

〈x, Xi(ω)− EXi〉

∣∣∣∣∣ = 0.

Proof. Clearly, Conditions (i) and (ii) of Theorem 4.1 are satisfied.
Let us prove that Condition (iii) of Theorem 4.1 is also satisfied.

Let us denote, as usual, Pn = 1/n
∑n

i=1 PXi andQω
n = 1/n

∑n
i=1 δXi(ω)

(n ∈ N∗, ω ∈ Ω). For every a ≥ 0 and every t ≥ 0, let us set
ua(t) = t 1l[0,a](t) and va(t) = t − ua(t). The function ‖.‖ : E ′c → R+

is l.s.c. because it is the supremum of a family of continuous func-
tions: ‖x′‖ = supx∈E,‖x‖≤1〈x, x′〉 for each x′ ∈ E ′. Thus ua ◦ ‖.‖ is
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bounded and Borel, and we can apply the SLLN of Csörgo, Tandori
and Totik ([12], Theorem 1), or of Etemadi ([19], Corollary 1): there
exists Ω′′ ∈ F , with Ω′′ ⊂ Ω′ and µ(Ω′′) = 1, such that, for each ω ∈ Ω′′,

(4.3) lim
n→+∞

(Qω
n(ua ◦ ‖.‖)− Pn(ua ◦ ‖.‖)) = 0.

Let ω ∈ Ω′′. Condition (iii)′, may be written

(4.4) lim
n→+∞

(Qω
n(‖.‖)− Pn(‖.‖)) = 0.

From (4.3) and (4.4), we have

lim
n→+∞

(Qω
n(va ◦ ‖.‖)− Pn(va ◦ ‖.‖)) = 0.

But, from Condition (ii)′, we have

lim
n→+∞

Pn(va ◦ ‖.‖) = 0,

thus

(4.5) lim
n→+∞

Qω
n(va ◦ ‖.‖) = 0,

i.e. ‖.‖ is uniformly integrable w.r.t. (Qω
n)n.

Let K be a compact subset of E. There exists c > 0 such that
NK ≤ c‖.‖. Thus, from (4.5), using de la Vallée Poussin criterion, NK

is uniformly integrable w.r.t. (Qω
n)n.

This implies that Condition (iii) of Theorem 4.1 is fulfilled, and
(Xn)n satisfies the SLLN in E ′c.

Remark 4.4. In particular, if E is a separable Banach space and (Xn)n
is a pairwise independent identically distributed sequence of elements of
L1
E′ [E], then (Xn)n satisfies the SLLN in E ′c. So, Corollary 4.3 provides

a version of Etemadi’s SLLN [18] for elements of L1
E′ [E].

In the case of a Banach space endowed with its weak topology, it is
possible to weaken slightly the assumption of tightness:

Corollary 4.5 (SLLN in the σ(F, F ′) topology of a Banach space
F ). Let F be a separable Banach space, and let us assume that E =
(F, σ(F, F ′)) (in this case E and F have the same bounded subsets, the
same Borel tribe and the same Pettis integrable laws). Let (Xn)n be a
sequence of pairwise independent Pettis integrable random elements of
E, defined on a probability space (Ω,F , µ). Assume that:

(i) The sequence (Pn)n = (1/n
∑n

i=1 PXi)n is tight relatively to
bounded sets, i.e. for each ε > 0, there exists a bounded subset
M of E such that, for every n ∈ N∗, Pn(M) > 1− ε.
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(ii) Each element of E ′ = F ′ is uniformly integrable w.r.t. the se-
quence (1/n

∑n
i=1 PXi)n.

(iii) For almost every ω ∈ Ω, each element of E ′ = F ′ is uniformly
integrable w.r.t. the sequence (1/n

∑n
i=1 δXi(ω))n.

Then (Xn)n satisfies the SLLN.

Proof. We are going to show that Theorem 4.1 applies to the sequence
(Xn) considered as a sequence of random elements of the space G =
(F ′′, σ(F ′′, F ′)).

For any normed space N and r ≥ 0, let us denote by BN(0, r) the
closed ball of center 0 and radius r in N . we have

F ′′ = ∪n∈NBF ′′(0, n) = ∪n∈NBF (0, n)
F ′′

.

Each BF ′′(0, n) is compact for the topology induced by σ(F ′′, F ′). Let
D be a countable subset of F ′ that separates the points of F (such
a set exists because F has the Lindelöf property, see for example [7,
40]). The topology σ(F ′′, F ′) coincides on BF ′′(0, n) with the coarser
Hausdorff topology of pointwise convergence on the elements of D,
which is metrizable. Therefore, the topology induced by σ(F ′′, F ′) on
BF ′′(0, n) is compact and metrizable, thus Polish.

So, G is a countable union of Suslin spaces, thus it is Suslin ([7],
Proposition 8 page IX.60).

Furthermore, E is a Lusin subspace of the regular space G, thus E
is a Borel subset of G ([7] (Lemme 7 page IX.67). So, any random
element of E may be viewed as a random element of G and any law on
E as a law on G.

As the closure in G of any bounded subset of E is compact, Condition
(i) implies that (Pn) is a tight sequence of MP1

G. The conclusion follows
from application of Theorem 4.1 in G.

Remark 4.6. Suppose that, for almost every ω ∈ Ω, (Xn(ω))n is a
bounded sequence in E. Then Condition (iii) in Theorem 4.1 is satis-
fied. We use this fact in the example below, which shows that Theorem
4.1 also applies to sequences of non–Bochner integrable random vectors
of a Banach space.

