Slow-fast dynamics and noise-induced periodic behaviors for mean-field excitable systems

Christophe Poquet

Université Lyon 1

October 22th, 2021

Rouen Probability meeting, 2021

In collaboration with E. Luçon (Université de Paris)

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

where

- $\delta \ge 0$, $K = \text{diag}(k_1, ..., k_d) > 0$, $\sigma = \text{diag}(\sigma_1, ..., \sigma_d) > 0$,
- $(B_i)_{i=1...N}$ family of standard independent Brownian motions,
- F smooth and one-sided Lipschitz : $(F(x) F(y)) \cdot (x y) \leqslant C|x y|^2$.

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

where

- $\delta \ge 0$, $K = \text{diag}(k_1, ..., k_d) > 0$, $\sigma = \text{diag}(\sigma_1, ..., \sigma_d) > 0$,
- $(B_i)_{i=1...N}$ family of standard independent Brownian motions,
- F smooth and one-sided Lipschitz : $(F(x) F(y)) \cdot (x y) \le C|x y|^2$.

On any time interval [0,T], the empirical measure $\mu_{N,t}=\frac{1}{N}\sum_{i=1}^N\delta_{X_{i,t}}$ converges weakly to the solution of

$$\partial_t \mu_t = \nabla \cdot (\sigma^2 \nabla \mu_t) + \nabla \cdot \left(\mu_t K(x - \int_{\mathbb{R}^d} z d\mu_t(z) \right) - \delta \nabla \cdot (\mu_t F).$$

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

where

- $\delta \ge 0$, $K = \text{diag}(k_1, \dots, k_d) > 0$, $\sigma = \text{diag}(\sigma_1, \dots, \sigma_d) > 0$,
- ullet $(B_i)_{i=1...N}$ family of standard independent Brownian motions,
- F smooth and one-sided Lipschitz : $(F(x) F(y)) \cdot (x y) \leq C|x y|^2$.

On any time interval [0,T], the empirical measure $\mu_{N,t}=\frac{1}{N}\sum_{i=1}^N\delta_{X_{i,t}}$ converges weakly to the solution of

$$\partial_t \mu_t = \nabla \cdot (\sigma^2 \nabla \mu_t) + \nabla \cdot \left(\mu_t K(x - \int_{\mathbb{R}^d} z d\mu_t(z) \right) - \delta \nabla \cdot (\mu_t F).$$

 μ_t is the distribution of

$$dX_t = \delta F(X_t)dt - K(X_t - \mathbb{E}[X_t])dt + \sqrt{2}\sigma dB_t.$$

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

where

- $\delta \geqslant 0$, $K = \operatorname{diag}(k_1, \ldots, k_d) > 0$, $\sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_d) > 0$,
- $(B_i)_{i=1...N}$ family of standard independent Brownian motions,
- F smooth and one-sided Lipschitz : $(F(x) F(y)) \cdot (x y) \leq C|x y|^2$.

On any time interval [0,T], the empirical measure $\mu_{N,t}=\frac{1}{N}\sum_{i=1}^N\delta_{X_{i,t}}$ converges weakly to the solution of

$$\partial_t \mu_t = \nabla \cdot (\sigma^2 \nabla \mu_t) + \nabla \cdot \left(\mu_t K(x - \int_{\mathbb{R}^d} z d\mu_t(z) \right) - \delta \nabla \cdot (\mu_t F).$$

 μ_t is the distribution of

$$dX_t = \delta F(X_t)dt - K(X_t - \mathbb{E}[X_t])dt + \sqrt{2}\sigma dB_t.$$

Aim

Prove that this PDE admits a periodic solution for some choices of F (in particular in cases when F defines an excitable dynamics) and δ small.

Noisy excitable systems in interaction

An excitable system:

- possesses a stable rest position.
- threshold phenomenon: after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state.

Noisy excitable systems in interaction

An excitable system:

- possesses a stable rest position.
- threshold phenomenon: after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state.

General observation:

A large population of noisy excitable systems in mean field interaction may possess a synchronized periodic behavior.

Noisy excitable systems in interaction

An excitable system:

- possesses a stable rest position.
- threshold phenomenon : after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state.

General observation:

A large population of noisy excitable systems in mean field interaction may possess a synchronized periodic behavior.

