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The model

Consider a population of N interacting units in R with dynamics
1N
dX; = 0F(X;)dt — K | X4 — ¥ > Xji | dt+V20dB, 4,
j=1
where
® § >0, K =diag(ki,...,kq) >0, o = diag(o1,...,04) >0,

® (B;)i=1...n family of standard independent Brownian motions,
® [ smooth and one-sided Lipschitz : (F(z) — F(y)) - (x — y) < Clz — y|2.
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pt is the distribution of
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The model

Consider a population of N interacting units in R with dynamics
1N
X = 0F (X)dt — K | Xip — — > Xji | dt+V20dB, 4,
j=1

where
® § >0, K =diag(ki,...,kq) >0, o = diag(o1,...,04) >0,
® (B;)i=1...n family of standard independent Brownian motions,
® [ smooth and one-sided Lipschitz : (F(z) — F(y)) - (x — y) < Clz — y|2.

On any time interval [0, T], the empirical measure ¢ = % Zf;l dx, , converges
weakly to the solution of

Ot =V - (O’QV[M) + V. (utK(:v - /d zdut(z)) =0V - (ueF).
R
pt is the distribution of

dX: = 6F(X¢)dt — K(X; — E[X¢])dt+\/20dB:.

Aim
Prove that this PDE admits a periodic solution for some choices of F' (in particular in
cases when F' defines an excitable dynamics) and § small.
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Noisy excitable systems in interaction

An excitable system :

® possesses a stable rest position.

® threshold phenomenon : after a sufficiently
large perturbation, follows a complex trajectory
before coming back to the rest state.
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Noisy excitable systems in interaction

An excitable system :

® possesses a stable rest position.

® threshold phenomenon : after a sufficiently
large perturbation, follows a complex trajectory
before coming back to the rest state.

General observation :
A large population of noisy excitable systems in mean field interaction may possess a
synchronized periodic behavior.

Aim

Rigorous proof of this phenomenon ?
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Active rotators

[Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R/(27Z) with
dynamics
N

K .
dpi s = —6V'(pi,)dt — N Z sin(pi,¢ — pj,t)dt+dBi ¢.
j=1
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Example of potential : V() = 0 — acos(9), V'(0) = 1+ asin(6).
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Example of potential : V() = 0 — acos(9), V'(0) = 1+ asin(6).
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On any time interval [0, T], the empirical measure iy = % SN | 8,,;, converges
weakly to the solution of
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Active rotators

[Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R/(27Z) with

dynamics
N

K
d@i,t = —5V/(<Pi,t)dt — N Z sin(api’t — (pjﬂg)dt-‘rdBi’/,.
i=1

Example of potential : V() = 6 — acos(d), V'(0) =1 + asin(6).

a<l
! @ !
6 4 2 0 2 4 6 B

On any time interval [0, T], the empirical measure iy = % SN | 8,,;, converges
weakly to the solution of

a>1

1.
Orpy = iagﬂt + K0p (#z/ sin(6 — w)dut(w)) +60g (1t V).
S

For accurate choices of parameters (a may be larger than one) and § small enough,
this non-linear Fokker Planck PDE admits a limit cycle. [Giacomin, Pakdaman, Pellegrin
and P., 2012]
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A toy example in R?

Consider

N

1
dX; ;= 6F(X;)dt — K (Xm -5 > Xj,t) dt+v20dB; ¢,

j=1

2 _
where F(z,y) = ( iby @ ) with a € R, b > 0.
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FitzHugh Nagumo
Consider

where

N
1
dX;1 = 6F(X;)dt — K | Xi4 — N § X | dt+V20dB; 4,
j=1

3
vl
F(v,w) = < v
with a € R, b,c > 0.
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A look at the literature

® [Scheutzow, 1985], [Touboul, Hermann, Faugeras, 2012] noise-induced phenomena for
non-linear Fokker-Planck equations admitting Gaussian solutions.

® [Scheutzow, 1986] existence of periodic solutions for the mean-field Brusselator
model (for large interaction, when each unit has a periodic behavior).