Example 4.7. [SLLN for Pettis non-Bochner integrable ran-
dom vectors] Let E be a separable Banach space, and let us denote
by BE′ the closed unit ball of E ′. Let U be a Pettis integrable random
element of E, defined on (Ω,F , µ) (it is more interesting if we choose
U non–Bochner integrable). As the sequence

(un)n∈N∗ = (µ{‖U‖ > n})n∈N∗



4.24 CHARLES CASTAING AND PAUL RAYNAUD DE FITTE

converges to 0, we can extract a subsequence (uαn)n∈N∗ such that∑
n∈N∗ uαn < +∞ and uαn < 1 for every n ∈ N∗. Since E is Pol-

ish, U is tight ([6], Theorem 1.4. page 10 or [35], Theorem 3.2. page
29). For each ε > 0, there exists a compact set Kε ⊂ E such that
µ{U ∈ Kε} ≥ 1− ε. From a theorem of Mazur, the closed convex hull
K̃ε of the compact set {0}

⋃
Kε is also compact, and we have

(4.6) ∀t ∈ [0, 1], µ{tU ∈ K̃ε} ≥ 1− ε.

We consider now an independent sequence of random elements of E,
with same law as U , defined on a probability space (S,Σ, λ). For each
n ∈ N∗, set

Xn =
1

αn
Un.

From Equation (4.6), as 1/αn ∈ [0, 1] for each n ∈ N∗, the sequence
(Xn)n∈N∗ is tight. Thus Condition (i) in Theorem 4.1 is fulfilled.

Furthermore,

lim
a→+∞

sup
n∈N∗

sup
x′∈BE′

∫
|〈x′, Xn〉|>a

|〈x′, Xn〉| dλ

= lim
a→+∞

sup
n∈N∗

sup
x′∈BE′

1

αn

∫
|〈x′, U〉|>αna

|〈x′, U〉| dµ = 0

because (1/αn)n∈N∗ is bounded and because {U} is S–uniformly scalarly
integrable. Thus (Xn)n∈N∗ is S–uniformly scalarly integrable, and Con-
dition (ii) in Theorem 4.1 is fulfilled.

Finally, we have

λ{∀n ∈ N∗, ‖Xn‖ ≤ 1} =
∏
n∈N∗

µ{‖U‖ ≤ αn}

=
∏
n∈N∗

(1− µ{‖U‖ > αn})

=
∏
n∈N∗

(1− uαn).

As
∑

n∈N∗ uαn < +∞ and uαn 6= 1 for every n ∈ N∗, it follows from a
classical result on infinite products that

∏
n∈N∗(1 − uαn) converges to

a limit other than 0. Thus λ{∀n ∈ N∗, ‖Xn‖ ≤ 1} > 0. Let A = {ω ∈
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S; (Xn(ω))n∈N∗ is bounded}. We have

λ(A) = λ

(⋃
m∈N

{ω ∈ S; ∀n ∈ N∗, ‖Xn(ω)‖ ≤ m}

)
≥ λ{ω ∈ S; ∀n ∈ N∗, ‖Xn(ω)‖ ≤ 1}
> 0.

But the event A does not depend on the values of the first terms of
(Xn)n∈N∗ . We deduce from Kolmogorov’s zero-one law that λ(A) = 1.
Thus (Xn)n∈N∗ is almost everywhere bounded (but not necessarily by
a constant !). This implies Condition (iii) in Theorem 4.1.

So, the sequence (Xn)n∈N∗ satisfies the hypothesis of Theorem 4.1.
If we assume that U is not Bochner integrable, then the Xn are not
Bochner integrable either.

5. Generalized Kantorovich functionals on the space of
S–uniformly scalarly integrable laws

We recall that MU1
E is the set of S–uniformly scalarly integrable

Radon laws on E.

Definition 5.1. If P and Q are elements of MU1
E, we shall denote by

D(P,Q) the set of probabilities π on E × E with marginals P and Q,
i.e. such that π(. × E) = P and π(E × .) = Q. For each A ∈ S, we
define a mapping dA : MU1

E ×MU1
E → [0,+∞[ by

dA(P,Q) = inf
π∈D(P,Q)

sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπ(x, y).

This definition of dA extends in an obvious way on MW1
E ×MW1

E or
on M1(E)×M1(E) (with possibly infinite values in those cases).

The mapping dA is a particular case of generalized Kantorovich func-
tional in the sense of [38], page 137. We do not know if there exists
a dual expression of dA, as in the Kantorovich–Rubins̆tein Theorem.
Before we prove that dA is a semi–distance on MU1

E, we need some
preliminaries.

Definition 5.2. Let A ∈ S and P,Q ∈ MU1
E. We shall say that a

probability π ∈ D(P,Q) is a dA–optimal coupling of (P,Q) if

dA(P,Q) = sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπ(x, y).