Aim

Rigorous proof of this phenomenon?

$$d\varphi_{i,t} = -\delta V'(\varphi_{i,t})dt - \frac{K}{N} \sum_{i=1}^{N} \sin(\varphi_{i,t} - \varphi_{j,t})dt + dB_{i,t}.$$

$$d\varphi_{i,t} = -\delta V'(\varphi_{i,t})dt - \frac{K}{N} \sum_{j=1}^{N} \sin(\varphi_{i,t} - \varphi_{j,t})dt + dB_{i,t}.$$

Example of potential : $V(\theta) = \theta - a\cos(\theta), V'(\theta) = 1 + a\sin(\theta).$

$$d\varphi_{i,t} = -\delta V'(\varphi_{i,t})dt - \frac{K}{N} \sum_{j=1}^{N} \sin(\varphi_{i,t} - \varphi_{j,t})dt + dB_{i,t}.$$

Example of potential : $V(\theta) = \theta - a\cos(\theta)$, $V'(\theta) = 1 + a\sin(\theta)$.

On any time interval [0,T], the empirical measure $\mu_{N,t}=\frac{1}{N}\sum_{i=1}^N\delta_{\varphi_{i,t}}$ converges weakly to the solution of

$$\partial_t \mu_t = \frac{1}{2} \partial_{\theta}^2 \mu_t + K \partial_{\theta} \left(\mu_t \int_{\mathcal{S}} \sin(\theta - \psi) d\mu_t(\psi) \right) + \delta \partial_{\theta} (\mu_t V').$$

$$d\varphi_{i,t} = -\delta V'(\varphi_{i,t})dt - \frac{K}{N} \sum_{j=1}^{N} \sin(\varphi_{i,t} - \varphi_{j,t})dt + dB_{i,t}.$$

Example of potential : $V(\theta) = \theta - a\cos(\theta)$, $V'(\theta) = 1 + a\sin(\theta)$.

On any time interval [0,T], the empirical measure $\mu_{N,t}=\frac{1}{N}\sum_{i=1}^N\delta_{\varphi_{i,t}}$ converges weakly to the solution of

$$\partial_t \mu_t = \frac{1}{2} \partial_\theta^2 \mu_t + K \partial_\theta \left(\mu_t \int_S \sin(\theta - \psi) d\mu_t(\psi) \right) + \delta \partial_\theta (\mu_t V').$$

For accurate choices of parameters (a may be larger than one) and δ small enough, this non-linear Fokker Planck PDE admits a limit cycle. [Giacomin, Pakdaman, Pellegrin and P., 2012]

Consider

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

where
$$F(x,y)=\left(\begin{array}{c} x^2-a \\ -by \end{array} \right)$$
 with $a\in\mathbb{R},\,b>0.$

Consider

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2\sigma}dB_{i,t},$$

where

$$F(v,w) = \left(\begin{array}{c} v - \frac{v^3}{3} - w\\ \frac{1}{c}(v + a - bw) \end{array}\right),$$

with $a \in \mathbb{R}$, b, c > 0.

- [Scheutzow, 1985], [Touboul, Hermann, Faugeras, 2012] noise-induced phenomena for non-linear Fokker-Planck equations admitting Gaussian solutions.
- [Scheutzow, 1986] existence of periodic solutions for the mean-field Brusselator model (for large interaction, when each unit has a periodic behavior).
- [Giacomin, Pakdaman, Pellegrin and P., 2012] noise-induced periodicity for the Active rotators model.
- [Mischler, Quiñinao, Touboul, 2016] existence of stationary solutions for the kinetic mean-field FitzHugh Nagumo model, uniqueness and stability for small coupling.
- [Quiñinao, Touboul, 2018] for large coupling, the kinetic mean-field FitzHugh Nagumo model behaves as a single FitzHugh Nagumo unit.
- [Cormier, Tanré, Veltz, 2021] existence of periodic solutions for system of integrate and fire neurons in mean-field interaction.

$$\partial_t \mu_t = \nabla \cdot (\sigma^2 \nabla \mu_t) + \nabla \cdot \left(\mu_t K(x - \int_{\mathbb{R}^d} z d\mu_t(z) \right) - \delta \nabla \cdot (\mu_t F).$$

 μ_t is the distribution of

$$dX_t = \delta F(X_t)dt - K(X_t - \mathbb{E}[X_t])dt + \sqrt{2}\sigma dB_t.$$

$$\partial_t \mu_t = \nabla \cdot (\sigma^2 \nabla \mu_t) + \nabla \cdot \left(\mu_t K(x - \int_{\mathbb{R}^d} z d\mu_t(z) \right) - \delta \nabla \cdot (\mu_t F).$$

 μ_t is the distribution of

$$dX_t = \delta F(X_t)dt - K(X_t - \mathbb{E}[X_t])dt + \sqrt{2}\sigma dB_t.$$

Denote $m_t=\mathbb{E}[X_t]=\int x d\mu_t(x)$, and p_t the distribution of X_t-m_t . (m_t,p_t) is solution of the system

which is a slow/fast system when $\delta \to 0$ with m_t the slow variable, p_t the fast one.

