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The model

Consider a population of N interacting units in Rd with dynamics

dXi,t = δF (Xi,t)dt−K

Xi,t − 1

N

N∑
j=1

Xj,t

 dt+
√

2σdBi,t,

where

• δ > 0, K = diag(k1, . . . , kd) > 0, σ = diag(σ1, . . . , σd) > 0,

• (Bi)i=1...N family of standard independent Brownian motions,

• F smooth and one-sided Lipschitz : (F (x)− F (y)) · (x− y) 6 C|x− y|2.

On any time interval [0, T ], the empirical measure µN,t = 1
N

∑N
i=1 δXi,t converges

weakly to the solution of

∂tµt = ∇ · (σ2∇µt) +∇ ·
(
µtK(x−

∫
Rd
zdµt(z)

)
−δ∇ · (µtF ).

µt is the distribution of

dXt = δF (Xt)dt−K(Xt − E[Xt])dt+
√

2σdBt.

Aim
Prove that this PDE admits a periodic solution for some choices of F (in particular in
cases when F defines an excitable dynamics) and δ small.
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Noisy excitable systems in interaction

An excitable system :

• possesses a stable rest position.

• threshold phenomenon : after a sufficiently
large perturbation, follows a complex trajectory
before coming back to the rest state.

General observation :
A large population of noisy excitable systems in mean field interaction may possess a
synchronized periodic behavior.

Aim
Rigorous proof of this phenomenon ?
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Active rotators

[Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R/(2πZ) with
dynamics

dϕi,t = −δV ′(ϕi,t)dt−
K

N

N∑
j=1

sin(ϕi,t − ϕj,t)dt+dBi,t.

Example of potential : V (θ) = θ − a cos(θ), V ′(θ) = 1 + a sin(θ).
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On any time interval [0, T ], the empirical measure µN,t = 1
N

∑N
i=1 δϕi,t converges

weakly to the solution of

∂tµt =
1

2
∂2θµt +K∂θ

(
µt

∫
S

sin(θ − ψ)dµt(ψ)

)
+δ∂θ(µtV

′).

For accurate choices of parameters (a may be larger than one) and δ small enough,
this non-linear Fokker Planck PDE admits a limit cycle. [Giacomin, Pakdaman, Pellegrin

and P., 2012]
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A toy example in Rd

Consider

dXi,t = δF (Xi,t)dt−K

Xi,t − 1

N

N∑
j=1

Xj,t

 dt+
√

2σdBi,t,

where F (x, y) =

(
x2 − a
−by

)
with a ∈ R, b > 0.

p

a

p

a 0

a > 0

0

a < 0
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FitzHugh Nagumo

Consider

dXi,t = δF (Xi,t)dt−K

Xi,t − 1

N

N∑
j=1

Xj,t

 dt+
√

2σdBi,t,

where

F (v, w) =

(
v − v3

3
− w

1
c
(v + a− bw)

)
,

with a ∈ R, b, c > 0.
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A look at the literature

• [Scheutzow, 1985], [Touboul, Hermann, Faugeras, 2012] noise-induced phenomena for
non-linear Fokker-Planck equations admitting Gaussian solutions.

• [Scheutzow, 1986] existence of periodic solutions for the mean-field Brusselator
model (for large interaction, when each unit has a periodic behavior).

• [Giacomin, Pakdaman, Pellegrin and P., 2012] noise-induced periodicity for the Active
rotators model.

• [Mischler, Quiñinao, Touboul, 2016] existence of stationary solutions for the kinetic
mean-field FitzHugh Nagumo model, uniqueness and stability for small coupling.

• [Quiñinao, Touboul, 2018] for large coupling, the kinetic mean-field FitzHugh
Nagumo model behaves as a single FitzHugh Nagumo unit.

• [Cormier, Tanré, Veltz, 2021] existence of periodic solutions for system of integrate
and fire neurons in mean-field interaction.
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Slow/fast dynamics

Recall

∂tµt = ∇ · (σ2∇µt) +∇ ·
(
µtK(x−

∫
Rd
zdµt(z)

)
−δ∇ · (µtF ).

µt is the distribution of

dXt = δF (Xt)dt−K(Xt − E[Xt])dt+
√

2σdBt.

Denote mt = E[Xt] =
∫
xdµt(x), and pt the distribution of Xt −mt.

(mt, pt) is solution of the system{
ṁt = δ

∫
F (x+mt)dpt(x)

∂tpt = ∇ · (σ2∇pt) +∇ · (ptKx)+∇ · (pt(ṁt − δF (x+mt))
,

which is a slow/fast system when δ → 0 with mt the slow variable, pt the fast one.
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Case δ = 0 and reduction

For δ = 0 we get {
ṁt = 0
∂tpt = ∇ · (σ2∇pt) +∇ · (ptKx)

.

In this case pt is the distribution of the Ornstein Uhlenbeck process

dXt = −KXtdt+
√

2σdBt,

which has stationnary distribution q ∼ N (0, σ2K−1), and satisfies in particular

‖pt − q‖L2(q−1) 6 e−min(k1,...,kd)t‖p0 − q‖L2(q−1)

Approximation for δ small :{
ṁt ≈ δ

∫
F (x+mt)dq(x) = δFσ2K−1 (mt)

pt ≈ q
.

This corresponds to the approximation

µt ≈ N (mt, σ
2K−1), with ṁt ≈ δFσ2K−1 (mt),

which reduces the problem to a d-dimensional dynamics.
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ṁt ≈ δ

∫
F (x+mt)dq(x) = δFσ2K−1 (mt)

pt ≈ q
.