Proposition 5.3. Let A ∈ S. Every (P,Q) ∈ MU1
E × MU1

E has a
dA–optimal coupling.
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Proof. Let P and Q be elements of MU1
E. Then D(P,Q) is a tight

subset of the space of Borel measures on E ×E. Indeed, let ε > 0. As
P and Q are Radon, there exist two compact subsets K1 and K2 of E
such that P (Kc

1) < ε and Q(Kc
2) < ε. Let π ∈ D(P,Q). We have

π(K1×K2)c = π((K1×E)c∪(E×K2)c) ≤ π(K1×E)c+π(E×K2)c < 2ε.

From the generalized Prokhorov’s theorem ([44], Theorem 9.1 (iii) or
[40], Theorem 3 page 379), D(P,Q) is relatively compact, thus rela-
tively sequentially compact, for the narrow topology on M(E × E).

Furthermore, A is uniformly integrable w.r.t. {P,Q} because P and
Q are in MU1

E. By de la Vallée Poussin’s criterion, there exists an
N -function ϕ such that

sup
x′∈A

∫
E

ϕ(〈x′, x〉)dP (x) < +∞ and sup
x′∈A

∫
E

ϕ(〈x′, x〉)dQ(x) < +∞.

Thus, for every π ∈ D(P,Q), we have

sup
x′∈A

∫
E×E

ϕ(〈x′, x〉)dπ(x, y) < +∞

and sup
x′∈A

∫
E×E

ϕ(〈x′, y〉)dπ(x, y) < +∞.

Using the monotonicity of ϕ and the triangular inequality, this yields

sup
π∈D(P,Q)

sup
x′∈A

∫
E×E

ϕ(〈x′, x− y〉)dπ(x, y) < +∞,

which proves that the family ((x, y) → 〈x′, x − y〉)x′∈A is uniformly
integrable w.r.t. D(P,Q).

Let (πn) a sequence of elements of D(P,Q) such that

lim
n→+∞

sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπn(x, y) = dA(P,Q).

By relative sequential compactness of D(P,Q), there exists a subse-
quence (π′n) of (πn) narrowly converging to a law π ∈ D(P,Q). As
H = {(x, y) 7→ 〈x′, x− y〉; x′ ∈ A} is uniformly integrable w.r.t. (π′n),
we have, from Lemma 3.1,

sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπ(x, y)

= lim
n→+∞

sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπ′n(x, y) = dA(P,Q).
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The following lemma will allow us to represent sequences that con-
verge for dA by sequences of random elements of E.

Lemma 5.4. Let T be a topological space. Let I be a non empty set
and (πi)i∈I be a family of Radon laws on T × T . Let p1 and p2 be the
projections defined by p1(x, y) = x and p2(x, y) = y for all (x, y) ∈
T × T . We assume that p2(πi) = P for some fixed law P on T and
for each i ∈ I. Then there exist a probability space (S,Σ, λ), a family
(Xi)i∈I of random elements of T defined on (S,Σ, λ) and a random
element X of T defined on (S,Σ, λ), such that P(Xi,X) = πi for each

i ∈ I.

Proof. Let X be the identity mapping on (T,BT , P ). Clearly PX = P .
From Theorem 1 in [47] there exists for each i ∈ I a regular conditional
probability distribution of πi given X, i.e. a family (πxi )x∈T of laws on
T such that, for each A ∈ BT , the mapping x 7→ πxi (A) is measurable,
and, for each A,B ∈ BT , πi(A × B) =

∫
B
πxi (A) dP (x). If T is Suslin,

this is also a consequence of the well known Theorem of Jirina ([27],
Theorem 3.3), because the Borel tribe of T is countably generated ([40],
Corollary page 108). For each x ∈ T , let πx be the probability ⊗i∈Iπxi
on (T I ,⊗i∈IBT ) and let π be the probability on (T I×T, (⊗i∈IBT )⊗BT )
defined by

π(A×B) =

∫
B

πx(A) dP (x)

for all A ∈ ⊗i∈IBT and B ∈ BT . Let ((Xi)i∈I , X) be the identity
mapping on (T I × T, (⊗i∈IBT ) ⊗ BT , π). Then P(Xi,X) = πi for each

i ∈ I.

Let A ∈ S. Let I be a non empty set, and let (Pi)i ∈ (MU1
E)I and

P ∈ MU1
E. For each i ∈ I, let πi be a dA–optimal coupling of (Pi, P ).

From Lemma 5.4, there exist a probability space (S,Σ, λ), a family
(Xi) of random elements of E defined on (S,Σ) and a random element
X of E defined on (S,Σ), such that P(Xi,X) = πi for every i ∈ I.

Definition 5.5. With the above notations, ((S,Σ, λ), (Xi), X) is called
a dA-representation of ((Pi), P ).

Proposition 5.6. Let A ∈ S. The functional dA is a semi–distance on
MU1

E. Its restriction to MP1
E satisfies the following Lipschitz property:

for any elements P and Q of MP1
E,

(5.1) NA

(∫
x dP (x)−

∫
x dQ(x)

)
≤ dA(P,Q).
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If E is Lindelöf, the semi–distance dA is a distance if and only if A
separates the points of E.

Proof. Let P , Q, R be elements of MU1
E. It is clear that dA(P, P ) = 0

and dA(P,Q) = dA(Q,P ). Let ((S,Σ, λ), (X, Y ), Z) be a dA-representation
of ((P,Q), R). We have

dA(P,R) + dA(R,Q) = sup
x′∈A

∫
S

|〈x′, X − Z〉| dλ

+sup
x′∈A

∫
S

|〈x′, Y − Z〉| dλ

≥ sup
x′∈A

∫
S

|〈x′, X − Z〉|+ |〈x′, Y − Z〉|dλ

≥ sup
x′∈A

∫
S

|〈x′, X − Y 〉| dλ

≥ dA(P,Q).