® [Giacomin, Pakdaman, Pellegrin and P., 2012] noise-induced periodicity for the Active
rotators model.

® [Mischler, Quifiinao, Touboul, 2016] existence of stationary solutions for the kinetic
mean-field FitzHugh Nagumo model, uniqueness and stability for small coupling.

® [Quifiinao, Touboul, 2018] for large coupling, the kinetic mean-field FitzHugh
Nagumo model behaves as a single FitzHugh Nagumo unit.

® [Cormier, Tanré, Veltz, 2021] existence of periodic solutions for system of integrate
and fire neurons in mean-field interaction.
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Slow /fast dynamics

Recall
Otpt =V - (UQV,ut) + V- (,utK(z - /d zd,ut(z)) —6V - (ue F).
R

wt is the distribution of

dX; = 6F(Xy)dt — K(X¢ — E[X,))dt+V/20dB;.
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Slow/fast dynamics

Recall
atpt =V- (UQV,ut) +V. (,utK(z — /d zd,ut(z)) —oV - (,utF).
R

wt is the distribution of

dX; = 6F(Xy)dt — K(X¢ — E[X,))dt+V/20dB;.

Denote m; = E[X¢] = [ zdp¢(z), and p; the distribution of X; — my.

(m¢, pt) is solution of the system

{ e 8 [ F(z + m¢)dpe(z)
dpe = V- (0?Vp) + V- (peKz)+V - (pi(rive — F(z +my))

which is a slow/fast system when § — 0 with m; the slow variable, p; the fast one.
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Case § = 0 and reduction

For § = 0 we get

my = 0
Opr = V- (0?Vp)+ V- (peKx)
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Case 6 = 0 and reduction

For § = 0 we get

mg = 0
{ dhpe = V- (0PVpt) + V- (peKx)
In this case p; is the distribution of the Ornstein Uhlenbeck process
dX; = —K Xdt+\/20dBy,
which has stationnary distribution ¢ ~ N(0,02K ~1), and satisfies in particular

—min(ky,...,kgq)t

e = qllLz(q—1y <e o = allz2(q-)
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Case 6 = 0 and reduction

For § = 0 we get

mg = 0
{ dhpe = V- (0PVpt) + V- (peKx)
In this case p; is the distribution of the Ornstein Uhlenbeck process
dX; = —K Xdt+\/20dBy,
which has stationnary distribution ¢ ~ N(0,02K ~1), and satisfies in particular

—min(ky,...,kgq)t

e = qllLz(q—1y <e o = allz2(q-)

Approximation for § small :

{ me ~ 6 [ F(z+m)dg(z) = 6F, 2, -1(my)
pt = g

This corresponds to the approximation
Lt %N(mt,0'2K71), with 7y %5F02K71(mt),

which reduces the problem to a d-dimensional dynamics.
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Reduction and examples

Recall the reduction

pt RN (me, o K™Y, with 1y = 0F 2 50—1(me),
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Reduction and examples

Recall the reduction
Lt %./\/'('rl1/t,t7'21(71)7 with 7t 25F02K71(mt),

® For F(z,y) = (22 — a, —by),

N\ ——

2
we get F o —1(maz,my) = (mg — (a7%> ,fbmy).
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For F(v,w) = (

Reduction and examples
3
v— —w,%(fu—&—a—bw)), we get
2 3
o m
Foop—1(my,my) = | my L — —Y — My, —(My +a—bmy) | .
k1 3 c
02Ky =0 02/K; = 0.086
1 2 7

o2/K, =02
7

osf

FIGURE. Dynamics of 1y = F o, 1 (m¢), a =

T.b=1c=10
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Simulation for N particles, FitzHugh Nagumo model

Parameters : N = 100000, k1 = 1, k2 = 1, 02 = 0.2, 02 = 0.03, § = 0.1.
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Positively invariant manifold M

Hypotheses :
o max{|F(x)|7 max; |0z, F(z)|, max; ; |02 F($)|} < 65‘1‘2,

Ti,Tj
* F(z)- Ko~ 2z < Olyjg) < vy — clz]? and lim g, o0 %

® ngy(m) - Foap—1(m) <0 for some smooth V C R%.