This corresponds to the approximation

µt ≈ N (mt, σ
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2K−1), with ṁt ≈ δFσ2K−1 (mt),

which reduces the problem to a d-dimensional dynamics.

9/16



Case δ = 0 and reduction

For δ = 0 we get {
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2K−1), with ṁt ≈ δFσ2K−1 (mt),

which reduces the problem to a d-dimensional dynamics.

9/16



Reduction and examples

Recall the reduction

µt ≈ N (mt, σ
2K−1), with ṁt ≈ δFσ2K−1 (mt),

• For F (x, y) = (x2 − a,−by),

p

a

p

a 0

a > 0

0

a < 0

we get Fσ2K−1 (mx,my) =

(
m2
x −

(
a−σ

2
1
k1

)
,−bmy

)
.
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Reduction and examples

• For F (v, w) =
(
v − v3

3
− w, 1

c
(v + a− bw)

)
, we get

Fσ2K−1 (mv ,mw) =

(
mv

(
1−

σ2
1

k1

)
−
m3
v

3
−mw,

1

c
(mv + a− bmw)

)
.

Figure. Dynamics of ṁt = F
σ2K−1 (mt), a = 1

3
, b = 1, c = 10.
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Simulation for N particles, FitzHugh Nagumo model

Parameters : N = 100000, k1 = 1, k2 = 1, σ2
1 = 0.2, σ2

2 = 0.03, δ = 0.1.
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Positively invariant manifold Mδ

Hypotheses :

• max
{
|F (x)|, maxi |∂xiF (x)|, maxi,j |∂2xi,xjF (x)|

}
6 eε|x|

2
,

• F (x) ·Kσ−2x 6 C1{|x| 6 r} − c|x|2 and lim|x|→∞
|F (x)|

F (x)·Kσ−2x
= 0,

• n∂V (m) · Fσ2K−1 (m) < 0 for some smooth V ⊂ Rd.

Result [Luçon, P., 2019] : existence of a positively invariant manifold
Mδ = {(m, gδ(m)) : m ∈ V } in Rd × L2(q−α).

Idea : persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971],

[Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].

If p0 = gδ(m0) ∈Mδ, then pt = gδ(mt) ∈Mδ and ṁt ≈ δFσ2K−1 (mt).
→ Existence of a periodic solution in Mδ when ṁt = δFσ2K−1 (mt) has one in V .
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Result [Luçon, P., 2019] : existence of a positively invariant manifold
Mδ = {(m, gδ(m)) : m ∈ V } in Rd × L2(q−α).

Idea : persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971],
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Empirical measure

Recall

dXi,t = δF (Xi,t)dt−K

Xi,t − 1

N

N∑
j=1

Xj,t

 dt+
√

2σdBi,t,

and define νN,t = (mN,t, pN,t) with

mN,t =
1

N

N∑
i=1

Xi,t, pN,t =
1

N

N∑
i=1

δXi,t−mN,t .

On the time interval [0, T ] the process (mN,t, pN,t) converges weakly to (mt, pt)
solution to{

ṁt = δ
∫
F (x+mt)dpt(x)

∂tpt = ∇ · (σ2∇pt) +∇ · (ptKx)+∇ · (pt(ṁt − δF (x+mt))
,

Hypotheses : that F and its derivatives bounded and ṁt = δFKσ−2 (mt) admits a
stable periodic solution.

Result : for δ small enough this limit PDE admits a stable periodic solution Γ and a
C2 isochron map Θ defined in a neighborhood of Γ [Luçon, P., 2021].
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Xi,t − 1

N

N∑
j=1

Xj,t

 dt+
√

2σdBi,t,

and define νN,t = (mN,t, pN,t) with

mN,t =
1

N

N∑
i=1

Xi,t, pN,t =
1

N

N∑
i=1

δXi,t−mN,t .

On the time interval [0, T ] the process (mN,t, pN,t) converges weakly to (mt, pt)
solution to{

ṁt = δ
∫
F (x+mt)dpt(x)

∂tpt = ∇ · (σ2∇pt) +∇ · (ptKx)+∇ · (pt(ṁt − δF (x+mt))
,

Hypotheses : that F and its derivatives bounded and ṁt = δFKσ−2 (mt) admits a
stable periodic solution.

Result : for δ small enough this limit PDE admits a stable periodic solution Γ and a
C2 isochron map Θ defined in a neighborhood of Γ [Luçon, P., 2021].
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Long time behavior of the empirical measure

Theorem ([Luçon, P., 2021])
Suppose that, for some γ > 0,

sup
N > 1

E
[∣∣〈pN,0, qγ〉∣∣] <∞,

that for some r taken large enough and α taken small enough (depending in particular
on γ), for all ε > 0

P
(∥∥νN,0 − Γt0

∥∥
Rd×H−r

qα
6 ε

)
−→
N→∞

1,

and that there exists a constant C0 such that

P
(∥∥pN,0∥∥H−r+2

qα
6 C0

)
−→
N→∞

1,

Then, for all ε > 0,

P

(∥∥∥νN,Nt − Γt0+Nt+vN,t

∥∥∥
Rd×H−r

qα

6 ε

)
−→
N→∞

1,

where vN,0 = 0 and vN,t converges weakly to vt = bt+ awt, with a and b constant
depending on Γ, DΘ(Γ) and D2Θ(Γ).
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Open questions :

• other type of interaction (non linear interactions) ?

• random graphs ?

Thank you for your attention.
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