Now, assume that P and Q are in MP1
E. Let π be a dA–optimal

coupling of (P,Q) and let (U, V ) be a random element of E × E with
law π, defined on a probability space (S,Σ, λ). Using Lemma 2.10, we
have

NA

(∫
x dP (x)−

∫
x dQ(x)

)
= NA(EU − EV )

≤ NA(U − V ) = dA(P,Q).

If A does not separate the points of E, then dA is not a distance,
because of the embedding E → MP1

E ⊂ MU1
E, x 7→ δx. Assume now

that A separates the points of E and that E is Lindelöf. Let P and
Q be elements of MU1

E. If dA(P,Q) = 0, then, for every x′ in A,∫
|〈x′, x− y〉|dπ(x, y) = 0. Thus, for every x′ ∈ A and any dA–optimal

coupling π of (P,Q), 〈x′, x − y〉 = 0 π-almost everywhere. Using a
countable subset of A which separates the points of E (thanks to the
Lindelöf property), we deduce that, π-almost everywhere, 〈x′, x−y〉 = 0
for every x′ ∈ A, and therefore P = Q.

We investigate now, for sequences in MU1
E, the relations between

convergence for the semi–distances dA (A ∈ S), S–uniform scalar in-
tegrability and narrow convergence.

First, the topology on MU1
E associated with the semi–distances dA

(A ∈ S) and the narrow topology on MU1
E are not comparable.

Example 5.7. (Narrow convergence does not imply conver-
gence for the semi–distances dA (A ∈ S)) Let e ∈ E, e 6= 0, and
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set

Pn =
1

n
δne +

n− 1

n
δ0.

Then (Pn) converges narrowly to P = δ0, whereas
∫
x dPn(x) = e does

not converge to
∫
x dP (x) = 0, thus, from (5.1), (Pn) does not converge

to P for the semi–distances dA (A ∈ S).

Example 5.8. (Convergence for the semi–distances dA (A ∈ S)
does not imply narrow convergence) This example is borrowed
from [17]. Assume that E is a Hilbert space, and that (ek)k∈N is an
orthogonal sequence of unit vectors of E. We denote by BE′ the closed
unit ball of E ′ = E. The uniform structure on MU1

E = MW1
E = MP1

E

generated by the semi–distances dA (A ∈ S) is also generated by the

only distance d = dBE′ . Let Pn = 2−n
∑2n

k=1 δek (n ∈ N∗). The set

D(Pn, δ0) has a single element Pn ⊗ δ0 and we have

d(Pn, δ0) = sup
x′∈BE′

∫∫
|〈x′, x− y〉| dPn(x) dδ0(y)

= sup
x′∈BE′

∫
|〈x′, x〉| dPn(x)

= sup
x′∈BE′

2−n
2n∑
k=1

|〈x′, ek〉|

≤ 2−n/2

thus limn→∞ d(Pn, δ0) = 0. But (Pn) does not converge narrowly to δ0:
let ϕ(x) = min{‖x‖, 1}. The function ϕ is bounded and continuous,
Pn(ϕ) = 1 for every n ∈ N, but δ0(ϕ) = 0. A generalization of this
example in arbitrary infinite dimensional Banach spaces is provided
by Example 1 in [17]: with the same notations as in [17], just take

Pn = 2−n
∑2n

k=1 δenk .

Theorem 5.9. Let (Pn)n∈N be a sequence in MU1
E and let P be a law

on E.
1. Let A ∈ S.

a. If limn dA(Pn, P ) = 0, then A is uniformly integrable w.r.t.
{Pn; n ∈ N} ∪ {P}.

b. If (Pn)n narrowly converges to P and A is uniformly integrable
w.r.t. (Pn), then limn dA(Pn, P ) = 0.

2. Assume now that E is quasi–complete and that Condition 1.b is
fulfilled for every A ∈ S. If (Pn)n∈N is tight and if each Pn is in MP1

E,
then P ∈ MP1

E.
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Proof.
1. a. Let us first prove that A is uniformly integrable w.r.t. P . Let
ε > 0. Let m ∈ N such that dA(Pm, P ) ≤ ε. Let π be a dA–optimal
coupling of (Pm, P ). Let Xm and X be random elements of E defined
on a probability space (S,Σ, λ), such that P(Xm,X) = π. We have

sup
x′∈A

∫
S

|〈x′, X〉| dλ ≤ sup
x′∈A

∫
S

|〈x′, X −Xm〉| dλ+ sup
x′∈A

∫
S

|〈x′, Xm〉| dλ

= dA(Pm, P ) + sup
x′∈A

∫
S

|〈x′, Xm〉| dλ < +∞,

because Xm is S–uniformly scalarly integrable. Hence,

(5.2) lim
a→+∞

sup
x′∈A

λ{|〈x′, X〉| > a} ≤ lim
a→+∞

1

a
sup
x′∈A

∫
S

|〈x′, X〉| dλ = 0.