=0,
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* F(z)- Ko~ 2z < Olyjg) < vy — clz]? and lim g, o0 %

® ngy(m) - Foap—1(m) <0 for some smooth V C R%.

=0,

Result [Lugon, P., 2019] : existence of a positively invariant manifold
Ms = {(m,g’(m)) : m € V}in R% x L2(¢g—®).

peLl(q®)

meR?
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Positively invariant manifold M

Hypotheses :
o max {|F(2)], max; [0z, F(2)], max, ; |02, . F@)|} < eslol?,

Ti,Tj
B . F
* F(z)- Ko~ 2z < Olyjg) < vy — clz]? and lim g, o0 %

® ngy(m) - Foap—1(m) <0 for some smooth V C R%.

=0,

Result [Lugon, P., 2019] : existence of a positively invariant manifold
Ms = {(m,g’(m)) : m € V}in R% x L2(¢g—®).

pe L (g
N (%)

meR?

Idea : persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971],
[Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].
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Positively invariant manifold M

Hypotheses :
o max {|F(2)], max; [0z, F(2)], max, ; |02, . F@)|} < eslol?,

Ti,Tj
B . F
* F(z)- Ko~ 2z < Olyjg) < vy — clz]? and lim g, o0 %

® ngy(m) - Foap—1(m) <0 for some smooth V C R%.

=0,

Result [Lugon, P., 2019] : existence of a positively invariant manifold
Ms = {(m,g’(m)) : m € V}in R% x L2(¢g—®).

pe L (g
N (%)

meR?

Idea : persistence of normally hyperbolic manifolds under perturbation [Fénichel, 1971],
[Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].

If po = g‘s(mo) € Mg, then pr = g5(mt) € Mg and i ~ 5F02K71(mt).

— Existence of a periodic solution in Mz when iy = 6F, 2 —1(m¢) has one in V. 13/16



Empirical measure

Recall

N
1
dXip = OF (Xi)dt — K | Xiy = > Xju | dt+V20dB;
j=1

and define vy ; = (mpy ¢, PN,) With

1 1
MmNt = 5 ZXi,t, PNt = Zaxiwt’vat'
im1 i=1
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Empirical measure

Recall

N
1
dXip = OF(Xi)dt — K | Xy — > Xju | dt+V20dB;
j=1

and define vy ; = (mpy ¢, PN,) With

1 & 1 &
MmNt = D> Xie, pNi= ~ D O mmn
i=1 i=1

On the time interval [0, T the process (my ¢, pn,t) converges weakly to (m¢, pt)
solution to

{ e 8 [ F(z + m¢)dpe(z)
Ope = V- (0°Vp) + V- (peKx)+V - (pe(ine — 6F (x +my))

Hypotheses : that F' and its derivatives bounded and 7 = 0 F,—2(m¢) admits a
stable periodic solution.

Result : for § small enough this limit PDE admits a stable periodic solution I" and a
C? isochron map © defined in a neighborhood of I' [Lugon, P., 2021].
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Long time behavior of the empirical measure

Theorem ([Lugon, P., 2021])
Suppose that, for some v > 0,

sup E [|[(pn,0,q7)|] < oo,
N>1

that for some r taken large enough and o taken small enough (depending in particular
on~), foralle >0

P (Iomo = Tellgarrog <€) gt 1

and that there exists a constant Cq such that

N —o0

P (llowallygsa <o) o 1

Then, for all € > 0,

— 1,

P HVNNt_Ft Nt <e
’ ot NituN,¢ ]RdxH;J = N—o0

where v o = 0 and vy,¢ converges weakly to vy = bt + awt, with a and b constant
depending on T, DO(T) and D2O(T).
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Open questions :
® other type of interaction (non linear interactions) ?

® random graphs?
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Open questions :
® other type of interaction (non linear interactions) ?

® random graphs?

Thank you for your attention.
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