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This proposal has a part on the notion of renormalized solution and a part on the
finite volume approximation.
For a data f belonging to L1, if we consider the quasilinear equation

−div(A(x, u)∇u) = f in Ω
u = 0 on ∂Ω,

(1)

where Ω is a bounded domain of RN , with a matrix verifying appropriate conditions
(Carathéodory function, ellipticity and bounded coefficients) it is well known since the
work [5] of Boccardo-Gallouët that a solution in the sense of distributions exists. However
even in the linear case, i.e. A(x, s) = A(x), the obtained solution is not unique in general
(see [16]). Roughly speaking the main obstacle is the fact that the solution u is not
an admissible test function since we cannot expect to have u belonging to H1

0 nor fu
belonging to L1.

Different notions have developed to extend the notion of weak solution so that we have
existence, uniqueness and stability results for a large class of elliptic equations with L1

data. Here we propose to use the notion of renormalized solutions, which was introduced
by DiPerna and Lions in [8] for ordinary differential equations and which was extended
to elliptic and parabolic equations (see among others [15, 14, 7, 3, 4]). It is well known
that renormalized solution is convenient framework to deal with equation (1). There is
a wide literature on the subject mainly for elliptic equations with Dirichlet boundary
conditions, but a very few with Neumann boundary condition. The main difficulty in
dealing with Neumann boundary conditions is the regularity of the solution which is not
sufficient for the p-Laplace equation and p small to define the mean value.

Recently existence results for a class of nonlinear equations with L1 data and Neumann
boundary condition have been obtained in [1] (see also [2] for uniqueness results). Since
in general the mean value of the solution is not well defined the authors use in [1] the
median and prove the existence of renormalized solution having a null median.
For equation (1) with Neumann boundary conditions using the Boccardo-Gallouët

estimates we can expect to define the mean value. The first aim of the present project
is to adapt the method developed in [1] (see also [10] in a different framework) to prove
the existence of a renormalized solution to

−div(A(x, u)∇u) = f in Ω
A(x, u)∇u · ~n = 0 on ∂Ω,

(2)

and having a null mean value.

As far as the approximation of elliptic or parabolic equations is concerned, Finite
Element Methods and Finite Volume Methods are the most used. In this proposal we

1



study the finite volume schemes and we refer to the book [11] in which the authors study
finite volume approximation for linear or nonlinear elliptic, parabolic and hyperbolic
equations. There is wide literature on the finite volume method and in general elliptic
or parobolic equations with regular data (in the sense not belonging to L1) are studied.
In [9, 12] the convergence analysis of elliptic equation with L1 data is studied and in both
papers the authors prove, by adapting the method of Boccardo-Gallouët to the discrete
case, that the finite volume approximation converges to a solution to the elliptic equation
in the sense of distribution. Since the notion of solution in the sense of distribution is not
the good one for L1 data, a natural question is to know if the finite volume approximation
converges to the renormalized solution. This question was solved recently in [13] for the
non coercive elliptic equation

−∆u+ div(vu) + bu = f in Ω
u = 0 on ∂Ω.

(3)

The second aim of the present project is, by mixing the methods developed in [6] and
[13], to deal with elliptic equation with Neumann boundary conditions that is to prove
that the finite volume scheme for the equation

−div(λ(u)∇u) = f in Ω
∇u · ~n = 0 on ∂Ω

(4)

converges to a renormalized solution (the existence of such a solution is the first aim).
Here f belongs to L1 and verifies the compatibility condition

∫
Ω f = 0 while λ is a

continuous function verifying 0 < λ0 ≤ λ(r) ≤ λ1, for any r ∈ R.
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