On the other hand,

lim
a→+∞

sup
x′∈A

∫
|〈x′, X〉|>a

|〈x′, X〉| dλ

≤ lim
a→+∞

sup
x′∈A

∫
|〈x′, X〉|>a

|〈x′, X −Xm〉| dλ+ sup
x′∈A

∫
|〈x′, X〉|>a

|〈x′, Xm〉| dλ

≤ ε+ lim
a→+∞

sup
x′∈A

∫
|〈x′, X〉|>a

|〈x′, Xm〉| dλ.

Now, from (5.2), as Xm is S–uniformly scalarly integrable,

lim
a→+∞

sup
x′∈A

∫
|〈x′, X〉|>a

|〈x′, Xm〉| dλ = 0.

So, ε being arbitrary, the previous inequality shows that A is uniformly
integrable w.r.t. P .

We now prove that A is uniformly integrable w.r.t. (Pn). Take a
dA-representation ((S,Σ, λ), (Xn), X) of ((Pn), P ). We have

lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, .〉|>a}

|〈x′, x〉| dPn(x)

= lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, Xn〉|>a}

|〈x′, Xn〉| dλ

≤ lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, Xn〉|>a}

|〈x′, Xn −X〉| dλ

+ lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, Xn〉|>a}

|〈x′, X〉| dλ.
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Observe next that

lim
a→+∞

sup
n∈N

sup
x′∈A

λ{|〈x′, Xn〉| > a}

≤ lim
a→+∞

1

a
sup
n∈N

sup
x′∈A

∫
S

|〈x′, Xn〉| dλ

≤ lim
a→+∞

1

a
sup
n∈N

sup
x′∈A

∫
S

|〈x′, Xn −X〉| dλ

+ lim
a→+∞

1

a
sup
n∈N

sup
x′∈A

∫
S

|〈x′, X〉| dλ

≤ lim
a→+∞

1

a
sup
n∈N

dA(Pn, P ) + lim
a→+∞

1

a
sup
n∈N

sup
x′∈A

∫
S

|〈x′, X〉| dλ

= 0.

AsA is uniformly integrable w.r.t. λ (becauseX is S–uniformly scalarly
integrable), we have thus

lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, Xn〉|>a}

|〈x′, X〉| dλ = 0.

For every ε > 0, let nε be an integer such that

sup
n>nε

sup
x′∈A

∫
S

|〈x′, Xn −X〉| dλ ≤ ε.

The family (x 7→ |〈x′, Xn−X〉|)x′∈A,n≤nε is uniformly integrable w.r.t.
λ, thus

lim
a→+∞

sup
n≤nε

sup
x′∈A

∫
{|〈x′, Xn〉|>a}

|〈x′, Xn −X〉| dλ = 0

for every ε > 0. Thus

lim
a→+∞

sup
n∈N

sup
x′∈A

∫
{|〈x′, .〉|>a}

|〈x′, x〉| dPn(x) = 0.

b. Note that (Pn)n is not necessarily tight. Otherwise, we could use
A. Jakubowski’s version of Skorokhod’s representation theorem ([26],
Theorem 2), and conclude with Lemma 3.1. In order to use a Sko-
rokhod representation, we are going to project the laws Pn and P on a
quotient space which is Polish.

Let B be the vector subspace of E ′ generated by A and let B◦ ⊂ E
be the orthogonal of B. Let prA be the canonical projection of E onto
the quotient space E/B◦ and let ‖.‖A be the norm on E/B◦ defined by
‖ prA(x)‖A = NA(x) = supx′∈A |〈x′, x〉|. We denote by EA the linear

space E/B◦ endowed with ‖.‖A, and by ÊA its completion. Thus ÊA
is a separable Banach space.
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The adjoint mapping (prA)′ of prA is an algebraic isomorphism of

the dual Ê ′A of E/B◦ onto the closure B of B for σ(E ′, E). Indeed,

let x′ ∈ B. Let us define y′ ∈ Ê ′A by 〈y′, y〉 = 〈x′, x〉 for x ∈ E
and y = prA(x) = x + B◦ = x + (B)◦. Then x′ = (prA)′(y′). Thus

B ⊂ (prA)′(Ê ′A). Conversely, let x′ = (prA)′(y′) for some y′ ∈ Ê ′A. We
have, for every x ∈ B◦, 〈x′, x〉 = 〈y′, prA(x)〉 = 0 (because prA(x) = 0),

hence, by the bipolar theorem, x′ ∈ (B◦)◦ = B. Thus (prA)′(Ê ′A) = B.
The injectivity of (prA)′ is immediate.

We shall denote by x̂′ the inverse image of an element x′ ∈ B by

(prA)′ and by Â the inverse image of A.

Let us denote by Q̂ the image prA(Q) on ÊA of a probability Q on
E. Similarly, if π is a law on E × E, we shall denote by π̂ the image

on ÊA × ÊA of π by prA⊗ prA . Let Q and R be laws on E. Then

π ∈ D(Q,R) if and only if π̂ ∈ D(Q̂, R̂) and we have

sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπ(x, y) = sup

x̂′∈Â

∫
ÊA×ÊA

|〈x̂′, x− y〉| dπ̂(x, y).