For $\delta=0$ we get

$$\begin{cases} \dot{m}_t &= 0 \\ \partial_t p_t &= \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t K x) \end{cases}$$

For $\delta = 0$ we get

$$\begin{cases} \dot{m}_t = 0 \\ \partial_t p_t = \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t K x) \end{cases}$$

In this case p_t is the distribution of the Ornstein Uhlenbeck process

$$dX_t = -KX_t dt + \sqrt{2}\sigma dB_t$$

which has stationnary distribution $q \sim \mathcal{N}(0, \sigma^2 K^{-1})$, and satisfies in particular

$$||p_t - q||_{L^2(q^{-1})} \le e^{-\min(k_1, \dots, k_d)t} ||p_0 - q||_{L^2(q^{-1})}$$

For $\delta = 0$ we get

$$\begin{cases} \dot{m}_t = 0 \\ \partial_t p_t = \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t K x) \end{cases}$$

In this case p_t is the distribution of the Ornstein Uhlenbeck process

$$dX_t = -KX_t dt + \sqrt{2}\sigma dB_t$$

which has stationnary distribution $q \sim \mathcal{N}(0, \sigma^2 K^{-1})$, and satisfies in particular

$$||p_t - q||_{L^2(q^{-1})} \le e^{-\min(k_1, \dots, k_d)t} ||p_0 - q||_{L^2(q^{-1})}$$

Approximation for δ small :

$$\left\{ \begin{array}{ll} \dot{m}_t & \approx & \delta \int F(x+m_t) dq(x) = \delta F_{\sigma^2 K^{-1}}(m_t) \\ p_t & \approx & q \end{array} \right. .$$

For $\delta = 0$ we get

$$\begin{cases} \dot{m}_t = 0 \\ \partial_t p_t = \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t K x) \end{cases}$$

In this case p_t is the distribution of the **Ornstein Uhlenbeck process**

$$dX_t = -KX_t dt + \sqrt{2}\sigma dB_t$$

which has stationnary distribution $q \sim \mathcal{N}(0, \sigma^2 K^{-1})$, and satisfies in particular

$$||p_t - q||_{L^2(q^{-1})} \le e^{-\min(k_1, \dots, k_d)t} ||p_0 - q||_{L^2(q^{-1})}$$

Approximation for δ small :

$$\left\{ \begin{array}{ll} \dot{m}_t & \approx & \delta \int F(x+m_t) dq(x) = \delta F_{\sigma^2 K^{-1}}(m_t) \\ p_t & \approx & q \end{array} \right. .$$

This corresponds to the approximation

$$\mu_t \approx \mathcal{N}(m_t, \sigma^2 K^{-1}), \quad \text{with} \quad \dot{m}_t \approx \delta F_{\sigma^2 K^{-1}}(m_t),$$

which reduces the problem to a d-dimensional dynamics.

Reduction and examples

Recall the reduction

$$\mu_t \approx \mathcal{N}(m_t, \sigma^2 K^{-1}), \quad \text{with} \quad \dot{m}_t \approx \delta F_{\sigma^2 K^{-1}}(m_t),$$

Recall the reduction

$$\mu_t \approx \mathcal{N}(m_t, \sigma^2 K^{-1}), \quad \text{with} \quad \dot{m}_t \approx \delta F_{\sigma^2 K^{-1}}(m_t),$$

• For $F(x,y) = (x^2 - a, -by)$,

we get
$$F_{\sigma^2K^{-1}}(m_x,m_y)=\left(m_x^2-\left(a-\frac{\sigma_1^2}{k_1}\right),-b\,m_y\right)\!.$$

• For $F(v,w)=\left(v-\frac{v^3}{3}-w,\frac{1}{c}(v+a-bw)\right)$, we get

$$F_{\sigma^2 K^{-1}}(m_v, m_w) = \left(m_v \left(1 - \frac{\sigma_1^2}{k_1}\right) - \frac{m_v^3}{3} - m_w, \frac{1}{c}(m_v + a - b m_w)\right).$$

FIGURE. Dynamics of $\dot{m}_t = F_{\sigma^2 K^{-1}}(m_t)$, $a = \frac{1}{3}$, b = 1, c = 10.