Furthermore, if Q and R are tight, there exists a countable union T of
compact subsets of E such that Q(T ) = R(T ) = 1. Thus π(T ×T ) = 1

for any π ∈ D(Q,R), and also, for any π ∈ D(Q̂, R̂), π(prA(T ) ×
prA(T )) = 1. From [40], Theorem 12 page 126, since T × T is a Kσδ,
the mapping π 7→ π̂, from M1(T × T ) to M1(prA(T ) × prA(T )), is
surjective. Thus, if Q and R are tight, a law π ∈ D(Q,R) is a dA–
optimal coupling of (Q,R) if and only if π̂ is a dÂ–optimal coupling of

(Q̂, R̂), and we have dA(Q,R) = dÂ(Q̂, R̂).

Now, the sequence (P̂n)n narrowly converges to P̂ and ÊA is Polish
thus, from Skorokhod’s representation theorem ([41], page 281), there

exist a sequence (Xn)n of random elements of ÊA defined on a probabil-

ity space (S,Σ, λ) and a random element X of ÊA defined on (S,Σ, λ),

such that PXn = P̂n (n ∈ N), PX = P̂ and (Xn)n converges a.e. to X.
For each n ∈ N, let πn be a dA–optimal coupling of (Pn, P ) and π̂n

its image by prA. We have

dA(Pn, P ) = sup
x′∈A

∫
E×E
|〈x′, x− y〉| dπn(x, y)

= sup
x̂′∈Â

∫
ÊA×ÊA

|〈x̂′, x− y〉| dπ̂n(x, y)

≤ sup
x̂′∈Â

∫
Ω

|〈x̂′, Xn −X〉| dλ
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because π̂n is a dÂ–optimal coupling of (P̂n, P̂ ). Set Qn = PXn−X . The

sequence (Qn)n narrowly converges to δ0 and Â is uniformly integrable
w.r.t. (Qn)n. Using the preceding inequality and Lemma 3.1, we get

lim
n→+∞

dA(Pn, P ) ≤ lim
n→+∞

sup
x̂′∈Â

∫
ÊA

|〈x̂′, x〉| dQn

= 0.

A longer but more elementary proof of 1.b can also be obtained by
following the same steps as in [5] (Lemma 8.3) for the Lévy–Wasserstein
distance in a separable Banach space. The projection onto the quotient

space ÊA cannot be avoided, in order to use Prokhorov’s compactness
theorem.
2. From 1.a, (Pn) is S–uniformly scalarly integrable, and Theorem 3.2
yields the conclusion.

Remark 5.10. Part 1.b of Theorem 5.9 also holds true for nets. The
only substantial modification in the proof consists in using X. Fer-
nique’s version of Skorokhod’s representation theorem [21] (for nets or
filters) instead of Skorokhod’s original result. Thus, on S–uniformly
scalarly integrable subsets of MU1

E, the topology induced by the semi–
distances dA (A ∈ S) is coarser than that induced by [(τS).

Corollary 5.11. With the same hypothesis and notations as in Theo-
rem 3.4, we have, for almost every ω ∈ Ω,

∀A ∈ S, lim
n→+∞

dA

(
1

n

n∑
j=1

λβ(j)
ω , λ∞ω

)
= 0.

Proof. Replace Theorem 3.2 by Theorem 5.9 in the proof of Theorem
3.4.

Corollary 5.12. Let (Pn) be a [(τS)–relatively sequentially compact
sequence in MU1

E, and let P be a law on E. The following are equiva-
lent:

(i) For every A ∈ S, limn→∞ dA(Pn, P ) = 0,
(ii) (Pn)n converges narrowly to P and (Pn)n is S–uniformly scalarly

integrable.

If (i) and (ii) are true, then P ∈ MU1
E.

Proof. From Theorem 5.9, we have immediately (ii)⇒ (i), and (i) im-
plies S–uniform scalar integrability of (Pn)n. Assume (i). Let (P ′n) be a
subsequence of (Pn). By relative sequential compactness of (Pn), there
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exists a subsequence (P ′′n ) of (P ′n), narrowly converging to an element
Q of MP1

E. But, (P ′′n ) being S–uniformly scalarly integrable, we have
also from Theorem 5.9 that, for every A ∈ S, limn→∞ dA(P ′′n , Q) = 0.
Thus Q = P . We have proved that each subsequence (P ′n) of (Pn) has a
subsequence (P ′′n ) which converges to P for [(τS). Thus (Pn)n narrowly
converges to P .

Finally, if If (i) and (ii) are true, then P ∈ MU1
E from Lemma 3.1

or from Theorem 5.9.

The following theorem is a generalization of Corollary 5.12, the limit
P being replaced by a sequence (Pn). It improves Theorem 3.5.

Theorem 5.13. Let (Pn) and (Qn) be two sequences in MU1
E such that

(Pn) is [(τS)–relatively sequentially compact and S–uniformly scalarly
integrable. The following are equivalent:

(i) (Qn) is [(τS)–relatively sequentially compact and, for every A ∈
S,
limn→∞ dA(Pn, Qn) = 0,

(ii) (Pn) and (Qn) are [(τS)–equivalent and (Qn) is S–uniformly
scalarly integrable.