Simulation for N particles, FitzHugh Nagumo model

Parameters : N=100000, $k_1=1$, $k_2=1$, $\sigma_1^2=0.2$, $\sigma_2^2=0.03$, $\delta=0.1$.

Positively invariant manifold M_{δ}

Hypotheses:

- $\max \left\{ |F(x)|, \max_{i} |\partial_{x_{i}} F(x)|, \max_{i,j} |\partial_{x_{i},x_{j}}^{2} F(x)| \right\} \leqslant e^{\varepsilon |x|^{2}}$,
- $F(x) \cdot K\sigma^{-2}x \leqslant C1_{\{|x| \leqslant r\}} c|x|^2$ and $\lim_{|x| \to \infty} \frac{|F(x)|}{F(x) \cdot K\sigma^{-2}x} = 0$,
- $\bullet \ n_{\partial V}(m) \cdot F_{\sigma^2 K^{-1}}(m) < 0 \ \text{for some smooth} \ V \subset \mathbb{R}^d.$

Positively invariant manifold M_{δ}

Hypotheses:

- $\max \left\{ |F(x)|, \max_{i} |\partial_{x_i} F(x)|, \max_{i,j} |\partial^2_{x_i,x_j} F(x)| \right\} \leqslant e^{\varepsilon |x|^2}$,
- $\bullet \ \ F(x)\cdot K\sigma^{-2}x\leqslant C1_{\{|x|\leqslant r\}}-c|x|^2 \ \text{and} \ \lim_{|x|\to\infty}\frac{|F(x)|}{F(x)\cdot K\sigma^{-2}x}=0,$
- $\bullet \ \ n_{\partial V}(m) \cdot F_{\sigma^2 K^{-1}}(m) < 0 \ \text{for some smooth} \ V \subset \mathbb{R}^d.$

Result [Luçon, P., 2019] : existence of a positively invariant manifold $M_\delta = \{(m, g^\delta(m)): m \in V\}$ in $\mathbb{R}^d \times L^2(q^{-\alpha})$.

Hypotheses:

- $\max \left\{ |F(x)|, \max_i |\partial_{x_i} F(x)|, \max_{i,j} |\partial^2_{x_i,x_j} F(x)| \right\} \leqslant e^{\varepsilon |x|^2}$,
- $\bullet \ \ F(x) \cdot K\sigma^{-2}x \leqslant C1_{\{|x| \ \leqslant \ r\}} c|x|^2 \ \ \text{and} \ \ \lim_{|x| \to \infty} \frac{|F(x)|}{F(x) \cdot K\sigma^{-2}x} = 0,$
- $\bullet \ \ n_{\partial V}(m) \cdot F_{\sigma^2 K^{-1}}(m) < 0 \ \text{for some smooth} \ V \subset \mathbb{R}^d.$

Result [Luçon, P., 2019] : existence of a positively invariant manifold $M_\delta=\{(m,g^\delta(m)):\,m\in V\}$ in $\mathbb{R}^d\times L^2(q^{-\alpha}).$

Idea: persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971], [Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].

Hypotheses:

- $\max \left\{ |F(x)|, \max_i |\partial_{x_i} F(x)|, \max_{i,j} |\partial^2_{x_i,x_j} F(x)| \right\} \leqslant e^{\varepsilon |x|^2}$,
- $\bullet \ \ F(x)\cdot K\sigma^{-2}x\leqslant C1_{\{|x|\ \leqslant\ r\}}-c|x|^2\ \ \text{and}\ \ \lim_{|x|\to\infty}\frac{|F(x)|}{F(x)\cdot K\sigma^{-2}x}=0,$
- $\bullet \ \ n_{\partial V}(m) \cdot F_{\sigma^2 K^{-1}}(m) < 0 \ \text{for some smooth} \ V \subset \mathbb{R}^d.$

Result [Luçon, P., 2019] : existence of a positively invariant manifold $M_\delta=\{(m,g^\delta(m)):\,m\in V\}$ in $\mathbb{R}^d\times L^2(q^{-\alpha}).$

Idea: persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971], [Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].