Proof. . (i) ⇒ (ii). Let A ∈ S. For each integer n, let πn be a dA-
optimal coupling of (Qn, Pn). Let (Xn, Yn)n∈N be a sequence of random
elements of E × E defined on a probability space (S,Σ, λ), such that
P(Xn,Yn) = πn for each n ∈ N. We have, for every a > 0,

sup
x′∈A

∫
|〈x′, .〉|>a

|〈x′, x〉| dQn(x) = sup
x′∈A

∫
|〈x′, Yn〉|>a

|〈x′, Yn〉| dλ

≤ sup
x′∈A

∫
|〈x′, Yn〉|>a

|〈x′, Yn −Xn〉| dλ

+sup
x′∈A

∫
|〈x′, Yn〉|>a

|〈x′, Xn〉| dλ

≤ dA(Pn, Qn)

+sup
x′∈A

∫
|〈x′, Yn〉|>a

|〈x′, Xn〉| dλ.

Now,

λ{|〈x′, Yn〉| > a} ≤ λ
({
|〈x′, Xn〉| >

a

2

}
∪
{
|〈x′, Xn − Yn〉| >

a

2

})
.

Furthermore,

lim
a→+∞

sup
n∈N

sup
x′∈A

λ
{
|〈x′, Xn〉| >

a

2

}
= 0
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(because (〈x′, Xn〉)x′∈A,n∈N is uniformly integrable w.r.t. λ), and

lim
a→+∞

sup
n∈N

sup
x′∈A

λ
{
|〈x′, Xn − Yn〉| >

a

2

}
≤ lim

a→+∞

2

a
sup
n∈N

sup
x′∈A

∫
|〈x′, Xn − Yn〉|dλ = 0.

Thus
lim

a→+∞
sup
n∈N

sup
x′∈A

λ{|〈x′, Yn〉| > a} = 0.

As (〈x′, Xn〉)x′∈A,n∈N is uniformly integrable w.r.t. λ, this yields

lim
a→+∞

sup
n∈N

sup
x′∈A

∫
|〈x′, Yn〉|>a

|〈x′, Xn〉|dλ = 0.

Thus, for every A ∈ S, (〈x′, Yn〉)x′∈A,n∈N is uniformly integrable w.r.t.
λ, i.e. (Qn) is S–uniformly scalarly integrable.

If (P ′n) is a subsequence of (Pn) which narrowly converges to a law P ,
then, for every A ∈ S, dA(P ′n, P )→ 0 from Theorem 5.9, because (Pn)
is [(τS)–relatively sequentially compact and S–uniformly scalarly inte-
grable. But we have dA(P ′n, Q

′
n)→ 0 (where (Q′n) is the subsequence of

(Qn) having the same subscripts as (P ′n)), thus limn→+∞ dA(Q′n, P ) = 0,
and, from (i) and S–uniform scalar integrability of (Qn), Corollary 5.12
implies that (Q′n) narrowly converges to P .

On the other hand, if (Q′n) is a subsequence of (Qn) which narrowly
converges to a probabilityQ, then, for everyA ∈ S, limn→+∞ dA(Q′n, Q)
= 0 from Theorem 5.9, because (Qn) is S–uniformly scalarly integrable.
Let (P ′n) be the subsequence of (Pn) with same subscripts as (Q′n). As
limn→+∞ dA(P ′n, Q

′
n) = 0, we have also limn→+∞ dA(P ′n, Q) = 0, and

(P ′n) converges narrowly to Q from Corollary 5.12, because (P ′n) is
[(τS)–relatively sequentially compact.

(ii) ⇒ (i). From the equivalence of (Pn) and (Qn), the relative
sequential compactness of (Pn) implies that of (Qn).

For the other part of (i), it is sufficient to prove that, for each A ∈ S
and for each subsequence (P ′n, Q

′
n)n of (Pn, Qn)n, there exists a sub-

sequence (P ′′n , Q
′′
n)n of (P ′n, Q

′
n)n such that limn→+∞ dA(P ′′n , Q

′′
n) = 0.

Choose (P ′′n , Q
′′
n)n such that (P ′′n ) narrowly converges to a measure P .

Then limn→+∞ dA(P ′′n , P ) = 0 from Theorem 5.9, because (Pn) is [(τS)–
relatively sequentially compact and S–uniformly scalarly integrable.
But (Q′′n) also converges narrowly to P , because (Qn) and (Pn) are
equivalent, and thus, in the same way, limn→+∞ dA(Q′′n, P ) = 0. There-
fore limn→+∞ dA(P ′′n , Q

′′
n) = 0.

Theorem 5.13 yields a small improvement of the SLLN given in The-
orem 4.1. The line of proof is similar to that of Theorem 4 in [14], where
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the semi–distances dA are replaced by the Lévy–Wasserstein distance.
The result obtained may be seen as a new Glivenko–Cantelli type the-
orem.

Corollary 5.14. With the same hypothesis and notations as in Theo-
rem 4.1, except that the laws PXn (n ∈ N) are only supposed to be in

MU1
E and not necessarily in MP1

E, we have, for almost every ω ∈ Ω,

∀A ∈ S, lim
n→+∞

dA(1/n
n∑
i=1

δXi(ω),
1

n
Σn
i=1PXi) = 0.

Proof. Let us define Ω′ as in the proof of Theorem 4.1, and let ω ∈
Ω′. The sequences (Pn)n = ( 1

n
Σn
i=1PXi)n and (Qω

n)n = ( 1
n
Σn
i=1δXi(ω))n

satisfy the hypothesis and condition (ii) of Theorem 5.13 because,
from Theorem 2.4, they are tight and [(τS)–equivalent. Thus we have
limn→+∞dA(Pn, Qn) = 0 for every A ∈ S.