If $p_0 = g^{\delta}(m_0) \in M_{\delta}$, then $p_t = g^{\delta}(m_t) \in M_{\delta}$ and $\dot{m}_t \approx \delta F_{\sigma^2 K^{-1}}(m_t)$. \rightarrow Existence of a periodic solution in M_{δ} when $\dot{m}_t = \delta F_{\sigma^2 K^{-1}}(m_t)$ has one in V.

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2}\sigma dB_{i,t},$$

and define $u_{N,t} = (m_{N,t}, p_{N,t})$ with

$$m_{N,t} = \frac{1}{N} \sum_{i=1}^{N} X_{i,t}, \quad p_{N,t} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i,t} - m_{N,t}}.$$

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2\sigma}dB_{i,t},$$

and define $\nu_{N,t}=(m_{N,t},p_{N,t})$ with

$$m_{N,t} = \frac{1}{N} \sum_{i=1}^{N} X_{i,t}, \quad p_{N,t} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i,t} - m_{N,t}}.$$

On the time interval [0,T] the process $(m_{N,t},p_{N,t})$ converges weakly to (m_t,p_t) solution to

$$\begin{cases} \dot{m}_t &= \delta \int F(x+m_t) dp_t(x) \\ \partial_t p_t &= \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t Kx) + \nabla \cdot (p_t (\dot{m}_t - \delta F(x+m_t)) \end{cases} ,$$

$$dX_{i,t} = \delta F(X_{i,t})dt - K\left(X_{i,t} - \frac{1}{N}\sum_{j=1}^{N} X_{j,t}\right)dt + \sqrt{2\sigma}dB_{i,t},$$

and define $\nu_{N,t}=(m_{N,t},p_{N,t})$ with

$$m_{N,t} = \frac{1}{N} \sum_{i=1}^{N} X_{i,t}, \quad p_{N,t} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i,t} - m_{N,t}}.$$

On the time interval [0,T] the process $(m_{N,t},p_{N,t})$ converges weakly to (m_t,p_t) solution to

$$\begin{cases} \dot{m}_t &= \delta \int F(x+m_t) dp_t(x) \\ \partial_t p_t &= \nabla \cdot (\sigma^2 \nabla p_t) + \nabla \cdot (p_t Kx) + \nabla \cdot (p_t (\dot{m}_t - \delta F(x+m_t))) \end{cases}$$

Hypotheses : that F and its derivatives bounded and $\dot{m}_t = \delta F_{K\sigma^{-2}}(m_t)$ admits a stable periodic solution.

Result : for δ small enough this limit PDE admits a stable periodic solution Γ and a C^2 isochron map Θ defined in a neighborhood of Γ [Luçon, P., 2021].

Long time behavior of the empirical measure

Theorem ([Luçon, P., 2021])

Suppose that, for some $\gamma > 0$,

$$\sup_{N \geq 1} \mathbb{E}\left[\left|\langle p_{N,0}, q^{\gamma} \rangle\right|\right] < \infty,$$

that for some r taken large enough and α taken small enough (depending in particular on γ), for all $\varepsilon>0$

$$\mathbb{P}\left(\left\|\nu_{N,0} - \Gamma_{t_0}\right\|_{\mathbb{R}^d \times H_{q^{\alpha}}^{-r}} \leqslant \varepsilon\right) \underset{N \to \infty}{\longrightarrow} 1,$$

and that there exists a constant C_0 such that

$$\mathbb{P}\left(\left\|p_{N,0}\right\|_{H_{q^{\alpha}}^{-r+2}} \leqslant C_0\right) \underset{N \to \infty}{\longrightarrow} 1,$$

Then, for all $\varepsilon > 0$.

$$\mathbb{P}\left(\left\|\nu_{N,Nt}-\Gamma_{t_0+Nt+v_{N,t}}\right\|_{\mathbb{R}^d\times H_{q^\alpha}^{-r}}\leqslant\varepsilon\right)\underset{N\to\infty}{\longrightarrow}1,$$

where $v_{N,0}=0$ and $v_{N,t}$ converges weakly to $v_t=bt+aw_t$, with a and b constant depending on Γ , $D\Theta(\Gamma)$ and $D^2\Theta(\Gamma)$.

Open questions:

- other type of interaction (non linear interactions)?
- random graphs?

Open questions:

- other type of interaction (non linear interactions)?
- random graphs?

Thank you for your attention.