If the random vectors Xn (n ∈ N) are Pettis integrable, the SLLN
of Theorem 4.1 follows from the previous result and from the Lipschitz
property (5.1) of dA given in Proposition 5.6.

6. The “sharp topology” on the space of S–uniformly
scalarly integrable laws

Definition 6.1. The supremum of the narrow topology on MU1
E, in-

duced by [(τS), and of the topology associated to the semi–distances
dA (A ∈ S), is called the sharp topology associated with τS and denoted
](S).

Theorem 6.2. A subset D of MU1
E is relatively sequentially compact

for ](S) if and only if it is S–uniformly scalarly integrable and rela-
tively sequentially compact for [(τS).

Proof. If D is relatively sequentially compact for ](S), then it is rel-
atively sequentially compact for [(τS). Thus, for any sequence (Pn) of
elements of D, there exists a subsequence (P ′n) of (Pn) which converges
to a law P on E for the semi–distances dA (A ∈ S). From Theorem
5.9, (P ′n) is S–uniformly scalarly integrable. So, any sequence (Pn) of
elements of D has a subsequence (P ′n) which is S–uniformly scalarly
integrable. Suppose that D is not S–uniformly scalarly integrable, i.e.
there exists an A ∈ S which is not uniformly integrable w.r.t. D. Then,
there exists ε > 0 such that

lim
a→+∞

sup
P∈D

sup
x′∈A

∫
|〈x′, .〉|>a

|〈x′, x〉| dP > ε.
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We define recursively a strictly increasing sequence (an) of non negative
integers and a sequence (Pn) of elements of D in the following way:

(α) a0 is chosen arbitrarily,
(β) for each an, Pn is such that

sup
x′∈A

∫
|〈x′, .〉|>an

|〈x′, x〉| dPn >
ε

2
,

(γ) once an and Pn are fixed, an+1 is chosen such that an+1 ≥ an+1
(thus we shall have limn→+∞ an = +∞) and

sup
x′∈A

∫
|〈x′, .〉|>an+1

|〈x′, x〉| dPn <
ε

2
.

It is clear that no subsequence of (Pn) is S–uniformly scalarly inte-
grable, we have thus a contradiction. So D is S–uniformly scalarly
integrable.

Conversely, assume that D is relatively sequentially compact for
[(τS) and S–uniformly scalarly integrable. Then every sequence (Pn)
in D has a subsequence (P ′n) which narrowly converges to a law P .
From Corollary 5.12, (P ′n) converges to P for the semi–distances dA
(A ∈ S) and P ∈ MU1

E, thus (P ′n) also converges to P for ](S). This
proves that D is relatively sequentially compact for ](S).

Now, let M be a convex subset of MU1
E, endowed with a topology

τ . Let us say that (M, τ) satisfies Property (H) if

(a) M contains the Dirac masses (x ∈ E),
(b) If (Pn)n∈N and (Qn)n∈N are sequences in M∩MP1

E such that
(Pn) and (Qn) are [(τS)–equivalent and such that {Pn; n ∈ N}
and {Qn; n ∈ N} are relatively sequentially compact for τ , then
limn→+∞

∫
xdPn −

∫
xdQn = 0.

From Theorem 6.2 and Theorem 5.13, it is clear that (MU1
E, ](S))

satisfies Property (H) . Thus, Theorem 4.1 is a particular case of the
following SLLN.

Theorem 6.3. LetM be a subset of MP1
E, endowed with a topology τ ,

such that (M, τ) satisfies Property (H) defined above. Let (Xn)n∈N∗ be
a sequence of pairwise independent Pettis integrable random elements
of E defined on a probability space (Ω,F , µ), and let us denote Pn =
1/n

∑n
i=1 PXi and Qω

n = 1/n
∑n

i=1 δXi (n ∈ N∗, ω ∈ Ω). Assume that

(i) (Pn)n is tight,
(ii) the set {Pn; n ∈ N∗} is a relatively sequentially compact subset

of (M, τ),
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(iii) for almost every ω ∈ Ω, {Qω
n; n ∈ N∗} is a relatively sequen-

tially compact subset of (M, τ).

Then (Xn) satisfies the SLLN.

Proof. From Theorem 2.4, there exists Ω′ ∈ F , with µ(Ω′) = 1, such
that, for every ω ∈ Ω′, the sequence (Qω

n)n is tight and (Pn)n and (Qω
n)n

are equivalent. The conclusion follows from Property (H) .

In the case when E is a Banach space, another example of topological
space of laws with property (H) is given by the set MB1

E of Bochner
integrable laws on E, endowed with the topology τLW associated with
the Lévy–Wasserstein distance (see [38, 14, 15]). This topology is finer
than the narrow topology and, from Theorem 3.2.4. of [15], a subset
D ⊂ MB1

E is relatively compact for τLW (or, equivalently, relatively
sequentially compact, because τLW is metrizable) if and only if D is
tight and the norm ‖.‖ is uniformly integrable w.r.t. D.

In the case (D, τ) = (MB1
E, τLW ), if E is a separable Banach space,

Theorem 6.3 is equivalent to Theorem 3 in [13].
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Diffusion C.C.L.S., Paris
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